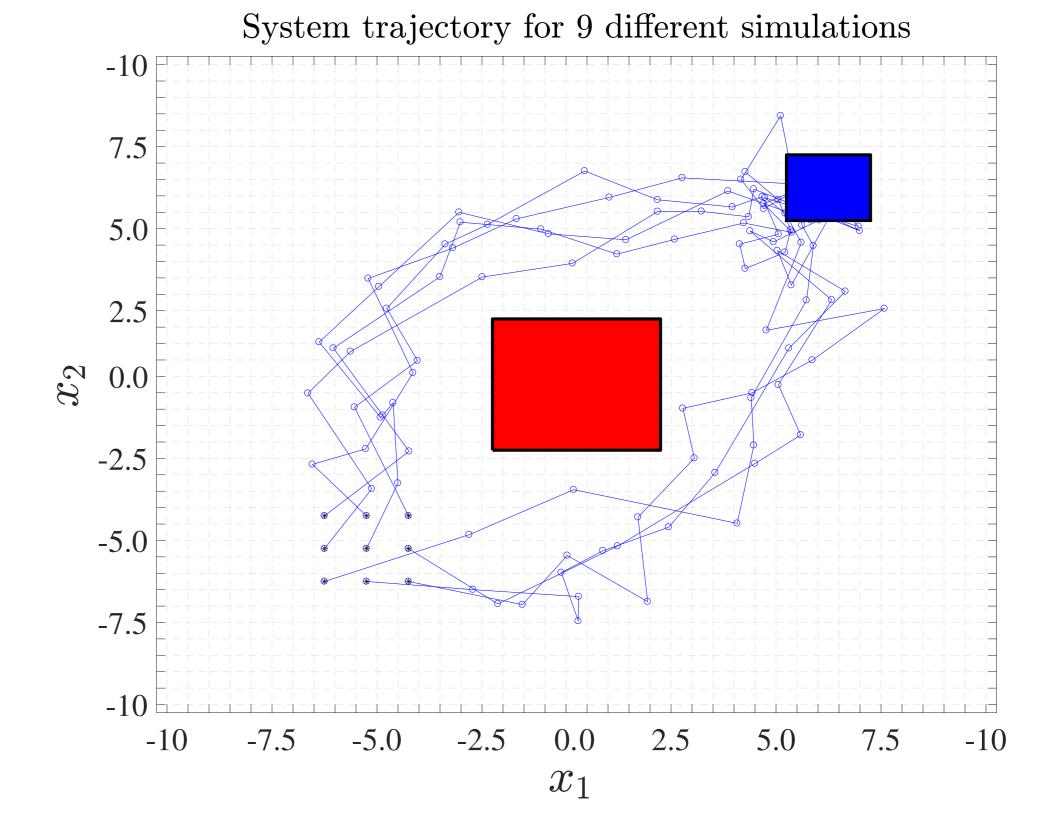


AMYTISS: Parallelized Automated Controller Synthesis for Large-Scale Stochastic Systems

Abolfazl Lavaei*, Mahmoud Khaled*, Sadegh Soudjani, Majid Zamani *: Both authors have the same contribution.

Discrete-Time Stochastic Control Systems


- $\boldsymbol{\Sigma} = (\boldsymbol{X}, \boldsymbol{U}, \boldsymbol{W}, \boldsymbol{\varsigma}, \boldsymbol{f}):$
- $\blacktriangleright X \subseteq \mathbb{R}^n$: State set;
- ► $U \subset \mathbb{R}^m$: Input set;
- $W \subseteq \mathbb{R}^{p}$: Disturbance set;
- \triangleright ς : A sequence of i.i.d. random variables from a sample space Ω to a measurable set V_{ς} $\varsigma := \{\varsigma(k) : \Omega \to V_{\varsigma}, k \in \mathbb{N}\};$
- ▶ $f: X \times U \times W \rightarrow X$: Transition map. **Evolution** of the state of Σ :

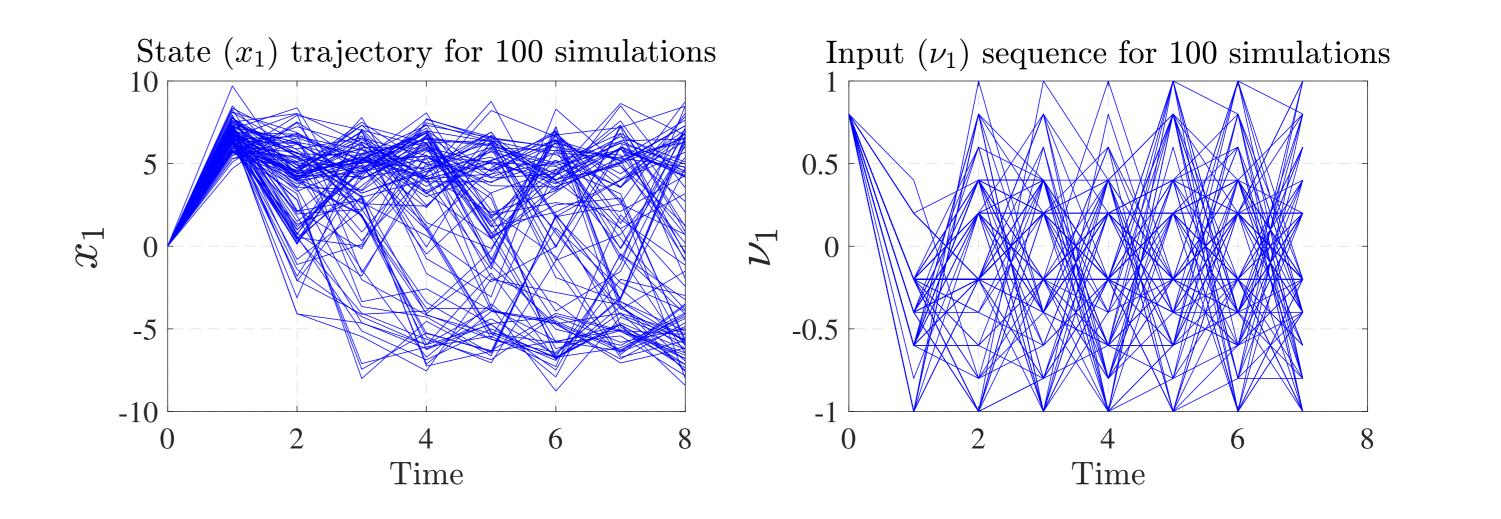
AMYTISS by Example: Nonlinear 2D Robot

Consider a 2D robot described by the following difference equation:

 $\begin{bmatrix} x_1(k+1) \\ x_2(k+1) \end{bmatrix} = \begin{bmatrix} x_1(k) + \tau \nu_1(k) \cos(\nu_2(k)) + w(k) + \varsigma_1(k) \\ x_2(k) + \tau \nu_2(k) \sin(\nu_2(k)) + w(k) + \varsigma_2(k) \end{bmatrix}$

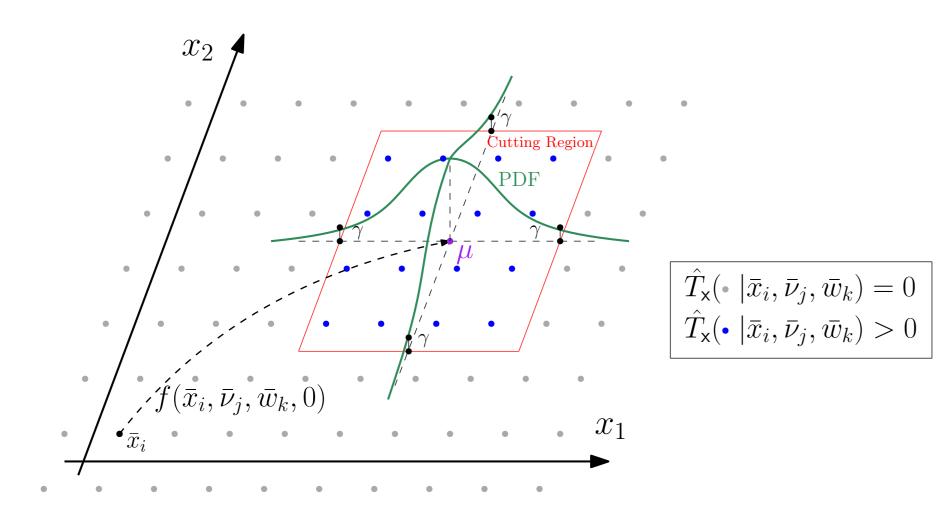
Reach-Avoid Controller: Target-set = $[5.5, 6.5] \times [5.5, 6.5]$, Avoid-set = $[-2.5, 2.5] \times [-2.5, 2.5]$

- $\Sigma: x(k+1) = f(x(k), \nu(k), w(k)) + \Upsilon(k),$ $k \in \mathbb{N}$,
- $\blacktriangleright \Upsilon(k) := \varsigma(k)$ with $V_{\varsigma} = \mathbb{R}^n$ for the case of additive noise;
- $\blacktriangleright \Upsilon(k) := \varsigma(k) \chi(k)$ with V_{ς} equal to the set of diagonal matrices of dimension n for the case of multiplicative noise.

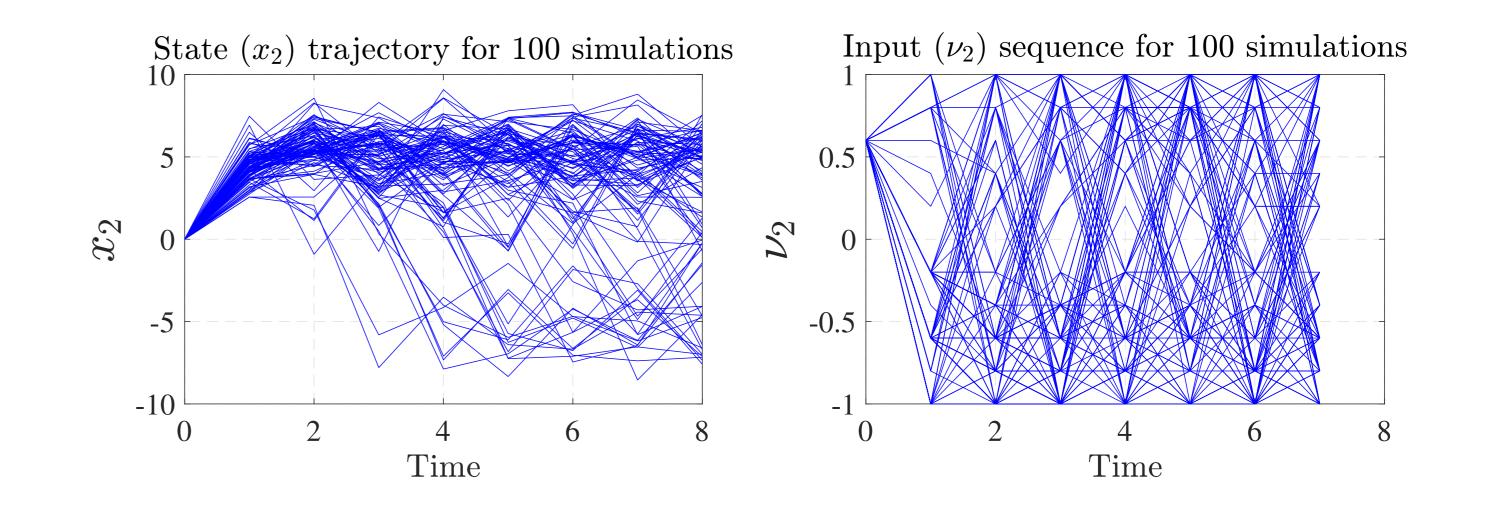

Main Contributions

- Implemented on top of pFaces: native support for high-performance computing platforms and all operating systems.
- Propose novel data-parallel algorithms for constructing finite MDPs from discrete-time stochastic systems;
- Propose parallel algorithms for synthesizing discrete controllers using the constructed MDPs to satisfy safety, reachability, or reach-avoid specifications;
- Accept bounded disturbances and natively support both additive and multiplicative noises with different practical distributions;
- Apply the proposed implementations to real-world applications including room temperature and road traffic networks, autonomous vehicles, etc.

Comparison between AMYTISS, FAUST² and StocHy


Aspect	FAUST ²	StocHy	AMYTISS
Platform	CPU	CPU	CPU, GPU, HW-Accelerators
Algorithms	Serial	Serial	Parallel
Model	SCS: linear, bilinear	SHS: linear, bilinear	SCS: nonlinear
Specification	Safety, reachability	Safety, reachability	Safety, reachability, reach-avoid
Stochasticity	Additive noise	Additive noise	Additive & multiplicative noises
Distribution	Normal, user-defined	Normal, user-defined	Normal, uniform, exponential, beta, user-defined
Disturbance	Not supported	Not supported	Supported

Safety Controller: Safe-set = $[-10, 10] \times [-10, 10]$


Parallel Construction of Finite MDPs

Massively parallel threads do the computation for each $(\bar{x}, \bar{\nu})$.

Less Memory for Constructing Probability Transition Matrix T_x

Reduce the memory usage by setting a cutting probability threshold

Benchmarking

Table: Used HW configurations for benchmarking AMYTISS.

ld	Description	PEs	Frequency
CPU_1	Local machine: Intel Xeon E5-1620	8	3.6 GHz
CPU ₂	MacBook Pro 15: Intel i9-8950HK	12	2.9 GHz
CPU ₃	Amazon AWS instance c5.18xlarge: Intel Xeon P 8000	72	3.6 GHz
GPU_1	Macbook Pro 15 laptop laptop: Intel UHD Graphics 630	23	0.35 GHz
GPU ₂	Macbook Pro 15 laptop: AMD Radeon Pro Vega 20	1280	1.2 GHz
GPU ₃	Amazon AWS p3.2xlarge instance: NVIDIA Tesla V100	5120	0.8 GHz

Table: Benchmarking results.

$\gamma \in [0,1];$ \blacktriangleright Control the sparsity of the columns of \hat{T}_{x} .

Parallel Synthesis of Controllers

On-the-Fly Construction of \hat{T}_{x}

- \triangleright Skip computing and storing the probability transition matrix T_x and only compute the required entries as they are needed for the synthesis part;
- \blacktriangleright Reduce the required memory for \hat{T}_x at the cost of repeated computation of their entries;

► Give the user an additional control over the trade-off between the computation time and memory usage.

Problem	Spec.		AMYTISS (time)					FAUST ²	StocHy	Speedup w.r.t		
		$\hat{X} imes \hat{U}$	CPU ₁	CPU ₂	CPU ₃	GPU ₁	GPU ₂	GPU ₃	(time)	(time)	FAUST	StocHy
4 -d StocHy CSB	Safety	16	≤ 1.0	0.0002	0.01	0.17	50 x	850 Kx				
5 -d StocHy CSB	Safety	32	≤ 1.0	0.0003	0.01	0.54	33 x	1.8 Kx				
6 -d StocHy CSB	Safety	64	≤ 1.0	0.0006	1.2	2.17	2.0 Kx	3.6 Kx				
7 -d StocHy CSB	Safety	128	≤ 1.0	0.0012	13	9.57	10.8 Kx	7.9 Kx				
8 -d StocHy CSB	Safety	256	≤ 1.0	0.0026	104	40.5	40 Kx	15.6 Kx				
9 -d StocHy CSB	Safety	512	≤ 1.0	0.0057	1126	171.6	197 Kx	30.1 Kx				
10 -d StocHy CSB	Safety	1024	≤ 1.0	0.0122	N/M	385.5	N/A	32 Kx				
11-d StocHy CSB	Safety	2048	1.0912	≤ 1.0	≤ 1.0	≤ 1.0	≤ 1.0	0.0284	N/M	171.2	N/A	60 Kx
12-d StocHy CSB	Safety	4096	4.3029	4.1969	≤ 1.0	≤ 1.0	≤ 1.0	0.0624	N/M	11216	N/A	179 Kx
13-d StocHy CSB	Safety	8192	18.681	19.374	1.8515	1.6802	≤ 1.0	0.1277	N/M	\geq 24h	N/A	≥676 K>
14-d StocHy CSB	Safety	16384	81.647	94.750	7.9987	7.3489	6.1632	0.2739	N/M	\geq 24h	N/A	≥320 Kx
2 -d Robot	R.Avoid	741321	48.593	18.554	4.5127	2.5311	3.4353	0.3083	N/S	N/S	N/A	N/A
3 -d Room Temp.	Safety	7776	0.1072	0.0915	0.0120	≤ 1.0	≤ 1.0	0.0018	3027	N/M	1680 Kx	N/A
5 -d Room Temp.	Safety	279936	200.00	107.93	19.376	10.084	N/M	1.8663	6822	N/M	3790 Kx	N/A
3 -d Vehicle	R.Avoid	1528065	1614.7	2.5h	1.1h	871.89	898.38	271.41	N/S	N/S	N/A	N/A
7 -d BMW 320 i	R.Avoid	3937500	10169.4	N/M	\geq 24h	21.5h	N/M	N/M	N/S	N/S	N/A	N/A