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Description
FIELD OF THE INVENTION

[0001] Theinvention relates to a method and a device
to synthesize correct-by-construction controllers for a
control system.

BACKGROUND

[0002] Autonomous physical systems like robots have
become ubiguitous in industrial applications and recent
advances in sensor and computer technology have
opened up new possibilities like autonomous driving or
interconnected networks of robots. The increasing com-
plexity of such cyber-physical systems with a tight inte-
gration of physical systems, sensors, communication
networks and computer systems, however, requires nov-
el approaches for the control of these systems, which are
capable of handling large amounts of data and required
towork reliably in a variety of situations, in particular since
guaranteeing safety is crucial in many applications.
[0003] One technigue to design suitable controllers is
the synthesis of correct-by-construction controllers
through symbolic controller synthesis, see P. Tabuada,
"Verification and Control of Hybrid Systems - A Symbolic
Approach", Springer US (2009) and M. Zamani et al.,
"Symbolic models for nonlinear control systems without
stability assumptions", IEEE Trans. Autom. Control 57,
1804-1809 (2012). This approach is based on describing
the dynamics of a given control system by a discrete sym-
bolic model. For a set of specifications to be imposed on
the control system, a symbolic controller can be synthe-
sized using the symbolic model, which by construction
meets the required specifications in the symbolic model,
see O. Maler et al., "On the synthesis of discrete control-
lers for timed systems", in: STACS 95, Springer, pp.
229-242 (1995) and A. Pnueli et al., "On the synthesis of
an asynchronous reactive module", in: Proceedings of
the 16th International Collogquium on Automata, Lan-
guages and Programing, Springer, pp. 652-671 (1989).
The symbolic controller can subsequently be refined to
obtain a controller for the real control system.

[0004] This technigue is applicable to a wide range of
systems and can be automated to automatically synthe-
size controllers starting from a mathematical model of
the control system dynamics and the desired specifica-
tions.

[0005] However, due to the exponential complexity of
this task with the number of state variables and input
parameters, currently available tools are limited to control
systems with only very few state variables and input pa-
rameters and can require large amounts of computing
time, see e.g. M. Mazo et al., "Pessoa: A tool for embed-
ded controller synthesis", in: Computer Aided Verifica-
tion, Springer, pp. 566-569 (2010) and M. Rungger etal.,
"SCOTS: A tool for the synthesis of symbolic controllers”,
in: Proceedings of the 19th International Conference on
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Hybrid Systems: Computation and Control, ACM, pp.
99-104 (2016). They are thus not suitable for most po-
tential applications, especially if the controller synthesis
is to be performed in real time.

SUMMARY OF THE INVENTION

[0006] The object of the invention is thus to provide a
method and a device for a fast and resource-efficient
synthesis of correct-by-construction controllers, which is
applicable to a large range of control systems.

[0007] This object is met by a method and a device
according to Claim 1 and 13, respectively. Embodiments
of the present invention are detailed in the dependent
claims.

[0008] The method for synthesizing a cormrect-by-con-
struction controller for a control system comprises the
following steps: (1) receiving a mathematical model of
the control system with a plurality of state variables xand
a plurality of control parameters 3, wherein the mathe-
matical model characterizes at least in part the change
of the state variables xin response to the control param-
eters U as a control input ; (2) receiving at least one spec-
ification for the state variables x and/or the control pa-
rameters D); (3) identifying available processing ele-
ments; (4) discretizing at least a part of a space spanned
by (Z _u)) to obtain a set of tuples (Y,-,D}); (5) determining
based on the mathematical model for each tuple (3(),-,3])
in the set of tuples at least one successor state 3(}; (6)

obtaining an initial winning set of tuples based on saidat
least one specification; (7) determining an updated win-
ning set of tuples, wherein said determination comprises
comparing the at least one successor state })f of each

tuple with the initial winning set of tuples, wherein said
comparison is distributed over the available processing
elements by choosing one processing element from the
available processing elements for each tuple to perform
the comparison and wherein the available processing el-
ements are used simultaneously atleastin part; receiving
information pertaining said comparison from the process-
ing elements; and determining the updated winning set
of tuples based on said information; (8) comparing the
updated winning set with the initial winning set to obtain
a convergence measure; (9) repeating said determina-
tion of the updated winning set of tuples to obtain a new
updated winning set of tuples if said convergence meas-
ure does not meet a predefined convergence criterion,
wherein the previous updated winning set of tuples is
used as the initial winning set for said determination and
is provided at least in part to the available processing
elements; and (10) constructing a controller for the con-
trol system from said new updated winning set of tuples.
The numbering of the steps above is for clarity only and
does not indicate a certain order. As far as technically
feasible, the steps can be permuted and the method and
any embodiment thereof can be performed in an arbitrary
order.
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[0009] This method provides a fast and efficient way
to synthesize correct-by-construction controllers. By dis-
tributing the comparison of the successor states with the
initial target set or the previous updated target set over
multiple processing elements, the issue of computation
time increasing exponentially with the complexity of the
control system can be converted into aresource problem,
for which the computation time decreases with the
number of available processing elements. With this, one
can take advantage of the massive parallel computing
capabilities offered by modern systems like computing
clusters or cloud computing. This enables the synthesis
of correct-by-construction controllers for a wide range of
control systems, especially control systems with a large
number of state variables and/or control parameters. Pre-
viously, symbolic controller synthesis was not suited for
such systems due to the limited computing time in prac-
tical applications. In particular, the method facilitates the
synthesis of controllers for systems in continuously
changing environments, which canrequire frequent up-
dates of the controller and thus can require strict dead-
lines for the times spent for controller synthesis.

[0010] In the first step, a mathematical model of the
control system is received. This mathematical model de-
scribes the state of the control system by a plurality of
state variables, which can be expressed in the form of a
state vector x containing the state variables x(), x@), ...,
xM). The control input to the control system is described
by a plurality of control parameters u(™), u®), ..., u(m) ex-
pressed as a control vector U. These parameters are to
be used by the controller to control the state of the control
system, i.e. the goal of the controller is to determine the
control input u depending on the current state X provided
to the controller. Each of the state variables and each of
the control parameters may be a continuous or discrete
guantity. The state variables span a continuous state
space and the control parameters span a continuous in-
put space.

[0011] The mathematical model characterizes the re-
sponse of the control system to the control input U atleast
in part, i.e. an estimate for the change of the state vari-
ables can be determined based on the mathematical
model given the current state . The mathematical model
can describe the dynamics of the control system exactly
or approximately. The mathematical model may for ex-
ample comprise a set of differential equations

5 &5 -F

X = f(x' u)' Alternatively, the mathematical model
may contain information based on which a response of
the control system can be determined, e.g. a Hamiltoni-
an, a Lagrangian, a set of intrinsic parameters of the con-
trol system and/or any other mathematical description of
the control system.

[0012] In addition to the mathematical model, at least
one specification for the state variables X and/or the con-
trol parameters Uis received. The at least one specifica-
tion can for example contain one or more target states
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or a range of target states, which the control system
should reach; one or more safe states or a range of safe
states, which the system should remain in; and/or one or
more unsafe states or a range of unsafe states, which
the control system should avoid. The at least one spec-
ification may comprise a set of boundary conditions, i.e.
ranges for one or more state variables and/or ranges for
one or more control parameters that the system should
not exceed. If the atleast one specification is more than
one specification, the specifications may have priorities
associated withthem. Forexample, the atleast one spec-
ification may comprise secondary specifications that are
not to be enforced strictly, but that can be optimized for
if possible.

[0013] The method comprises identifying available
processing elements, i.e. processing elements that can
be used at least in part for the execution of computation
tasks. The available processing elements may be distrib-
uted over multiple computation devices and may contain
processing elements of different types of computation
devices, e.g. central processing units (CPUs), graphic
processing units (GPUs), field-programmable gate ar-
rays (FPGAs), application specific integrated circuits
(ASICs) and other types of hardware accelerators
(HWAs). The identification of available processing ele-
ments may be repeated multiple times, e.g. to update the
list of available processing elements at different points
in time while performing the method.

[0014] Atleast a part of a space spanned by the state
variables and control parameters is discretized, wherein
the respective range for each continuous state variable
and each continuous control parameter is converted into
a set of discrete values. The discretized space is a set
of tuples, or pairs, (3(),-, D)j), where j and j are indices label-
ling the state vectors and control vectors, respectively.
For each state variable and control parameter, the spac-
ing between the discrete values may be inhomogeneous
and the range to be discretized may consist of multiple
intervals.

[0015] After the discretization, at least one successor
state })f is determined for each tuple (}),,Zj) in the set of
tuples, wherein said determination is based on the math-
ematical model. The atleast one successor state can for
example be a state that the control system is expected
to be in according to the mathematical model, if the con-
trol system is initially in the state 3(),- and the control input

D)j is applied for a certain amount of time. The time may

be chosen depending on the control system, the mathe-
matical model and/or the method used for determining
the at least one successor state. If the at least one suc-
cessor state is not contained in the discretized state
space, it may be approximated by the closest state from
the discretized state space. A symbolic model of the con-
trol system may be obtained from the successor sates
by defining a set of transition rules associating each tuple
(}),-,D)j) to the corresponding atleast one successorstate ;f.

[0016] Basedonthe atleastone specification, aninitial
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winning set of tuples is chosen from the set of tuples,
wherein the initial winning set consists of at least one
tuple. The initial winning set of tuples can for example
contain tuples associated with one or more target states,
e.g. by combining one or more target states determined
by the at least one specification with one or more control
vectors, which may also be chosen based on the atleast
one specification.

[0017] In the next step, an updated winning set of tu-
ples is determined from a comparison of the at least one
successor state of each tuple with the initial winning set
of tuples. This comparison is performed by distributing
the associated computation tasks over the available
processing elements. To this end, for each tuple in the
set of tuples one processing element from the available
processing elements is chosen. This processing element
executes the computation tasks to compare the at least
one successor state of this tuple with the initial winning
set of tuples. Thereby, the set of tuples is divided into
subsets, each of which is assigned to a different process-
ing element of the available processing elements. For
each processing element, a queue of tasks may be de-
termined for performing the comparison for each tuple
within the respective subset. The queue of tasks may
contain multiple sequences of tasks, wherein each se-
guence of tasks comprises the tasks for comparing the
at least one successor state of one tuple with the initial
winning set of tuples. The queue of tasks can be sent to
the respective processing element for execution. The
available processing elements are used simultaneously
atleastin part, i.e. atleasttwo of the available processing
elements execute computation tasks in parallel at atleast
one point in time during this step.

[0018] Subsequently, information pertaining said com-
parison is received from the processing elements. This
information may be provided by the processing elements
after performing the comparison for the entire corre-
sponding subset or may be provided sequentially when-
ever the comparison has been performed for one or more
tuples. Based on this information, an updated winning
set of tuples is determined from the set of tuples. Said
information for a given tuple may for example be whether
the tuple is to be included in the updated winning set of
tuples or whether the initial winning set contains any tu-
ples fulfilling certain conditions with respect to the atleast
one successor state of this tuple. Additionally, the atleast
one specification may also be taken into account for the
determination of the winning set, e.g. additional condi-
tions for tuples to be included in the updated winning set
may be obtained from the at least one specification.
[0019] The updated winning set is compared with the
initial winning set to obtain a convergence measure,
wherein said convergence measure quantifies a degree
of similarity between the two sets. This process may also
be performed in parallel by distributing the comparison
over the available processing elements. This conver-
gence measure is compared to a predefined conver-
gence criterion, which specifies a desired degree of sim-

10

15

20

25

30

35

40

45

50

55

ilarity between the initial winning set and the updated
winning set. If the convergence measure does not meet
the pre-defined convergence criterion, the determination
of the updated winning set of tuples is repeated to obtain
a new updated winning set of tuples. This new updated
winning set is determined as described above, wherein
the updated winning set determined previously serves
as the initial winning set, i.e. the initial winning set is re-
placed by the previous updated winning set. The previous
updated winning set is thus provided at least in part to
the available processing elements. Toreduce the amount
of data to be exchanged, the part of the previous updated
winning set provided to an available processing element
may be chosen such that it contains only tuples which
are relevant for the comparison with the respective sub-
set of tuples assigned to this processing element, e.g.
based on bounds forthe corresponding successor states.
The distribution of the computation tasks over the avail-
able processing elements may be different from the dis-
tribution used previously. If the convergence measure
meets the predefined convergence criterion, the previous
updated winning set is defined to be the new updated
winning set.

[0020] Finally, acontrollerforthe control systemis con-
structed from said new updated winning set of tuples.
The controller comprises a set of rules, based on which
a state vector x provided as an input can be uniquely
associated to a control vector u. The state vector can be
from the continuous state space and the control vector
can be in the continuous input space. Constructing the
controller may comprise selecting tuples from the new
updated winning set and the use of interpolation/extrap-
olation methods to obtain the set of rules, which can be
applied to state vectors from the continuous state space.
[0021] In one example of the present invention, also
the determination of the successor states can be per-
formed by distributing the associated computation tasks
over the available processing elements. For each tuple
in the set of tuples, one processing element is chosen
from the available processing elements. This processing
element executes the computation tasks to determine
the at least one successor state of this tuple. Thereby,
the set of tuples is divided into subsets, each of which is
assigned to a different processing element of the avail-
able processing elements. These subsets do not have
to be identical to the subsets used for the comparison of
the successor states with the initial winning set. For each
processing element, a queue oftasks may be determined
for performing the determination of the at least one suc-
cessor state for each tuple within the respective subset.
The queue of tasks may contain multiple sequences of
tasks, wherein each sequence of tasks comprises the
tasks for determining the at least one successor state of
one tuple. The queue of tasks may be sent to the respec-
tive processing element for execution. The available
processing elements can be used simultaneously atleast
in part during this step.

[0022] Inapreferred embodiment, identifying the avail-
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able processing elements may comprise determining a
type of processing element for each available processing
element. The type of processing element describes
which kind of computation device the respective process-
ing elementbelongsto, e.g. CPU, GPU oratype of HWA.
Additionally, the type of processing element may contain
information on the specific type of computation device,
e.g. the type of CPU, GPU or HWA, and/or specifications
like the clock speed or the memory resources. The de-
termination of the successor states and/or the compari-
son of the successor states with the initial winning set
can be adapted to the type of processing element for
each available processing element. This adaptation may
involve optimizing the instructions for executing the cor-
responding computing tasks based on the type of
processing element, e.g. to exploit the large cache mem-
ory of CPUs or the parallel architecture of GPUs. The
adaptation may be implemented by providing a kernel
with implementations of the corresponding algorithms
that are fine-tuned to the respective processing element.
[0023] In ancther example of the present invention,
identifying available processing elements may further
comprise determining the available computing power
and/or the available memory resources of the available
processing elements. For this, the computing power and
memory resources of a processing element that are cur-
rently used, e.g. by other applications or processes, may
be determined in addition to specifications contained in
the type of the processing element. Furthermore, past
usage statistics may be analyzed as well as information
on future use if available.

[0024] Inapreferred embodiment, the distribution over
the available processing elements for the determination
of the successor states and/or for the comparison of the
successor states with the initial winning set can be de-
termined based on the types of the available processing
elements, the available computing power of the available
processing elements, that memory resources of the avail-
able processing element or a combination thereof. For
this, the size of the subsets that the set of tuples is divided
into may be chosen based on this information about the
available processing elements. In particular, the subsets
may be selected in such away that the available process-
ing elements need the same time for executing the tasks
assigned to them to reduce the total computation time
required for these steps. For example, a subset assigned
to a processing element with a high available computing
power may be larger than a subset assigned to a different
processing element with a lower available computing
power. The subsets used for the determination of the
successor states and the subsets used for the compari-
son of the successor states with the initial winning set
may be different.

[0025] Alternatively or additionally, the distribution
over the available processing elements for the determi-
nation of the successor states and/or for the comparison
of the successor states with the initial winning set may
be determined taking into account the communication
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overhead forexchanging data with the available process-
ing elements. For example, the distribution for the suc-
cessor state comparison may be chosen such that the
amount of data that has to be exchanged with the avail-
able processing elements for obtaining the convergence
measure and/or for repeating the determination of the
updated winning set is minimized. The distribution for the
determination of the successor states may be chosen in
away thatreduces the data exchange required to perform
the successor state comparison.

[0026] The method according to an embodiment of the
present invention can further comprise iteratively repeat-
ing the determination of the updated winning set of tuples
until the convergence measure meets the predefined
convergence criterion. For this, every time a new updated
winning set is determined, itis compared with the previ-
ous updated winning set to obtain the convergence
measure. The convergence measure is compared to the
predefined convergence criterion. If the convergence
measure satisfies the convergence criterion, the method
proceeds to the construction of the controller. Otherwise,
another iteration of the determination of the updated win-
ning setis performed. The new updated winning set used
for the construction of the controller may also be referred
to as final winning set. The convergence criterion may
be the same for all iterations or may be adapted between
two subsequent iterations. For example, the conver-
gence criterion may be relaxed with the number of per-
formed iterations in order to ensure a completion of the
method or a maximum number of iterations may be spec-
ified.

[0027] In another example of the present invention,
constructing the controller may comprise constructing a
symbolic controller from the new updated winning set of
tuples and refining said symbolic controller to obtain the
controller. To construct the symbolic controller, a set of
discrete rules may be extracted from the new updated
winning set, wherein the set of rules uniquely identifies
a control vector for a given state vector, 3(’,-—) D)j. The set

of discrete rules may be restricted to the discretized
space or a subspace of the discretized space. Obtaining
the set of discrete rules may involve a determination step,
wherein a unigue control vector is associated with a state
vector ;,- e.g. if the new updated winning set contains

multiple tuples with the same state vector 3(),-. The unique

control vector may for example be determined by ran-
domly selecting one of the multiple tuples or by averaging

u; over two or more of the multiple tuples. Alternatively,

a tuple may be chosen based on secondary specifica-
tions.

[0028] The refinement of the symbolic controller is the
generalization of the set of discrete rules of the symbalic
controller to the set of rules of the controller, which can
be appliedtothe continuous state space. In one example,
the rules for the controller may be to approximate a con-
tinuous state vector x by the closest discrete state factor
}),- and to use the discrete rules of the symbolic controller
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as a lookup table to determine the control vector. Alter-
natively, an average or weighted average of the control
vectors associated with a plurality of discrete state vec-
tors in the vicinity of X may be used. In other examples,
interpolation and/or extrapolation may be performed for
the refinement, e.g. to obtain a mathematical function
mapping a state vector X to a control vector 3(})).

[0029] The method according to an embodiment of the
present invention can further comprise generating
source code that can be used to implement the controller
in a control unit. For this, the set of rules of the controller
may be expressed as source code for a software and/or
hardware implementation, e.g. C++ code for a software
implementation or VHDL code for a hardware implemen-
tation. The source code may be provided to a control unit
automatically or may be provided to a user, e.g. as a
source code building block. When executing the source
code, the control unit may be configured to determine a
control vector according to the set of rules of the controller
for a state vector provided as an input.

[0030] Ina preferred embodiment, determining said at
least one successor state comprises determining an up-
per bound and a lower bound for a set of successor
states. To determine the at least one successor state for
a tuple, a set of successor states may be calculated
based on the mathematical model. This may allow for
accounting for uncertainties, e.g. in the determination of
the state vector, in the application of the control vector,
in the mathematical model and/or in numerical methods
used for determining successor states. For a given tuple,
a set of successor states may be determined by calcu-
lating a successor state for a plurality of state vectors
and/or a plurality of control vectors, for example within
predetermined uncertainty ranges around 3(),- and Uj, re-

spectively, and/or by determining additional successor
states for each calculated successor state, e.g. by adding
or subtracting a predetermined uncertainty. To reduce
memory requirements, the set of successor states may
be characterized by a small number of states, e.g. a lower
bound and an upper bound defining a hyper-rectangle in
the state space. The at least one successor state may
comprise the lower bound and the upper bound and/or
a subset of the set of successor states.

[0031] Inoneexample of the presentinvention, the dis-
cretization of at least a part of the space spanned by the
state variables and control parameters may comprise
mapping said part of the space to a lower-dimensional
space, in particular a two-dimensional flat space. For the
latter, the corresponding part of the state space as well
as the corresponding part of the input space are mapped
to a one-dimensional space each. This facilitates index-
ing of the tuples in the discretized space, e.g. using pairs
ofintegerindices, and may be advantageous for perform-
ing computational tasks as well as for the storing of data.
[0032] Inapreferred embodimentof the presentinven-
tion, the discretization may be determined taking into ac-
count information on the mathematical model and/or the
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at least one specification. The subspaces of the state
space and the input space to be discretized as well as
the spacings used for the discretization may be chosen
based on this. The chosen state subspace may for ex-
ample be required to contain target states determined by
the specification as well as the current state of the control
system. Furthermore, the size of the subspaces to be
discretized may be limited based on properties of the
control system. In another example, the spacing may be
non-uniform and may account for properties of the math-
ematical model, e.g. the spacing for a control parameter
may be closer in regions where the state of the control
system depends strongly on this parameter or the spac-
ing for a state variable may be closer in a region where
the mathematical model exhibits particular features.
[0033] The discretization can further be determined
based on information pertaining the available processing
elements. The size of the subspaces and the spacings
may be chosen depending on the available computing
power and/or memory resources. For example, the re-
quired computation time may be estimated and the size
of the subspaces and the spacings may be chosen such
that the estimated computation time is below a certain
threshold.

[0034] In one example of the present invention, the
mathematical model can comprise a system of differen-
tial equations or a set of differential equations may be
derived from the mathematical model. In these cases,
determining the at least one successor state may com-
prise numerically solving said system of differential equa-
tions at least in part, e.g. via a Runge-Kutta method or a
linear multistep method.

[0035] Comparing the at least one successor state }f

of each tuple with the initial winning set of tuples may
comprise determining whether the initial winning set con-
tains at least one tuple (x,,u;) with x, = xg If the at least

one successor state is a plurality of states, this determi-
nation may be performed for one or more states of the
plurality of states. A tuple may for example be included
in the updating winning set if this condition is fulfilled for
all successor states of the tuple, i.e. the updated winning

- >

set contains all tuples (x,-,uj) with successor states })ffor

which the initial winning set contains at least one tuple
(})k,ﬁ,) with })k = ;f for each of the at least one successor

states of the tuple (;,-,Ej). In other examples, a certain

number of states or fraction of states of the at least one
successor state fulfilling the aforementioned condition
may be required.

[0036] If the at least one successor state comprises a
lower bound and an upper bound, the comparison pro-
cedures discussed here may be conducted using a set
of state vectors defined by the lower and upper bound
instead of using the at least one successor state. Such
a set of state vectors may for example contain the states
enclosed by the hyper-rectangle connecting the lower
and upper bound.

[0037] Additionally, it may be required that the tuple
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(},-,Ej) is already containedin the initialwinning setin order

for it to be included in the updated winning set. Further-
more, additional conditions for tuples to be included in
the updated winning set may be obtained from the at
least one specification. The atleast one specification may
for example specify boundaries for the state vectorand/or
control vector, e.g. a minimum value and/or maximum
value for at least one of the state variables and/or control
parameters.

[0038] In one example of the present invention, the
convergence measure quantifies the overlap of the up-
dated winning set with the initial winning set. The con-
vergence measure can for example be the number of
tuples that are only contained in one of the sets. Alter-
natively, the convergence measure can be the fraction
of tuples that only contained in one of the sets, wherein
the fraction is defined as the number of tuples contained
in only one of the sets divided by the total humber of
tuples contained in both sets. The predefined conver-
gence criterion may specify a minimum absolute or rel-
ative overlap, e.g. a maximum number or fraction of tu-
ples that are only contained in one of the sets.

[0039] Inanother example of the presentinvention, the
controller is provided to a control unit of the control sys-
tem after it has been constructed. The controller may for
example be provided by transmitting the corresponding
setof rules or as a source code as discussed above. The
controller may be provided to the control unit via a com-
puter network, in particular the internet.

[0040] The control system may for example be a com-
puter-controlled physical system, in particular a cyber-
physical system. A computer-controlled physical system
may comprise a plurality of sensors, which measure
guantities characterizing the state of the control system
and/or the surroundings of the control system. The sen-
sors may be computer-controlled and the state variables
may be determined automatically from the measured
guantities. In one example, at least one of the state var-
iables can characterize a position or velocity of a me-
chanical element of the control system, in particular a
relative position or velocity. Other state variables may
characterize a voltage, a current, a light intensity, a tem-
perature, a pressure, a force, an acceleration, a mass, a
length, an angle, a time and/or another physical quantity.
In addition, the computer-controlled physical system may
comprise a plurality of computer-controlled control ele-
ments, which perform actions depending on one or more
ofthe control parameters. The computer-controlled phys-
ical system may comprise a plurality of independently
controlled subsystems and/or may be operated in the
vicinity of other computer-controlled physical systems.
In particular, the computer-controlled physical system
may be caonfigured to communicate with other computer-
controlled physical systems. The control unit may be part
of the control system and may be configured to receive
the state vector e.g. as a plurality of digital signals and/or
analog signals as well as to send the control vector e.g.
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as a plurality of digital signals and/or analog signals.
[0041] In one example, the method according to the
present invention can be performed in real-time during
operation of the control system. For this, a mathematical
model of the control system based on the current state
and the current surroundings of the control system may
be received or a general mathematical model of the con-
trol system may have been received at an earlier time
and subsequently be updated based on the current state
and the current surroundings of the control system, e.g.
by receiving a plurality of variable parameters of the mod-
el. in particular, the method may be performedrepeatedly
in real-time during operation of the control system. The
method may for example be performed with a fixed fre-
guency, i.e. the method is repeated after a certainamount
of time. Alternatively or additionally, the method may be
performed whenever updated specifications are provid-
ed, whenever the state of the control system has changed
or whenever another predefined condition is fulfilled.
Each time the method is executed, a controller is synthe-
sized, which subsequently may be put in action to control
the control system until a new controller becomes avail-
able. Thereby, a continuous control of the control system
can be achieved, which can adapt dynamically to chang-
ing surroundings.

[0042] The presentinvention also provides a computer
program comprising computer-readable instructions,
such that said instructions, when read by a computer
device, cause said computer device toimplement ameth-
od according to the invention.

[0043] Furthermore, the present invention provides a
device for synthesizing a correct-by-construction control-
ler for a control system using a method according to the
invention. The device comprises (1) at least two process-
ing elements; (2) a computing platform interface coupled
to the at least two processing elements for exchanging
data with the at least two processing elements; (3) a re-
source identification unit coupled to the computing plat-
form interface for identifying available processing ele-
ments of the at least two processing elements; (4) an
interface unit for receiving the mathematical model of the
control system and the at least one specification and for
providing the synthesized controller; (5) a management
engine coupled to the resource identification manager
and the interface unit for determining the distribution over
the available processing elements for the determination
of the successor states and for the comparison of the
successor states with the initial winning set and for de-
termining corresponding queues of tasks for execution
on the available processing elements; and (6) a task
scheduling unit coupled to the computing platform inter-
face and the management engine for receiving said
gueues of tasks from the management engine and man-
aging the execution of the queues of tasks on the avail-
able processing elements.

[0044] Each of the at least two processing elements
may be a processing element of a CPU, a GPU, or a
HWA, e.g.aFPGAoraASIC. The atleast two processing
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elements may belong to the same computational device,
e.g. multiple cores of a CPU, or may be distributed over
multiple computational devices, in particular computation
devices of different types. Each of the at least two
processing elements may have a memory resource as-
sociated therewith.

[0045] The atleast two processing elements are cou-
pled to a computing platform interface, which handles
the exchange of data with the at least two processing
elements. The computing platforminterface may be con-
figured to exchange data between each of the at least
two processing elements and one or more additional
components coupled to the computing platforminterface.
Furthermore the computing platform interface may be
configured to exchange data between the at least two
processing elements themselves.

[0046] The resource identification unit coupled to the
computing platform interface is configured to determine
which of the at least two processing elements can be
used to execute at least some computation tasks asso-
ciated with performing a method according to the inven-
tion. For this, the resource identification unit may be con-
figured to obtain information regarding the at least two
processing elements, in particular regarding the current
state of the at least two processing elements.

[0047] The interface unit is configured to receive the
mathematical model of the control system and the atleast
one specification as well as to provide the synthesized
controller. For this, the interface unit may be configured
to communicate with other devices, for example via wired
connections like CAN, LAN, and/or USB and/or via wire-
less connections like WLAN. The interface unit may be
connected to a control unit of the control system for di-
rectly providing the synthesized controller. Alternatively
or additionally, the interface unit may be connected to
another device, e.g. a computer, and/or comprise means
for direct access by a user. The interface unit may further
be configured to receive a request to perform a method
according to the invention, e.g. as a digital or analog trig-
ger signal.

[0048] The management engine is coupled to the re-
source identification manager and the interface unit. The
management engine is configured to determine the dis-
tribution of computation tasks over the available process-
ing elements for the comparison of the successor states
with the initial winning set as described above, i.e. by
dividing the set of tuples into subsets, each of which is
assigned to a different processing element of the avail-
able processing elements. Furthermore, the manage-
ment engine is configured to determine a queue of tasks
for each of the available processing elements for per-
forming the comparison for each tuple within the respec-
tive subset. The management engine may be configured
to initiate the execution of a method according to the in-
vention when the interface unit receives a request, the
mathematical model and/or the at least one specification.
[0049] The task scheduling unitis coupled to the man-
agement engine and to the computing platform interface.
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The management engine is configured to provide the
gqueues of tasks to the task scheduling unit. The task
scheduling unit is configured to manage the execution of
the queues of tasks on the respective processing ele-
ments. The task scheduling unit may additionally be con-
figured to collect the results from the available processing
elements as well as to manage the exchange of data
between processing elements and with the processing
elements via the computing platform interface as re-
quired.

[0050] In a preferred embodiment, the management
engine can further be configured to determine the distri-
bution of computation tasks overthe available processing
elements for the determination of the successor states
as described above, i.e. by dividing the set of tuples into
subsets, each of which is assigned to a different process-
ing element of the available processing elements. Addi-
tionally, the management engine can be configured to
determine a queue of tasks for each of the available
processing elements for performing the determination of
the at least one successor state for each tuple within the
respective subset.

[0051] In an example of the present invention, the re-
source identification unit may be configured to determine
the type of processing element for each available
processing element. The type of processing element de-
scribes which kind of computation device the respective
processing elementbelongsto, e.g. CPU, GPU or a type
of HWA. Additionally, the type of processing element may
contain information on the specific type of computation
device, e.g. the type of CPU, GPU or HWA, and/or spec-
ifications like the clock speed or the memory resources.
[0052] Inanother example of the presentinvention, the
resource identification unit can be configured to deter-
mine the computing power and/or available memory re-
sources of the available processing elements. For this
purpose, the resource identification unit may be config-
ured to determine the computing power and memory re-
sources that are currently used, e.g. by otherapplications
or processes, in addition to specifications contained in
the type of a processing element. The resource identifi-
cation unit may further be configured to analyze past us-
age statistics of the available processing elements as
well as information on future use if available.

[0053] In particular, the resource identification manag-
er may be configured to determine the computing power
of the available processing elements by executing tasks
associated with the determination of the successor states
and/or the comparison of the successor states on the
available processing elements. In this way, an estimate
of the actual computing power of the available processing
elements may be obtained. The resource identification
manager may for example be configured to perform the
determination of the at least one successor state for one
tuple on each of the available processing elements and
tomeasure the elapsedtime. Alternatively oradditionally,
the resource identification manager may e.g. be config-
ured to perform the comparison of the at least one suc-
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cessor state of one tuple with the initial winning set on
each of the available processing elements and measure
the elapsed time.

[0054] As mentioned above, the processing elements
may be processing elements of a CPU, a GPU, a FPGA,
an ASIC and/or ancther type of hardware accelerator.
[0055] In one example of the presentinvention, the in-
terface unit may be configured to receive the mathemat-
ical model of the control system and the at least one
specification as well as to provide the synthesized con-
troller via a computer network, in particular the Internet.
The interface unit may further be configured to receive a
request to perform a method according to the invention
via a computer network.

[0056] In an example of the present invention, the de-
vice can further comprises a logging unit, which is cou-
pled to the management engine. The logging unit may
be configured to receive data from the management en-
gine, to store this data and to provide it to the manage-
ment engine at a later time. The logging unit may further
be configured for external access via the interface unit.
The management engine may be configuredto send data
to the logging unit, e.g. debugging data or protocol data
relating to the execution of a method according to the
invention.

LIST OF FIGURES

[0057] In the following, a detailed description of the in-
vention and exemplary embodiments thereof is given
with reference to the figures. The figures show schematic
illustrations of

Fig. 1: a symbolic controller synthesis method ac-
cording to prior art

Fig. 2a: a device for synthesizing a correct-by-con-
struction controller according to an exemplary em-
bodiment of the invention

Fig. 2b: a flow chart of a method to synthesize a
correct-by-construction controller in accordance
with an embodiment of the invention

Fig. 3: a flow chart of a method to identify available
processing elements according to an embodiment
of the invention

Fig. 4a: a flow chart of a method for a parallel deter-
mination of a symbolic model in accordance with an
embodiment of the invention

Fig. 4b: a parallel determination of a symbolic model
according to an embodiment of the invention

Fig. 5a: a flow chart of a method for a parallel deter-
mination of an updated winning set in accordance
with an embodiment of the invention
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Fig. 5b: a parallel determination of an updated win-
ning setaccording to an embodiment of the invention

DESCRIPTION OF THEPREFERRED EMBODIMENTS

[0058] Fig. 1 schematically illustrates the concept of
symbolic controller synthesis as known from prior art.
The aim is to design a controller 10 for a control system
12, wherein the controller 10 comprises a set of rules to
be executed by a control unit. The current state of the
control system 12 is characterized by a plurality of state
variables x(1), x(), ... x(M and can be described by a state
vector x containing all of the state variables. The control
system 12 has a number of control parameters u(1),
u@, ..., um, which can be used to control the state of
the control system 12 and are described by a control
vector U containing the control parameters. The set of
rules ofthe controller 10 relate a state vector X to a control
vector .

[0059] The control system 12 can for example be an
automated physical system like an autonomous car. In
this case, the state variables could be the position and
velocity of the car and the control parameters could be
the position of the throttle and the angle of the steering
wheel. In the following, an autonomous car is often used
as an example for illustration. However, this should not
in any sense be understood as a limitation for the subject-
matter of the invention, which relates to the synthesis of
controllers for technical control systems of any kind. Such
control systems could for example be other automated
physical systems like robots or cyber-physical systems
like smart homes, smart grids or industrial process con-
trol systems.

[0060] The control unit receives the current state X of
the control system 12 as well as a set of specifications
for the control system 12 describing a target state of the
control system 12 and possibly a set of boundary condi-
tions. In the case of an autonomous car, the target state
could for example by a target position and the boundary
conditions could be the speed limit and the boundaries
of the road. Based on the specifications, the controller
10 should determine a set of control parametersﬁ tomeet
the specifications, i.e. to reach the target state under the
imposed boundary conditions. A car could for example
be accelerated toreach a certain target velocity by chang-
ing the position of the throttle or the car’s steering wheel
could be controlled to autonomously reach a pre-defined
target position, e.g. some coordinates specified by a pas-
senger using a navigator device.

[0661] Theresponseofthe control system 12inagiven
state X to the control input U can be described by a math-
ematical model, which relates the change in the state X
to the current state x and the control input 4. This math-
ematical model can for example be a set of differential
equations
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The mathematical model forms the basis for designing
the controller 10. To obtain a suitable controller 10, the
mathematical model has to capture the essential dynam-
ics of the control system 12 at least approximately. De-
pending on the complexity of the control system 12, ob-
taining a suitable model may be a difficult task on its own.
[0062] In symbolic controller synthesis, a controller 10
is constructed in three steps, which are illustrated in Fig.
1 and detailed in the following: (1) finite abstraction of
the mathematical model to obtain a symbolic model 14,
(2) synthesis of a symbolic controller 18 based on the
symbolic model 14 and the set of specifications 16, and
(3) refinement of the symboalic controller 18 to obtain a
refined controller 20 for the actual control system 12.

[0063] In the first step, the continuous space spanned
by the state variables x and the control parameters Uis
discretized to obtain a discrete space comprising a set
of tuples (},-,Ej), where i and j are indices labelling the

state vectors and control vectors, respectively. Subse-
quently, a successor state x;is determined for each tuple

- > . . . —
(x,-,uj) using the mathematical model, wherein x; corre-

sponds to the state that the control system 12 is expected

D)j is applied for a predefined amount of time. Obtaining

the successor state may involve solving the mathemati-
cal model exactly or numerically. The resulting symbolic
model 14 thus consists of a plurality of transition rules
associating each tuple (}),,D)j) to a successor state })f. In

Fig. 1, the higher-dimensional discrete space is illustrat-
ed by mapping it to a flat 2D space using the indices i
and j as coordinates such that a tuple (x; uj) corresponds

to the square at position (i,j). Accordingly, the transition
rules are depicted as horizontal arrows linking a tuple
(},-,Ej) with the tuple (Z«,Zj) corresponding to the successor
state Z«at the same control vector D)j. For clarity, the tran-

sition rules are shown only for a select subset of tuples.
[0064] In the following step, a symbolic controller 18 is
synthesized based on the symbolic model 14 and the
specifications 16 forthe control system 12. This synthesis
is conducted in such a way that the symbolic controller
18 automatically meets the specifications 16 when ap-
plied to the symbolic model 14. The resulting symbolic
controller 18 is hence "correct-by-construction". As de-
tailed below, this can for example be achieved by an it-
erative determination of a final winning set of tuples that
forms a fixed-point set with respect to one or more target
states, i.e. when applying a feedback based on the final
winning set to the control system 12, the control system
12 will remain within the final winning set and will even-
tually converge towards the target states.

[0065] At first, an initial winning set is defined, which
can e.g. be the target states. This winning set is then
updated iteratively, wherein each iteration comprises the

10

15

20

25

30

35

40

45

50

55

10

following steps: The successor states for all tuples in the
discrete space are obtained from the symbolic model 14.
For each tuple, the successor state is compared to the
initial winning set and based on this comparison an up-
dated winning set is defined. For example, each tuple
with a successor state })f, for which the initial winning set
contains a tuple (},-,D)j) with 3(),- = })ﬁ can be added to the
updated winning set, whereas tuples for which the afore-
mentioned condition is not met are not contained in the
updated winning set. Alternatively, the updated winning
set could only contain tuples that meet the aforemen-
tioned condition and are from the initial winning set. Af-
terwards, the initial winning set and the updated winning
set are compared to obtain a convergence measure, e.g.
an overlap between the sets, and by comparing this con-
vergence measure with a convergence criterion a deci-
sion is made whether to perform another iteration or to
terminate the iterative determination. Before beginning
with the next iteration, the initial winning set is redefined
by replacing it with the updated winning set. In this way,
the initial winning set can change from iteration to itera-
tion, wherein new tuples may enter the set and/or other
tuples previously contained in the set may leave the set.
[0066] The convergence criterion can be chosen such
that it ensures that the final updated winning set, also
referred to as final winning set, forms a fixed-point set as
defined above. The convergence criterion can be the
equivalence between the initial and the updated winning
sets, i.e. the iteration can be continued until the initial
winning set and the updated winning set are identical.
For example, when using the aforementioned condition
to determine the updated winning set, this would be the
case when for each tuple in the initial winning set a tuple
exists in the initial winning set for which the state vector
is identical to the successor state of the former.

[0067] This facilitates the generation of the symbalic
controller 18, which comprises a set of rules that identify
a control vector for a given state vector, 3(),- - D)j These

rules can be obtained from the final updated winning set,
e.g. by averaging u over all tuples in the final updated
winning set with a given x; or randomly selecting a tuple

from the tuples in the final updated winning set with a
given x;. By construction, this symbolic controller 18 will

enforce the specifications 16 provided initially in a dis-
crete control system whose dynamics are governed by
the symbolic model 14.

[0068] Finally, the symbolic controller 18 is refined to
obtain a refined controller 20 for the actual control system
12, i.e. a controller capable of handling state vectors from
the continuous state space. This refinement can involve
an interpolation and/or extrapolation process to extract
rules that can be applied to a continuous state vector
from the discrete set of rules of the symbolic controller
18. These rules can for example comprise a mathemat-
ical function mapping a state vector X to a control vector
D)(})). The refined controller 20 is then designed such that
it provides a control vector to the control system 12 ac-
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cording to these rules inresponse to a state vector as an
input. Alternatively, the refined controller 20 could ap-
proximate a continuous state vector by a discrete state
vector contained in the discrete state space and use the
rules of the symboalic controller 18 as a look-up table.
[0069] Fig. 2a shows an example for a device 100 ac-
cording to an embodiment of the presentinvention, which
can be used to implement a method as depicted in Fig.
2b. The device 100 comprises a central processing unit
(CPU) 102 with a processing element 104, a graphics
processing unit (GPU) 106 with a two processing ele-
ments 108, 110 as well as a hardware accelerator (HWA)
112 with a processing element 114. Each of the process-
ing elements 104, 108, 110 and 114 can have a memory
resource associated therewith. Alternatively or addition-
ally, processing elements within the same computation
device, e.g. processing elements 108 and 110, may
share a common memory resource. With a variety of
processing elements at hand, the device 100 is capable
of matching the requirements of various applications by
distributing tasks over the processing elements 104, 108,
110, and 114. CPUs, for example, are suitable for com-
plex serial mathematical computations, which may arise
when constructing the symbolic model, e.g. for solving
differential equations numerically. GPUs, on the other
hand, typically contain many, but less-powerful process-
ing elements and are thus particularly well suited for a
massive parallelization of tasks, e.g. for computing the
updated winning set. HWAs, e.g. an FPGA, can operate
in a low-power mode, which may be advantageous for
embedded applications that require real-time execution
of the provided method.

[0070] The processing elements 104, 108, 110 and
114 are coupled to a computing platform interface 116,
which handles the exchange of data between the
processing elements 104, 108, 110 and 114 and com-
ponents connected with the computing platform interface
116. Data may be exchanged between the processing
elements 104, 108, 110 and 114 themselves as well as
between each of the processing elements 104, 108, 110
and 114 and each of the components connected with the
computing platform interface 116. Additionally, process-
ing elements within the same computation device, e.g.
processing elements 108 and 110, may be configured to
exchange data with each other independent of the com-
puting platform interface 116.

[0071] In the example shown in Fig. 2a, a resource
identification unit 118 and a task scheduling unit 120 are
coupled to the computing platform interface 116. The re-
source identification unit 118 is configured to identify
available processing elements that can be used at least
in partfor the execution of tasks associated with the meth-
od according to the invention. Additionally, the resource
identification unit 118 is configured to determine the type
of processing element for the available processing ele-
ments, i.e. which kind of computation device the respec-
tive processing element belongs to, e.g. CPU, GPU or a
type of HWA. The resource identification unit 118 may

10

15

20

25

30

35

40

45

50

55

1

further be configured to obtain information regarding the
available computing power and/or memory resources of
each of the available processing elements as detailed
below.

[0072] The device 100 further comprises an interface
unit 122 for communication with other devices, in partic-
ular to receive the specifications 240 and the mathemat-
ical model of the control system 12 for which a controller
is to be synthesized and to provide the synthesized con-
troller. For this, the interface unit 122 may be configured
to communicate via wired connections, e.g. CAN, LAN
or USB, and/or via wireless connections like WLAN. The
interface unit 122 may be directly connected to the control
unit of the control system 12. Alternatively or additionally,
the interface unit 122 may be connected to another de-
vice, e.g. a computer, and/or comprise means for direct
access by a user.

[0073] The core part of the device 100 is the manage-
ment engine 124, which is coupled to the interface unit
122, the resource identification unit 118 and the task
scheduling unit 120. The managementengine 124 is con-
figured to execute the method according to the invention,
in particular to determine the distribution of tasks for the
associated computations as described below in detail.
[0074] To perform these tasks, the device 100 com-
prises a task scheduling unit 120, which receives queues
of tasks for execution on the available processing ele-
ments, manages the execution of these queues and col-
lects results from the available processing elements. The
task scheduling unit 120 handles the exchange of data
between processing elements 104, 108, 110, 114 viathe
computing platform interface 116 as required for the task
execution.

[00675] The device 100 can further contain a logging
unit 126 for storing and providing data, e.g. information
on the controller synthesis acquired during execution of
the method according to the invention, which may be
used for debugging. For this, the logging unit 126 is cou-
pled to the management engine 124.

[0076] The device 100 depicted in Fig. 2a only consti-
tutes one example for an embodiment of the present in-
vention and a variety of modifications are possible in oth-
er examples. The number of processing elements and
computation devices can be different and in particular
much larger than shown in Fig. 2a. A device according
to the present invention may contain multiple computing
devices of the same type. Furthermore, two or more of
the components could be formed by a single unit provid-
ing the respective functionalities.

[0077] Fig. 2b depicts a flow diagram representing a
method according to an embodiment of the present in-
vention for synthesizing a correct-by-construction con-
troller 20 for a control system 12, which could for example
be implemented with device 100.

[0078] In afirst step 130, a mathematical model of the
control system 12 is received, which characterizes the
response of the control system 12 to a given control vec-
tor ZI), i.e. the change of the current state X as a result of
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the control input. The mathematical model can charac-
terize the response exactly or approximately. As de-
scribed above, the mathematical model can for example
be a set of differential equations describing the dynamics
of the control system 12. Altematively, the mathematical
model may comprise information based on which a re-
sponse of the control system 12 can be determined, e.g.
a Hamiltonian or Lagrangian or a set of intrinsic param-
eters of the control system 12.

[0079] The first step 130 further comprises receiving
at least one specification for the state variables and/or
the control vector. This specification can for example be
one or more target states or a range of target states,
which the control system 12 should reach or remain in,
e.g. a certain position or velocity for an autonomous car.
The specification may be given as formulae in a certain
specification modeling language, e.g. linear temporal
logic (LTL) formulae or automata on infinite strings. The
formulae can then be translated to a corresponding set
of states or tuples. The specifications may contain con-
ditions to be imposed on the control parameters, e.g.
boundaries like a maximum angle for the steering wheel
or a maximum position of the throttle to limit the acceler-
ation. Additionally, a priority may be assigned tothe spec-
ifications. For example, a speed limit may be required to
be strictly enforced, whereas comfort settings like the
maximum throttle position can have a lower priority.
[0080] Subsequently, the method proceeds with step
132, in which available processing elements are identi-
fied that can be used for executing computations. The
step 132 is described in more detail below with reference
to Fig. 3.

[0081] Afterwards,the continuous state space contain-
ing all possible state vectors x and the continuous input
space spanned by the input vectors U are discretized at

least in part to obtain a set of tuples (;,-,D)j), for which a

symbolic model 190 and a symbolic controller is to be
determined. For this, a subspace of the continuous state
space and a subspace of the continuous input space are
selected, wherein each subspace may contain an arbi-
trary part of the respective space or the entire respective

-

space. The tuples (}),,uj) are chosen fromthe combination

of the subspaces, e.g. using a periodic pattern with a
fixed spacing. The subspaces to be discretized as well
as the spacings used for the discretization may be chosen
based on the provided specifications, the available
processing elements, the mathematical model and/or ad-
ditional information on the control system 12. For exam-
ple the chosen state subspace may be required to contain
the target state as well as the current state. The size of
the subspaces to be discretized may be limited based on
properties of the control system 12, e.g. the range for the
velocity of a car may be bounded by the maximum ve-
locity of the car or the range for the position of a car may
depend on the area covered by the sensors observing
the surroundings of the car. The size of the subspaces
and the spacings can be chosen depending on the avail-
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able computing power and/or memory resources. Fur-
thermore, the spacing can be non-uniform and can ac-
count for properties of the mathematical model, e.g. the
spacing for a control parameter may be closer in regions
where the state of the control system 12 depends strongly
on this parameter or the spacing for a state variable may
be closer in a region where the mathematical model ex-
hibits particular features. In the case of an autonomous
car, this can forexample be aregion in which a pedestrian
or a parked car was detected.

[0082] Following the discretization, a symbolic model
190 is determined for the set 180 of tuples by a parallel
computation assigning at least one successor state to
each tuple based on the mathematical model as detailed
below with reference to Fig. 4.

[0083] In step 138, an initial winning set 230 of tuples
is determined based on the at least one specification for
the state variables and/or the control vector. This initial
winning set 230 can for example contain some or all of
the tuples from the set 180 of tuples that meet one or
more of the specifications, e.g. all tuples corresponding
to a target position for a car or to a velocity range specified
for a car.

[0084] Subsequently, an updated winning set 242 of
tuples is obtained through a parallelized comparison of
the successor states determined in step 140 with the in-
itial winning set 230 of tuples. The step 140 is illustrated
in Fig. 5 and described in more detail below.

[0085] After determining the updated winning set 242,
the updated winning set 242 and the initial winning set
230 are compared with each otherin step 142. From this
comparison, a convergence measure is obtained, which
guantifies the overlap between the two sets. This con-
vergence measure can for example be the number or
fraction of tuples that are only contained in one of the
sets. This convergence measure is then compared to a
predefined convergence criterion, which specifies a de-
sired degree of similarity between the initial winning set
230 and the updated winning set 242. The convergence
criterion may for example require that the two sets are
identical or that the fraction of tuples which only appear
in one of the sets is smaller than a certain threshold.
[0086] If the convergence measure does not meet the
convergence criterion, the method returns to step 138 to
determine a new updated winning set. To this end, the
initial winning set 230 is replaced by the updated winning
set 242 before proceeding to step 140 for the determi-
nation of the new updated winning set as described be-
low, i.e. the previously determined updated winning set
242 is used as the initial winning set 230 when repeating
step 140. Step 140 then results in a new updated winning
set that replaces the updated winning set 242. In this
way, the updated winning set 242 is modified iteratively
until the convergence criterion is fulfilled, yielding a final
winning set 244, namely the latest new updated winning
set.

[0087] The same convergence criterion may be used
for all iterations. Altematively, the convergence criterion
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may be adapted between iterations, e.g. to ensure acom-
pletion of the method within a specified amount of time.
For this, the convergence criterion can be modified de-
pending on the number of performed iterations or a max-
imum number of iterations can be set.

[0088] Once the convergence measure satisfies the
convergence criterion in step 142, the method proceeds
to step 144, where a controller for the control system 12
is constructed using the final winning set 244, which is
collected from all processing elements participating in
step (140). This controller is designed such that it deter-
mines a control vector U as an output to be provided as
a control input to the control system 12 in response to a
state vector x received from the control system 12. The
rules associating a state vector x to a control vector U are
determined based on the final winning set 244.

[0089] The construction of the controller can comprise
determining a symbolic controller from the final winning
set 244 and refining the symbolic controller to obtain the
controller for the control system 12. The construction of
the symbolic controller involves extracting a set of rules
which uniquely identify a control vector for a given state
vector, Z—)Zl)j. Thisdefinesthe outputD)jthat the controller

will provide to the control system 12 when receiving the
state vector x; as an input. The symbolic controller is re-

stricted to the discretized space, i.e. the tuple (}),-,3,) has
to be contained in the discretized space. Since the final
winning set 244 may contain multiple tuples with the
same state vector ;,-, constructing the symbolic controller
may require a determination step, wherein a unique con-
trol vector is associated with the state vector ;,-. This can

be achieved e.g. by randomly selecting one of the mul-
tiple tuples with the state vector x; or by averaging u;over

two or more of the multiple tuples. Alternatively, a tuple
can be chosen based on the provided specifications. For
this, the specifications may contain one or more second-
ary specifications which can e.g. be additional criteria
that are not to be enforced strictly, but that can be opti-
mized for if possible. Such a secondary specification
could for example be that the acceleration should be as
small as possible to maximize comfort for a passenger
in an autonomous vehicle. In this case, the tuple resulting
in the smallest acceleration would be selected. [fmultiple
secondary specifications are provided, priorities may be
assigned to the secondary specifications for the deter-
mination step.

[0090] The refinement of the symbolic controller com-
prises the determination of one or more rules associating
a continuous state vector X to a control vector & to obtain
a controller that is capable to process an input from the
continuous state space. In one example, the rule could
be to determine the discrete state vector ;,- thatis closest

to the continuous state vector x and to use the symbolic
controller as a look-up table to obtain the corresponding
discrete control vector u; as the output control vector u.

Alternatively, an average or weighted average of the Ut
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associated with a plurality of discrete state vectors that
are close to x may be used. In another example, an in-
terpolation and/or extrapolation could be performed with
the discrete set of rules of the symbolic controller to obtain
a mathematical function mapping a state vector x to a
control vector D)(}).

[0091] In addition to the determination of the rules as-
sociating a state vector X to a control vector 4, the con-
struction of the controller for the control system 12 can
comprise generating source code that can be used to
implement the controller in a control unit, in step 146.
The control unit can be configured to execute the source
code in order to determine a control vector for a state
vector received e.g. as a plurality of digital signals and/or
analog signals and to send the control vector e.g. as a
plurality of digital signals and/or analog signals to a con-
trol system 12. The source code can be provided auto-
matically to the control unit for implementation or can be
provided to a software/hardware developer, e.g. as a
source code building block.

[0092] The sequence of the steps illustrated in Fig. 2b
and described above is only one particular example. As
far as technically feasible, the steps can be permuted
and the method and any embodiment thereof can be per-
formed in an arbitrary order. This also applies to the order
of the substeps that the steps shown in Fig. 2b are com-
prised of as illustrated in Fig. 3 to Fig. 5 and described
below.

[0093] InFig. 3, an exemplary method for the determi-
nation of available processing elements in step 132 is
illustrated as a flowchart. The purpose of the step 132 is
to identify the processing elements which can be used
at least in part for the parallel computations in step 136
and/or step 140. Furthermore, additional information on
the available processing elements may be obtained,
which can be useful for determining the distribution of
computation tasks over the available processing ele-
ments. In step 150, the processing elements in the sys-
tem that the method according to the invention is exe-
cuted on are analyzed to obtain a list of processing ele-
ments which are suitable for the executing the computa-
tion tasks and are currently available, e.g. have sufficient
spare computation capacities to speed up the parallel
computations given their current workload. For device
100, this list might for example contain the processing
elements 104, 108, 110, and 114.

[0094] Step 132 may comprise determining the type of
processing elements for the available processing ele-
ments in step 152, i.e. what type of computation device
they belong to. Processing element 104 would for exam-
ple be identified as a CPU processing element, whereas
processing element 110 would be identified as a GPU
processing element. The step 152 may include obtaining
further information on the processing elements, e.g. the
type of CPU 102, GPU 106 or HWA 112 or specifications
like the clock speed or the available memory resources.
[0095] Subsequently, in step 154, based on the infor-
mation aboutthe available processing elements, custom-
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ized kernels may be compiled for executing the compu-
tations on the available processing elements. These ker-
nels can be fine-tuned to the respective type of process-
ing elementin order to optimize the computation perform-
ance, e.g. by adapting the computations to the parallel
architecture of GPUs or exploiting the large cache mem-
ory of CPUs.

[0096] In addition to the specifications of the available
processing elements obtained in step 152, the actual
computing power of the available processing elements
may be determined in step 156, e.g. by executing some
of the computations tasks for the determination of the
symbolic model 190 in step 136 and/or for the determi-
nation of the updated winning set 242 in step 140 and
measuring the elapsed time. This allows for more reliable
estimates of the number of computation tasks a given
processing element can execute in a certain amount of
time and thus facilitates the efficient distribution of tasks
for the parallel computations as described below.
[0097] Fig. 4a depicts a flow chart of an example for
the parallel determination of the symbolic model 190 in
step 136, the basic concept of which is illustrated in Fig.
4b. In Fig. 4a and 4b, it is assumed that four processing
elements are used, e.g. the processing elements 104,
108,110, and 114 in the device 100. This only constitutes
one specific example and the method and concept de-
scribed in the following can easily be extended to any
finite number of processing elements.

[0098] Inafirststep 160, adistribution of the computing
tasks for the determination of the successor states over
the available processing elements is determined. For
this, the set 180 of tuples is divided into subsets 182,
184, 186, and 188, which when taken together contain
all tuples (3(),-,3]) of the set 180 of tuples. Each subset is

assigned to a different processing element of the avail-
able processing elements, e.g. subset 182 to processing
element 104, subset 184 to processing element 108, sub-
set 186 to processing element 110, and subset 188 to
processing element 114. While in general it is desirable
to use as many processing elements as possible to speed
up the computation, the communication overhead arising
from data exchange with and between the processing
elements increases with the number of processing ele-
ments involved, which may limit the computation speed
at some point. In some situations it may therefore be
advantageous to only use some of the available process-
ing elements, i.e. the number of subsets may be smaller
than the number of available processing elements.

[0099] The subsets 182-188 can have the same size,
i.e. contain the same number of tuples. Preferably, how-
ever, the size of the subsets 182-188 is chosen individ-
ually based on information about the processing ele-
ments 104, 108, 110, and 114, in particular the types of
processing elements, the available computing power of
the processing elements, the memory resources of the
processing elements or a combination thereof. For ex-
ample, CPUs are suitable for complex serial mathemat-
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ical computations and may be assigned a larger number
of tasks when constructing the symbolic model, which
may involve solving differential equations numerically.
The computation time for the determination of the suc-
cessor states can be minimized by choosing the subsets
182-188 such that the available processing elements
104,108, 110, and 114 need the same time for executing
the tasks assigned to them, i.e. the size of the subspace
associated with a processing element scales with the
number of successor state determinations the process-
ing element can perform in a given amount of time. In
Fig. 4b, the subsets 182-188 are chosen such that they
form simply-connected areas in the flat 2D space. The
tuples in each subset can, however, be chosen arbitrarily
from the set 180 of tuples. Preferably, the tuples in each
subset are chosen to minimize communication overhead
due to data exchange with the processing elements, in
particular taking into account the subsequent determina-
tion of the updated winning set 242 in step 140 as well
as the potentially different data exchange rates with the
processing elements and between different processing
elements.

[0100] In step 162, the data required for the determi-
nation of the successor states is provided to the respec-
tive processing elements, e.g. the tuples (},-,D)j) for which
the successor states are to be determined as well as
information pertaining the mathematical model. Depend-
ingonthe memory resources of the processing elements,
the entire respective subset is provided at once or the
subset is divided further into subsets of the subset, which
are provided sequentially whenever the tasks associated
with the preceding subset of the subset have been exe-
cuted.

[0101] For each processing unit, a queue of tasks is
established to perform the successor state determination
for each tuple within the respective subset, e.g. a queue
166 for processing element 104, a queue 168 for process-
ing element 108, a queue 170 for processing element
110, and a queue 172 for processing element 114. Each
queue 166, 168, 170, 172 contains multiple sequences
of tasks, wherein each sequence of tasks comprises the
tasks for determining the at least one successor state S()f

for one tuple (;,-,Uj). This is illustrated in Fig. 4a for a sit-

uation, in which the set 180 of tuples contains twelve
tuples with i € [1,4]and ] € [1,3]. in the sequence 173 of
tasks, the atleastone successor state for the tuple (3()4,u2)

is determined. The queues 166, 168, 170, 172 of tasks
are sent to the respective processing elements and ex-
ecutedin step 164. The execution is performed in parallel
at least in part as indicated by the vertical alignment of
the queues 166, 168, 170, 172 of tasks. Preferably, the
subsets 182-188 are chosen such that each processing
element finishes the execution of the respective queue
of tasks at the same time.

[0102] Foreachtuple (}),-,D)j), the atleast one successor

state ;fis determined based on the mathematical model.
The at least one successor state can for example be a
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state that the control system 12 is expected to be in ac-
cording to the mathematical model, if the control system
12 is initially in the state x; and the control input u; is

applied for a predetermined amount of time. This prede-
termined amount of time can be chosen depending on
the control system 12, the mathematical model and/or
the method used for determining the at least one suc-
cessor state. If the mathematical model is a set of differ-
ential equations governing the dynamics of the control
system 12 or if a set of such differential equations can
be derived from the mathematical model, the at least one
successor state may be determined by numerically solv-
ing the set of differential equations at least in part, e.g.
via a Runge-Kutta method or a linear multistep method.
Preferably, the at least one successor state is contained
in the discretized state space. If the at least one succes-
sor state is not contained in the discretized state space,
e.g. ifitlies between two states from the discretized state
space, it may be approximated by the closest state from
the discretized state space. Furthermore, if a successor
state lies outside of the range of the discretized state
space, it may be marked in some way to indicate an out-
of-bound state.

[0103] The atleast one successor state can be more
than one successor state, e.g. to account for uncertain-
ties in the determination of the state vector, the applica-
tion of the control vector, the mathematical model and/or
the numerical methods. For example, a successor state
center may be calculated in step 174, i.e. the state that
the control system 12 is expected to be in according to
the mathematical model, if the control system 12 is ini-
tially in the state 3(’, and the control input Ej is applied for

the predetermined amount of time. Subsequently, in step
175 alower bound and an upper bound for the successor
state center can be determined, which define a hyper-
rectangle in the state space, e.g. as an estimate for the
uncertainties. For this, a set of successor states may be
determined, for example by calculating successor states
for a plurality of state vectors and/or a plurality of control
vectors, e.g. within predetermined uncertainty ranges
around 3(),- and D)j respectively, and/or by determining ad-
ditional successor states for each calculated successor
state, e.g. by adding or subtracting a predetermined un-
certainty. The set of successor states can be approxi-
mated by the lower and upper bound, e.g. by choosing
a hyper-rectangle in the state space that contains the
entire set or a certain fraction of states from the set. The
at least one successor state can then be defined as the
set comprising the lower bound and the upper bound.
The atleast one successor state may additionally contain
the successor state center as well. Alternatively, the at
least one successor state may comprise the entire set of
successor states or a subset of the set of successor
states. To reduce the memory requirements, the at least
one successor state preferably is a small number of suc-
cessor states characterizing the set of successor states,
e.g. one or more lower bounds and one or more upper
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bounds defining a hyper-volume in state space.

[0104] In step 176, the results of the computations in
step 164 are collected by obtaining the at least one suc-
cessor state for each tuple from the respective process-
ing element. This collection may be performed once the
entire queue of tasks for a given processing element has
been executed or the data may be collected sequentially
whenever a sequence of tasks has been executed. Sub-
sequently, the data for all tuples is combined in step 178
to form the symbolic model 190. The symbolic model 190
contains transition rules for each tuple (}),,Zj) in the set

180 of tuples, with each rule associating one of the at
least one successor state to the tuple (3(),-,3]-). Thus, if the
at least one successor state consist of a lower bound and
upper bound, there are two rules per tuple, one defining
the transition to the state corresponding to the lower
bound and a second one defining the transition to the
state corresponding to the upper bound.

[0105] Inother examples of embadiments of the meth-
od according to the present invention, the steps 176 and
178 may be modified or omitted altogether, e.g. to reduce
the communication overhead associated with the ex-
change of data with processing elements. For example,
a symbolic model covering only the respective subspace
may be determined directly on a processing element. Al-
ternatively, the at least one successor state may be col-
lected and/or exchanged between the processing ele-
ments only for some of the tuples in the subsets 182-188,
e.g. to determine a symbolic model covering the subset
used for the determination of the updated targets set in
step 140 for each processing element.

[0106] Fig. 5a shows an exemplary flowchart for the
parallel determination of an updated winning set 242 in
step 140 using four processing elements, e.g. the
processing elements 104,108, 110,and 114 in the device
100. An illustration of this process is depicted in Fig. 5b.
Asfor Fig.4aand 4b, this number of processing elements
is only a specific example and the method and concept
described in the following can easily be extended to any
finite number of processing elements.

[0107] In step 200, a distribution over the available
processing elements is determined for the computing
tasks for the comparison between the initial winning set
230 and the at least one successor state for each tuple
in the set 180 of tuples. The procedure for this is similar
to step 160. The set 180 of tuples is divided into subsets
232,234, 236, and 238, which when taken together con-

- >

tain all tuples (x; uj) of the set 180 of tuples. Each subset

is assigned to a different processing element of the avail-
able processing elements, e.g. subset 232 to processing
element 104, subset 234 to processing element 108, sub-
set 236 to processing element 110, and subset 238 to
processing element 114. The size and tuples for each of
the subsets 232-238 are chosen in a similar way as de-
scribed above for the subsets 182-188. For the iterative
determination of the final winning set 244 as described
above the communication overhead is of particular im-
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portance as data has to be exchanged between process-
ing elements multiple times. The number of processing
elements and thus the number of subspaces used in step
140 may be different from the one used in step 132. For
example, GPUs contain many processing elements,
which allow for a massive parallelization of computing
tasks, and can thus be particularly suitable for the com-
parison with the initial winning set 230 as well as for com-
puting the updated winning set.

[0108] Subsequently, the data required for the com-
puting tasks assigned to a processing element is provid-
ed to the respective processing element in step 202, in
particular data relating to the corresponding subset, the
initial winning set 230, the symbolic model 190 and the
specifications 240. To reduce the amount of data that
has to be exchanged, only the data which is relevant for
the corresponding subset may be provided. Depending
on the memory resources of each processing element,
the data may be provided at once or sequentially during
the execution of the tasks. As mentioned above, the sym-
bolic model 190 may at least in part already be stored by
the processing elements.

[0109] For each processing unit, a queue of tasks is
established to perform the comparison for each tuple
within the respective subset, e.g. a queue 208 for
processing element 104, a queue 210 for processing el-
ement 108, a queue 212 for processing element 110, and
a queue 214 for processing element 114. Each queue
contains multiple sequences of tasks, wherein each se-
guence of tasks comprises the tasks for comparing the
at least one successor state of a tuple with the initial
winning set230. Thisisillustrated in Fig. 5afor a situation,
inwhich the set 180 of tuples (},-,Z/)j) contains twelve tuples

with i € [1,4] and j € [1,3]. In the sequence 216 of tasks,
this comparison is performed for the tuple (5()4,32). The

queues 208,210,212, 214 of tasks are sent to respective
the processing elements and executed in step 206. The
execution is performed in parallel at least in part as indi-
cated by the vertical alignment of the queues 208, 210,
212, 214 of tasks. Preferably, the subsets 232-238 are
chosen such that each processing element finishes the
execution of the respective queue of tasks at the same
time.

[0110] In a sequence of tasks like the sequence 216,
the atleast one successor state }ffor the respective tuple

is obtained, e.g. from a memory associated with the
processing element, and subsequently compared with
the initial winning set 230. Based on this comparison, the
tuple is marked as good or bad to indicate whether it
should be included in the updated winning set 242. The
tuple can for example be marked as good if the initial
winning set 230 contains at least one tuple (})k,D),) with ;k
= }ffor each of the at least one successor state, or for a

certain number or fraction of states of the at least one
successor state. Alternatively, if the at least one succes-
sor state contains a lower bound and an upper bound,
the tuple may be marked as good if all of the tuples in
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the set 180 of tuples that are enclosed by a hyper-rec-
tangle defined by the lower and upper bound, or a certain
number or fraction of these tuples are part of the initial
winning set 230. Tuples to be marked as good may ad-
ditionally be required to already be contained in the initial
winning set 230. The specifications 240 may contain fur-
ther conditions which have to be fulfilled as well by tuples
to be marked as good.

[0111] The tuples marked as good in step 206 are col-
lected from the available processing elements in step
224 and then combined to obtain the updated winning
set 242 in step 226. The updated winning set 242 is com-
pared with the initial winning set 230 in step 142 obtain
a convergence measure as described above. Alterna-
tively, the available processing elements may perform a
comparison of the tuples marked as good in their subset
with the corresponding subset of the initial winning set
230 and only provide information pertaining this compar-
ison for the convergence check.

[0112] If an additional iteration is to be performed fol-
lowing the convergence check in step 142, data relating
to the updated winning set 242 is provided to the process-
ing elements as in step 202 to replace the data relating
to the initial winning set 230. To reduce the amount of
data that has to be exchanged, information may be pro-
vided only about tuples which have been added and/or
removed in the updated winning set 242 as compared to
the initial winning set 230 and are relevant for the corre-
sponding subset. Subsequently, steps 206, 224, and 226
may be repeated to obtain a new updated winning set.
For this, the same task distribution as in the previous
iteration may be used or alternatively step 200 may be
repeated to obtain a new distribution of tasks prior to
repeating step 206.

[0113] This procedure is repeated until the conver-
gence criterion is met for the new updated winning set
244 at which point the method proceeds to the controller
construction in step 144 as detailed above.

[0114] The embodiments of the present invention dis-
closed herein only constitute specific examples for illus-
tration purposes. The present invention can be imple-
mented in various ways and with many modifications
without altering the underlying basic properties. There-
fore, the present invention is only defined by the claims
as stated below.

LIST OF REFERENCE SIGNS
[0115]

10 - Controller

12 - Control system

14 - Symbolic model

16 - Specifications

18 - Symbolic controller
20 - Refined controller

100 - Device for synthesizing a correct-by-construc-
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tion controller

102 - Central processing unit (CPU)
104- Processing element

106 - Graphics processing unit (GPU)
108 - Processing element

110 - Processing element

112 - Hardware accelerator (HWA)
114 - Processing element

116 - Computing platform interface
118 - Resource identification unit
120 - Task scheduling unit

122 - Interface unit

124 - Management engine

126 - Logging unit

130 - Step of receiving the mathematical model and
specifications

132 - Step of identifying available processing ele-
ments

134 - Step of discretizing the space

136 - Step of determining the symbolic model

138 - Step of obtaining the initial winning set

140 - Step of determining the updated winning set
142 - Step of checking the convergence

144 - Step of constructing the correct-by-construc-
tion controller

146 - Step of generating source code for implement-
ing the correct-by construction controller

150 - Step of determining available processing ele-
ments

152 - Step of determining the type of the available
processing elements

154 - Step of compiling kernels for executing com-
putations on available processing elements

156 - Step of determining the computing power of
the available processing elements

160 - Step of determining the task distribution for
determining the symbolic model

162 - Step of providing data to processing elements
for successor state determination

164 - Step of the parallel determination of successor
states

166 - Queue of tasks

168 - Queue of tasks

170 - Queue of tasks

172 - Queue of tasks

173 - Sequence of tasks

174 - Step of calculating a successor state center
175 - Step of determining the lower bound and the
upper bound for a set of successor states

176 - Step of collecting results from the parallel de-
termination of successor states

178 - Step of determining the symbolic model from
the collected data

180 - Set of tuples
182 - Subset of the set of tuples
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184 - Subset of the set of tuples
186 - Subset of the set of tuples
188 - Subset of the set of tuples
190 - Symbalic model

200 - Step of determining the task distribution for
determining the updated winning set

202 - Step of providing data to processing elements
for updated winning set determination

206 - Step of comparing successor states with initial
winning set in parallel

208 - Queue of tasks

210 - Queue of tasks

212 - Queue of tasks

214 - Queue of tasks

216 - Sequence of tasks

218 - Step of obtaining successor state from memory
220 - Step of comparing successor state with initial
winning set

222 - Step of determining marking tuples to be in-
cluded in updated winning set

224 - Step of collecting results of successor state
comparison

226 - Step of determining the updated winning set
based on successor state comparison

230 - Initial winning set

232 - Subset of the set of tuples
234 - Subset of the set of tuples
236 - Subset of the set of tuples
238 - Subset of the set of tuples
240 - Specifications

242 - Updated winning set

244 - Final updated winning set

Claims

A method for synthesizing a correct-by-construction
controller for a control system (12), the method com-
prising the following steps:

receiving a mathematical model of the control
system (12) with a plurality of state variables X
and a plurality of control parameters E, wherein
the mathematical model characterizes at least
in part the change of the state variables Xin re-
sponse to the control parameters U as a control
input;

receiving at least one specification (240) for the
state variables x and/or the control parameters
U
identifying available processing elements;
discretizing at least a part of a space spanned
by (x, U) to obtain a set (180) of tuples (x; 1)),
where j and j are indices labelling the state vec-
tors and control vectors, respectively;
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determining, based on the mathematical model,
for each tuple (5(),-,1_/)/-) in the set (180) of tuples at
least one successor state ;f;

obtaining an initial winning set (230) of tuples
based on said at least one specification (240);
determining an updated winning set (242) of tu-
ples, wherein said determination comprises:

comparing the at least one successor state
x¢ of each tuple with the initial winning set

(230) of tuples, wherein said comparison is
distributed over the available processing el-
ements by choosing one processing ele-
ment from the available processing ele-
ments for each tuple to perform the com-
parison and wherein the available process-
ing elements are used simultaneously at
least in part;

receiving information pertaining said com-
parison from the available processing ele-
ments; and

determining the updated winning set (242)
of tuples based on said information;

comparing the updated winning set (242) with
the initial winning set (230) to obtain a conver-
gence measure;

repeating said determination of the updated win-
ning set (242) of tuples to obtain a new updated
winning set (244) of tuples if said convergence
measure does not meet a predefined conver-
gence criterion, wherein the previous updated
winning set (242) of tuples is used as the initial
winning set (230) for said determination and is
provided atleastin part to the available process-
ing elements; and

constructing a controller for the control system
(12) from said new updated winning set (244).

The method according to claim 1, wherein said de-
termination of the successor states is distributed
over the available processing elements by choosing
one processing element from the available process-
ing elements for each tuple to determine })f and the

available processing elements are used simultane-
ously at least in part for said determination of the
successor states.

The method according to claim 1 or 2, wherein iden-
tifying the available processing elements comprises
determining a type of processing element for each
available processing element, and wherein said de-
termination of the successor states and/or said com-
parison of the successor states with the initial win-
ning set (230) is adapted to the type of processing
element for each available processing element.
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4,

The method according to any one of the preceding
claims, wherein identifying available processing el-
ements further comprises determining the available
computing power and/or the available memory re-
sources of the available processing elements, and/or
wherein the distribution over the available process-
ing elements for the determination of the successor
states and/or for the comparison of the successor
states with the initial winning set (230) is determined
based on the types of the available processing ele-
ments, the available computing power of the availa-
ble processing elements, the available memory re-
sources of the available processing elements, or a
combination thereof.

The method according to any one of the preceding
claims, wherein the distribution over the available
processing elements for the determination of the
successor states and/or for the comparison of the
successor states with the initial winning set (230) is
determined taking into account the communication
overhead for exchanging data with the available
processing elements, and /or wherein said determi-
nation of the updated winning set (242) of tuples to
obtain a new updated winning set (244) of tuples is
repeated until said convergence measure obtained
by comparing the new updated winning set (244) with
the previous updated winning set (242) meets said
predefined convergence criterion.

The method according to any one of the preceding
claims, wherein constructing said controller compris-
es:

constructing a symbolic controller from said new
updated winning set of tuples (244), and
refining said symbolic controller to obtain the
controller, and/orwherein constructing said con-
troller comprises generating source code for an
implementation of the controller.

The method according to any one of the preceding
claims, wherein determining said at least one suc-
cessor state x;comprises determining an upper and

lower bound for a set of successor states, and/or
wherein said discretization of at least a part of the
space spanned by (}), 3) comprises mapping said
part of the space spanned by (}), 3) to alower-dimen-
sional space, in particular a two-dimensional flat
space.

The method according to any one of the preceding
claims, wherein said discretization of at least a part
of the space spanned by (3(), 3) is determined based
on the mathematical model and/or the at least one
specification (240), and/or wherein said discretiza-
tion of at least a part of the space spanned by (;, U)
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is determined based on information pertaining the
available processing elements.

The method according to any one of the preceding
claims, wherein said mathematical model comprises
a system of differential equations and determining
said successor states }fcomprises numerically solv-

ing said system of differential equations at least in
part, and/or wherein comparing the at least one suc-
cessor state })fof eachtuple (}),-,Ej) with the initial win-
ning set (230) of tuples comprises determining for at
least one of the at least one successor state of the
tuple (}),-ﬂj) whether the initial winning set (230) con-
tains at least one tuple (})kﬂ,) with }k = }f, where k
and/ are indices labelling the state vectors and con-
trol vectors, respectively.

The method according to claim O, whereir_1) t_rje up-
dated winning set (242) contains all tuples (x;, uj) with
successor states x;for which the initial winning set
(230) contains at least one tuple (}kﬂ,) with }k = }f
for each of the at least one successor state of the
tuple (3(),-,3]-), and/or wherein the updated winning set

(242) preferably contains all tuples (}),-,D)j) with suc-

cessor states }ffor which the initial winning set (230)

contains the tuple (x,-,uj) and contains at least one
tuple (}k,U,) with })k = })f for each of the at least one

- >

successor state of the tuple (x,-,uj), and/or wherein

said convergence measure quantifies the overlap of
the updated winning set (242) with the initial winning
set (230) and said predefined convergence criterion
specifies a minimum absolute or relative overlap,
and/or wherein said controlleris provided to a control
unit of the control system (12).

The method according to any one of the preceding
claims, wherein said control system (12) is a com-
puter-controlled physical system, in particular a cy-
ber-physical system, and/or wherein at least one of
said state variables preferably characterizes a posi-
tion or velocity of a mechanical element of the control
system (12), and/or wherein said method is per-
formed in real time during operation of the control
system (12), wherein said method is preferably per-
formed repeatedly with a fixed frequency or when-
ever updated specifications (240) are provided or
whenever the state of the control system (12) has
changed.

A computer program comprising computer-readable
instructions, such that said instructions, when exe-
cuted by a computer device, cause said computer
device to implement a method according to any one
of the preceding claims.

A device for synthesizing a correct-by-construction
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controller for a control system (12) according to the
method of any one of the preceding claims, the de-
vice comprising:

atleasttwoprocessing elements (104,108, 110,
114);

a computing platform interface (116) coupled to
the at least two processing elements (104, 108,
110, 114) for exchanging data with the at least
two processing elements (104, 108, 110, 114);
a resource identification unit (118) coupled to
the computing platform interface (116) for iden-
tifying available processing elements of the at
least two processing elements (104, 108, 110,
114);

an interface unit (122) for receiving the mathe-
matical model of the control system (12) and the
at least one specification (240) and for providing
the synthesized controller;

a management engine (124) coupled to the re-
source identification unit (118) and the interface
unit (122) for determining the distribution over
the available processing elements for the com-
parison of the successor states with the initial
winning set (230) and for determining corre-
sponding queues (208, 210, 212, 214) of tasks
for execution on the available processing ele-
ments;

a task scheduling unit (120) coupled to the com-
puting platform interface (116) and the manage-
ment engine (124) for receiving said queues
(208, 210, 212, 214) of tasks from the manage-
ment engine (124) and managing the execution
of the queues (208, 210, 212, 214) of tasks on
the available processing elements.

14. The device according to claim 13, wherein the man-

agement engine (124) is further configured to deter-
mine the distribution over the available processing
elements for the determination of the successor
states and for determining corresponding queues
(166, 168, 170, 172) of tasks for execution on the
available processing elements, and/or wherein the
resource identification unit (118) is configured to de-
termine the type of processing element for each
available processing element, and/or wherein the re-
source identification unit (118) is configured to de-
termine the computing power and/or available mem-
ory resources of the available processing elements,
and/or wherein the resource identification unit (118)
is preferably configured to determine the computing
power of the available processing elements by exe-
cuting tasks associated with the determination of the
successor states and/or the comparison of the suc-
cessor states with the initial winning set 230 on the
available processing elements.

15. The device according to any one of claims 13 or 14,
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wherein said processing elements (104, 108, 110,
114) are processing elements of a central processing
unit (CPU) (102), a graphics processing unit (GPU)
(106), a field-programmable gate array (FPGA), an
application-specific integrated circuit (ASIC) and/or
another type of hardware accelerator (HWA) (112),
and/or wherein said interface unit (122) is configured
to receive the mathematical model of the control sys-
tem (12) and the at least one specification (240) and
to provide the synthesized controller via a computer
network, in particular the internet, and/or wherein
said device further comprises a logging unit (126)
coupled to the management engine (124 ) for logging
data received from the management engine (124).
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