
Major Computational Breakthroughs in the
Synthesis of Symbolic Controllers via Decomposed

Algorithms

Eric S. Kim, Mahmoud Khaled, Murat Arcak, and Majid Zamani
HSCC 2018 : Poster Session, Porto, Portugal

April 11, 2018

Computational Bottlenecks in Symbolic Control Synthesis

Problem: Abstraction and controller synthesis exhibit exponential time and space bottlenecks with respect to state + input space dimension in existing tools.
Contributions: Two approaches that leverage the inherent parallelism and structure in system dynamics

1. Exploiting State Independence (Right column): Parallelized core takes advantage of independence and locality of abstraction and synthesis subroutines across
different states.

2. Exploiting Sparsity (Left column): Leverages the coordinate structure of the state space and sparsity (if present) to eliminate redundant computations.

Example: Vehicle Dynamics

3-dimensional state (x1, x2, x3) ∈ X and 2-dimensional input (u1, u2) ∈ U.

ẋ1 = u1 cos(α + u2)/ cos(α)

ẋ2 = u1 sin(α + u2)/ sin(α)

ẋ3 = u1 tan(u2)

where α = arctan(tan(u2)/2).

Discretization:
I 93k states: 51 × 51 × 36 grid
I 49 inputs: 7 × 7 grid

Sparsity-Aware Abstraction

Each next state x+
1 , x

+
2 , x

+
3 in discrete time vehicle

dynamics only depends on a subset of
(x1, x2, x3, u1, u2).

Σ(x, u, x+) =
3∧

i=1

Σ1(x1, x3, u1, u2, x
+
1 )

Σ2(x2, x3, u1, u2, x
+
2 )

Σ3(x3, u1, u2, x
+
3 )


x1

Σ1

x
+
1

x2

Σ2

x
+
2

x3

Σ3

x
+
3

u1

u2

Sparsity-aware abstraction computes and combines abstractions of lower
dimensional components Σ1,Σ2,Σ3 and eliminates redundant computations.

I Equality: Yields same abstraction as the regular algorithm.
I Efficiency: Linear with respect to state dimension, exponential with respect

to sparsity parameter.
I Generality: Only assumption is Cartesian product state space and

component-wise dynamics.

Decomposed Controller Predecessor

Controllable predecessor operator is a key subroutine in formal control synthesis:

CPRE(Z) = ∃u.
(
∃x+.Σ(x, u, x+) ∧ ∀x+.(Σ(x, u, x+)⇒ Z(x+))

)
Goal: Create a controllable predecessor without constructing monolithic system
Σ(x, u, x+). Substituting decomposed representation of Σ into red term yields

∀x+.(Σ(x, u, x+)⇒ Z(x+))

= ∀x+.((Σ1 ∧ Σ2 ∧ Σ3)⇒ Z(x+))

= ∀x+
1 .∀x

+
2 .∀x

+
3 .(¬Σ1 ∨ ¬Σ2 ∨ ¬Σ3 ∨ Z(x+)) (1)

Obstacle: The universal quantifier ∀x+ doesn’t distribute over disjunctions.
Solution: Iteratively eliminate x+

1 , x
+
2 , x

+
3 variables over smaller formulas

Equation (1) = ∀x+
1 .∀x

+
2 .(¬Σ1 ∨ ¬Σ2 ∨ ∀x+

3 .(¬Σ3 ∨ Z)) (2)

= ∀x+
1 .(¬Σ1 ∨ ∀x+

2 .(¬Σ2 ∨ ∀x+
3 (¬Σ3 ∨ Z))) (3)

Visualization of equations (1), (2), (3):

Z

x1

Σ1

x
+
1

x2

Σ2

x
+
2

x3

Σ3

x
+
3

u1

u2

Equation (1)

=

∀x+
3 .(¬Σ3 ∨ Z)

x1

x2

x3

x
+
1

Σ1

u1

x
+
2

Σ2

u2

Equation (2)

=

∀x+
2 .(¬Σ2 ∨ ∀x+

3 .(¬Σ3 ∨ Z))

x1

x2

x3

x
+
1

Σ3

u1

u2

Equation (3)

Preparations for Efficient Parallel Execution

I X and U: bounded, quantized
and then flattened.

I Multi-precision flat spaces.
I (x̂, û) is an element of the 2D

flat space X̂ × Û.
I 2D task scheduling problem.
I Devices are tuned with sample

slices of X̂ × Û.
I Each (x̂, û) is assigned to a

processing element (PE).

x1

xmax

u1

umax

x

u

x1 xmax

u1

umax

Example input vectors in 2D input space

Example state vectors in 3D state space

A slice for devicei

Slices for other devices

Tuple (xk; uj) assigned to PEk;j in devicei

Job Distribution over Devices/PEs

Parallel Computation of Symbolic Models

I Each PE computes the over
approximation of reachable sets
(OARS) initiated from
one/more (x̂, û).

I OARS is stored into the
memory without discretization.

I Abstraction memory size is fixed
w.r.t number of transitions.

I Abstraction memory is
distributed among devices.

I CPUs perform better due to
Vectorization and Pipelining.

2D State Space

PE PE PE PE PE PE

Abstraction MemoryParallel Computing Device

Under Processing Completed Processing

...

2D State Space
Slice of Real Slice of Quantized

Example processed states belonging to a transition

...

(x∗; y∗)

(x∗; y∗)

f(x; y)

f f f f f f

starting from (x∗; y∗)

PE: Processing Element

Device i

Parallel Construction of Symbolic Controllers

Abstraction Memory

...

...

CSA

PE PE PE PE

Parallel Computing Device

PE: Processing Element
CSA: Controller Synthesis Algorithm

CSA CSA CSA

Request/Recieve

Data From

Other Devices

...

...

Controller Memory

Under Processing Completed Processing

Device i

I Currently, a Fixed-point (FP)
implementation is considered.

I Efficient on-the-fly memory-less
discretization of OARS is used.

I Distributed bit-based storage of
results reduces controller’s size.

I Parallel convergence check is
applied after some FP iterations.

Initial Results and Future Work

I OARS in a lock-free fast-to-query data structure.
I Combining sparsity and parallel implementations.
I Testing on FPGAs and the Cloud.
I Python wrappers or domain specific language

Sparsity Benchmarks
Ex. / Trans. SCOTSv0.2 Sparsity-Aware SCOTSv0.2 Decomposed

Abs. Abs. Synth. Synth.

Vehicle/ 4M 84.1 4.82 43.1 29.8

Table: Results on 2013 Macbook Pro with 2.4GHz Intel Core i7 and 8GB RAM.

Time in sec.

Parallel Benchmarks
Ex. / Trans. SCOTS SCOTS v0.2 Parallel

DCDC / 1M 30 2 0.037
Vehicle/ 4M 739 203 0.96
Unicycle / 105M 5898 2797 8.3

Table: Results with NVIDIA P5000 GPU. Time in sec and

includes abstraction and synthesis. SCOTS and SCOTS v0.2 use

FP and run on Intel Xeon E5-2630.


