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Computational Bottlenecks in Symbolic Control Synthesis

Problem: Abstraction and controller synthesis exhibit exponential time and space bottlenecks with respect to state 4 input space dimension in existing tools.

Contributions: Two approaches that leverage the inherent parallelism and structure in system dynamics

1. Exploiting State Independence (Right column): Parallelized core takes advantage of independence and locality of abstraction and synthesis subroutines across
different states.

2. Exploiting Sparsity (Left column): Leverages the coordinate structure of the state space and sparsity (if present) to eliminate redundant computations.

Example: Vehicle Dynamics Preparations for Efficient Parallel Execution
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Goal: Create a controllable predecessor without constructing monolithic system

Parallel Construction of Symbolic Controllers
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Initial Results and Future Work
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