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Computational Bottlenecks in Symbolic Control Synthesis

Problem: Abstraction and controller synthesis exhibit exponential time and space bottlenecks with respect to state + input space dimension in existing tools.
Contributions: Two approaches that leverage the inherent parallelism and structure in system dynamics

1. Exploiting State Independence (Right column): Parallelized core takes advantage of independence and locality of abstraction and synthesis subroutines across
different states.

2. Exploiting Sparsity (Left column): Leverages the coordinate structure of the state space and sparsity (if present) to eliminate redundant computations.

Example: Vehicle Dynamics

3-dimensional state (x1, x2, x3) ∈ X and 2-dimensional input (u1, u2) ∈ U.

ẋ1 = u1 cos(α + u2)/ cos(α)

ẋ2 = u1 sin(α + u2)/ sin(α)

ẋ3 = u1 tan(u2)

where α = arctan(tan(u2)/2).

Discretization:
I 93k states: 51 × 51 × 36 grid
I 49 inputs: 7 × 7 grid

Sparsity-Aware Abstraction
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Sparsity-aware abstraction computes and combines abstractions of lower
dimensional components Σ1,Σ2,Σ3 and eliminates redundant computations.

I Equality: Yields same abstraction as the regular algorithm.
I Efficiency: Linear with respect to state dimension, exponential with respect

to sparsity parameter.
I Generality: Only assumption is Cartesian product state space and

component-wise dynamics.

Decomposed Controller Predecessor

Controllable predecessor operator is a key subroutine in formal control synthesis:

CPRE(Z) = ∃u.
(
∃x+.Σ(x, u, x+) ∧ ∀x+.(Σ(x, u, x+)⇒ Z(x+))

)
Goal: Create a controllable predecessor without constructing monolithic system
Σ(x, u, x+). Substituting decomposed representation of Σ into red term yields

∀x+.(Σ(x, u, x+)⇒ Z(x+))

= ∀x+.((Σ1 ∧ Σ2 ∧ Σ3)⇒ Z(x+))

= ∀x+
1 .∀x

+
2 .∀x

+
3 .(¬Σ1 ∨ ¬Σ2 ∨ ¬Σ3 ∨ Z(x+)) (1)

Obstacle: The universal quantifier ∀x+ doesn’t distribute over disjunctions.
Solution: Iteratively eliminate x+

1 , x
+
2 , x

+
3 variables over smaller formulas

Equation (1) = ∀x+
1 .∀x

+
2 .(¬Σ1 ∨ ¬Σ2 ∨ ∀x+

3 .(¬Σ3 ∨ Z)) (2)

= ∀x+
1 .(¬Σ1 ∨ ∀x+

2 .(¬Σ2 ∨ ∀x+
3 (¬Σ3 ∨ Z))) (3)

Visualization of equations (1), (2), (3):
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Equation (3)

Preparations for Efficient Parallel Execution

I X and U: bounded, quantized
and then flattened.

I Multi-precision flat spaces.
I (x̂, û) is an element of the 2D

flat space X̂ × Û.
I 2D task scheduling problem.
I Devices are tuned with sample

slices of X̂ × Û.
I Each (x̂, û) is assigned to a

processing element (PE).
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Example input vectors in 2D input space

Example state vectors in 3D state space

A slice for devicei

Slices for other devices

Tuple (xk; uj) assigned to PEk;j in devicei

Job Distribution over Devices/PEs

Parallel Computation of Symbolic Models

I Each PE computes the over
approximation of reachable sets
(OARS) initiated from
one/more (x̂, û).

I OARS is stored into the
memory without discretization.

I Abstraction memory size is fixed
w.r.t number of transitions.

I Abstraction memory is
distributed among devices.

I CPUs perform better due to
Vectorization and Pipelining.
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I Currently, a Fixed-point (FP)
implementation is considered.

I Efficient on-the-fly memory-less
discretization of OARS is used.

I Distributed bit-based storage of
results reduces controller’s size.

I Parallel convergence check is
applied after some FP iterations.

Initial Results and Future Work

I OARS in a lock-free fast-to-query data structure.
I Combining sparsity and parallel implementations.
I Testing on FPGAs and the Cloud.
I Python wrappers or domain specific language

Sparsity Benchmarks
Ex. / Trans. SCOTSv0.2 Sparsity-Aware SCOTSv0.2 Decomposed

Abs. Abs. Synth. Synth.

Vehicle/ 4M 84.1 4.82 43.1 29.8

Table: Results on 2013 Macbook Pro with 2.4GHz Intel Core i7 and 8GB RAM.

Time in sec.

Parallel Benchmarks
Ex. / Trans. SCOTS SCOTS v0.2 Parallel

DCDC / 1M 30 2 0.037
Vehicle/ 4M 739 203 0.96
Unicycle / 105M 5898 2797 8.3

Table: Results with NVIDIA P5000 GPU. Time in sec and

includes abstraction and synthesis. SCOTS and SCOTS v0.2 use

FP and run on Intel Xeon E5-2630.


