
Poster: AMYTISS: A Parallelized Tool on Automated Controller
Synthesis for Large-Scale Stochastic Systems
Abolfazl Lavaei∗

Department of Computer Science
Ludwig Maximilian University of Munich

lavaei@lmu.de

Mahmoud Khaled∗
Department of Electrical Engineering

Technical University of Munich
khaled.mahmoud@tum.de

Sadegh Soudjani
School of Computing
Newcastle University

Sadegh.Soudjani@newcastle.ac.uk

Majid Zamani
Department of Computer Science
University of Colorado Boulder

Ludwig Maximilian University of Munich
Majid.Zamani@Colorado.EDU

KEYWORDS
Automated Controller Synthesis, Discrete-Time Stochastic Systems,
Parallel Algorithms, High Performance Computing Platform.
ACM Reference Format:
Abolfazl Lavaei∗, Mahmoud Khaled∗, Sadegh Soudjani, and Majid Zamani.
2020. Poster: AMYTISS: A Parallelized Tool on Automated Controller Syn-
thesis for Large-Scale Stochastic Systems. In 23rd ACM International Con-
ference on Hybrid Systems: Computation and Control (HSCC ’20), April 22–24,
2020, Sydney, NSW, Australia. ACM, New York, NY, USA, 2 pages. https:
//doi.org/10.1145/3365365.3383469
1 ABSTRACT
Large-scale stochastic systems have recently received significant at-
tentions due to their broad applications in various safety-critical sys-
tems such as traffic networks and self-driving cars. In this poster, we
describe the software tool AMYTISS, implemented in C++/OpenCL,
for designing correct-by-construction controllers for large-scale
discrete-time stochastic systems. This tool is employed to (i) build
finite Markov decision processes (MDPs) as finite abstractions of
given original systems, and (ii) synthesize controllers for the con-
structed finite MDPs satisfying bounded-time safety, reachability,
and reach-avoid specifications. In AMYTISS, scalable parallel algo-
rithms are designed such that they support the parallel execution
within CPUs, GPUs and hardware accelerators (HWAs). Unlike all
existing tools for stochastic systems, AMYTISS can utilize high-
performance computing (HPC) platforms and cloud-computing ser-
vices to mitigate the effects of the state-explosion problem, which
is always present in analyzing large-scale stochastic systems. We
benchmark AMYTISS against the most recent tools in the literature
using several physical case studies including robot examples, room
temperature and road traffic networks. We also apply our algo-
rithms to a 3-dimensional autonomous vehicle and a 7-dimensional
nonlinear model of a BMW 320i car by synthesizing autonomous
parking controllers.
Related works. There exist a limited number of software tools on
the verification and synthesis of stochastic systems with different
∗Both authors have contributed equally to the development of the tool. This work was
supported in part by the H2020 ERC Starting Grant AutoCPS (grant No. 804639).

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
HSCC ’20, April 22–24, 2020, Sydney, NSW, Australia
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7018-9/20/04.
https://doi.org/10.1145/3365365.3383469

classes of models. SReachTools [1] performs the stochastic reach-
ability analysis for linear, potentially time-varying, discrete-time
stochastic systems. FAUST2 [2] generates formal abstractions for
continuous-space discrete-time stochastic processes, and performs
the verification and synthesis for safety and reachability specifi-
cations. However, FAUST2 is originally implemented in MATLAB
and handles finite-horizon specifications. StocHy [3] deals with
a class of discrete-time stochastic hybrid systems, constructs fi-
nite abstractions, and performs the verification and synthesis for
both finite- and infinite-horizon safety and reachability specifi-
cations. AMYTISS differs from FAUST2 and StocHy in two main
directions. First, AMYTISS implements novel parallel algorithms
and data structures targeting HPC platforms to reduce the unde-
sirable effects of the state-explosion problem. Accordingly, it is
able to perform the parallel execution in different heterogeneous
computing platforms including CPUs, GPUs and hardware acceler-
ators (HWAs). Whereas, FAUST2 and StocHy can only run serially
in one CPU, and consequently, they are limited to small systems.
Additionally, AMYTISS can handle the abstraction construction and
controller synthesis for two and a half player games (e.g., stochastic
systems with bounded disturbances), whereas FAUST2 and StocHy
only handle one and a half player games (disturbance-free systems).

Unlike all existing tools, AMYTISS offers highly scalable, dis-
tributed execution of parallel algorithms utilizing all available pro-
cessing elements (PEs) in any heterogeneous computing platform.
To the best of our knowledge, AMYTISS is the only tool of its
kind for continuous-space stochastic systems that is able to utilize
simultaneously all types of compute units (CUs).

A comparison between AMYTISS, FAUST2 and StocHy based on
their native features is provide in Table 1.

MainContribution.AMYTISS is an open-source and self-contained
tool and requires only a modern C++ compiler. It supports three
major operating systems:Windows, Linux andMac OS. The source
of AMYTISS and detailed instructions on its building and running
can be found in:

https://github.com/mkhaled87/pFaces-AMYTISS
The main merits of this work are:

(1) We propose a novel data-parallel algorithm for construct-
ing finite MDPs from discrete-time stochastic systems and
storing them in efficient distributed data containers.

(2) We propose parallel algorithms for synthesizing discrete
controllers using the constructed MDPs to satisfy safety,
reachability, or reach-avoid specifications. More specifically,

https://doi.org/10.1145/3365365.3383469
https://doi.org/10.1145/3365365.3383469
https://doi.org/10.1145/3365365.3383469
https://github.com/mkhaled87/pFaces-AMYTISS


HSCC ’20, April 22–24, 2020, Sydney, NSW, Australia Abolfazl Lavaei∗, Mahmoud Khaled∗, Sadegh Soudjani, and Majid Zamani

Table 1: Comparison between AMYTISS, FAUST2 and StocHy based on native features.

Aspect FAUST2 StocHy AMYTISS
Platform CPU CPU All platforms
Algorithms Serial on HPC Serial on HPC Parallel on HPC
Model Stochastic control systems: linear, bilinear Stochastic hybrid systems: linear, bilinear Stochastic control systems: nonlinear
Specification Safety, reachability Safety, reachability Safety, reachability, reach-avoid
Stochasticity Additive noise Additive noise Additive & multiplicative noises
Distribution Normal, user-defined Normal, user-defined Normal, uniform, exponential, beta, user-defined
Disturbance Not supported Not supported Supported

we introduce novel parallel algorithms for the iterative com-
putation of Bellman equation in the standard dynamic pro-
gramming [4].

(3) Unlike the existing tools in the literature, AMYTISS accepts
bounded disturbances and natively supports both additive
and multiplicative noises with different distributions includ-
ing normal, uniform, exponential, and beta.

2 PARALLEL ALGORITHM FOR
CONSTRUCTING FINITE MDPS

We propose a novel parallel algorithm to efficiently construct and
store a probability transition matrix T̂x (cf. [5, Algorithm 1] for T̂x).

2.1 Less Memory for Constructing T̂x
In our proposed algorithm, we significantly reduce the memory
usage by setting a cutting probability threshold γ ∈ [0, 1] to control
howmany partition elements around the mean of the system should
be stored. Such an approximation allows controlling the sparsity
of the columns of T̂x. The closer the value of γ to zero, the more
accurate T̂x in representing the transitions of finite MDPs. On the
other hand, the closer the value of γ to one, less state values need
to be stored as columns in T̂x.

3 PARALLEL SYNTHESIS OF CONTROLLERS
We employ a parallel standard dynamic programming to synthe-
size controllers for the constructed finite MDPs satisfying safety,
reachability, or reach-avoid properties.

3.1 On-the-Fly Construction of T̂x
In AMYTISS during the synthesis process, we also propose another
technique that further reduces the required memory for computing
T̂x. We refer to this approach as on-the-fly abstractions (OFA). In
OFA version of our proposed algorithm, we skip computing and
storing the probability transition matrix T̂x. We instead compute
the required entries of T̂x on-the-fly as they are needed for the
synthesis part via the standard dynamic programing. This reduces
the required memory for T̂x but at the cost of repeated computation
of their entries in each time step from 1 to a finite time horizon Td .
This gives the user an additional control over the trade-off between
the computation time and memory usage.

3.2 Supporting Multiplicative Noises and
Practical Distributions

In addition to additive noises, AMYTISS natively supports multi-
plicative noises and some practical distributions such as normal,
uniform, exponential, and beta distributions. Since AMYTISS is de-
signed for extensibility, it allows also for customized distributions.
Users need to specify their desired probability density functions
and hyper-rectangles enclosing their supports so that AMYTISS
can include them in the parallel computation of T̂x.

AMYTISS also supports multiplicative noises as introduced in [6,
equation (1)]. Currently, the memory reduction technique of Sub-
section 2.1 is disabled for systems with multiplicative noises. This
means users should expect larger memory requirements for sys-
tems with multiplicative noises. However, users can still benefit
from the proposed OFA version to compensate for the increase
in the memory requirement. We plan to include this feature for
multiplicative noises in a future update of AMYTISS.
4 BENCHMARKING AND CASE STUDIES
To show the applicability of our results to large-scale systems, we
apply our algorithms to several physical case studies. We synthesize
controllers for 3- and 5-dimensional room temperature networks to
keep the temperatures in a comfort zone. Furthermore, we synthe-
size controllers for road traffic networks with 3 and 5 dimensions to
maintain the density of traffic below some desired level. In addition,
we apply our algorithms to a 2-dimensional nonlinear robot and
synthesize controllers satisfying safety and reach-avoid specifica-
tions. Finally, we consider 3- and 7-dimensional nonlinear models
of autonomous vehicles and synthesize reach-avoid controllers to
automatically park the vehicles.

We make comparisons between AMYTISS, FAUST2, and StocHy
for all the aforementioned case studies. AMYTISS outperforms
FAUST2 and StocHy in all the case studies with maximum speedups
respectively up to 1680000 and 676000 times (in the case of running
AMYTISS on an NVIDIA Tesla V100 Machine with 5120 process-
ing elements and 0.8 GHz frequency). Moreover, AMYTISS is the
only tool that can utilize the available HW resources for stochastic
systems. The OFA feature in AMYTISS reduces dramatically the
required memory, while still solves the problems in a reasonable
time. FAUST2 and StocHy fail to solve many of the problems since
they lack the native support for nonlinear systems, they require
large amounts of memory, or they do not finish computing within
24 hours.

REFERENCES
[1] A. P. Vinod, J. D. Gleason, and M. M. Oishi, “SReachTools: A MATLAB stochastic

reachability toolbox,” in Proceedings of the 22nd ACM International Conference on
Hybrid Systems: Computation and Control, 2019, pp. 33–38.

[2] S. Soudjani, C. Gevaerts, and A. Abate, “FAUST2: Formal abstractions of
uncountable-state stochastic processes,” in TACAS’15, ser. Lecture Notes in Com-
puter Science, 2015, vol. 9035, pp. 272–286.

[3] N. Cauchi and A. Abate, “StocHy: Automated verification and synthesis of sto-
chastic processes,” in TACAS’19, ser. Lecture Notes in Computer Science, 2019, vol.
11428, pp. 247–264.

[4] S. Soudjani, “Formal abstractions for automated verification and synthesis of
stochastic systems,” Ph.D. dissertation, Technische Universiteit Delft, The Nether-
lands, 2014.

[5] A. Lavaei, S. Soudjani, and M. Zamani, “From dissipativity theory to compositional
construction of finite Markov decision processes,” in Proceedings of the 21st ACM
International Conference on Hybrid Systems: Computation and Control, 2018, pp.
21–30.

[6] W. Li, E. Todorov, and R. E. Skelton, “Estimation and control of systems with
multiplicative noise via linear matrix inequalities,” in Proceedings of the 2005,
American Control Conference, 2005., 2005, pp. 1811–1816.


	1 Abstract
	2 Parallel Algorithm for Constructing Finite MDPs
	2.1 Less Memory for Constructing x

	3 Parallel Synthesis of Controllers
	3.1 On-the-Fly Construction of x
	3.2 Supporting Multiplicative Noises and Practical Distributions

	4 Benchmarking and Case Studies
	References

