woO 2020/070206 A1 | NI 0000 KO Y00 O I 0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

World Intellectual Propert J
19y World e toctua Froperty > 0 OO0 OO 0 A O 0 A0

Organization

International Bureau

(43) International Publication Date

(10) International Publication Number
% WO 2020/070206 A1

09 April 2020 (09.04.2020) WIPOIPCT

(51) International Patent Classification:
GO5B 19/042 (2006.01)

(21) International Application Number:

(22) International Filing Date:

(25) Filing Language:

DZ, EC, EE, EG, ES, FL, GB, GD, GE, GH, GM, GT, HN,

GOGF 8/30 (2018.01) HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP,

KR,KW,KZ, LA, LC,LK,LR, LS, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,

PCT/EP2019/076738 OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
02 October 2019 (02.10.2019) TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

English (84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,

(26) Publication Language: English GM. KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ,
(30) Priority Data: UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
18198616.7 04 October 2018 (04.10.2018)  EP TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
] . EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,

(71) Applicant: TECHNISCHE UNIVERSITAT

MUNCHEN [DE/DE], Arcisstrabe 21, 80333 Miinchen

(DE).

MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

(72) Inventors: MAHMOUD, Mahmoud Khaled Mohamed,;
Schéfflerstr. 1, 85635 Hohenkirchen (DE). ZAMANI, Ma-  Published:
jid; Adolf-Hackenberg-Str. 20, 81737 Miinchen (DE). —  with international search report (Art. 21(3))

(74) Agent: LUCKE, Andreas; Bochmert & Boehmert An-
waltspartnerschaft mbB, Pettenkoferstrae 22, 80336

Miinchen (DE).

—  before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments (Rule 48.2(h))

(81) Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,
CA, CH, CL,CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO,

(54) Title: DISTRIBUTED AUTOMATED SYNTHESIS OF CORRECT-BY-CONSTRUCTION CONTROLLERS

receive model
and specifications

v

identify
processing elements

v

discretize
space

Pl Bt

130

132

134

parallel determination
of symbolic model

S~V

obtain initial
winning set

138

parallel determination
of updated winning set

~ YV

check
convergence

v

construct
controller

v

generate controller
source code

_________

Fig. 2b

142

144

148

136

140

(57) Abstract: Disclosed herein is a method for synthesizing a correct-by-construction con-
troller for a control system, the method comprising the following steps: receiving a mathe-
matical model of the control system, with a plurality of state variables x ~ and a plurality of
control parameters 1, discretizing at least a part of a space spanned by (x , ") to obtain a
set of tuples (x, ujﬂ), determining, based on the mathematical model, for each tuple (x,

u]ﬁ) in the set of tuples at least one successor state xg ; obtaining an initial winning set of
tuples based on said at least one specification; determining an updated winning set of tuples,
including comparing the at least one successor state xs ~ of each tuple with the initial winning
set of tuples, wherein said comparison is distributed over the available processing elements
by choosing one processing element from the available processing elements for each tuple
to perform the comparison and wherein the available processing elements are used simulta-
neously at least in partt; repeating said determination of the updated winning set of tuples to
obtain a new updated winning set of tuples if a convergence measure does not meet a prede-
fined convergence criterion, and constructing a controller for the control system from said
new updated winning set.
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Distributed automated synthesis of correct-by-construction controllers

FIELD OF THE INVENTION

[0001] The invention relates to a method and a device to synthesize correct-by-construction

controllers for a control system.

BACKGROUND

[0002] Autonomous physical systems like robots have become ubiquitous in industrial appli-
cations and recent advances in sensor and computer technology have opened up new possi-
bilities like autonomous driving or interconnected networks of robots. The increasing com-
plexity of such cyber-physical systems with a tight integration of physical systems, sensors,
communication networks and computer systems, however, requires novel approaches for the
control of these systems, which are capable of handling large amounts of data and required to
work reliably in a variety of situations, in particular since guaranteeing safety is crucial in

many applications.

[0003] One technique to design suitable controllers is the synthesis of correct-by-
construction controllers through symbolic controller synthesis, see P. Tabuada, “Verification
and Control of Hybrid Systems — A Symbolic Approach”, Springer US (2009) and M. Za-
mani et al., “Symbolic models for nonlinear control systems without stability assumptions”,
IEEE Trans. Autom. Control 57, 1804—1809 (2012). This approach is based on describing
the dynamics of a given control system by a discrete symbolic model. For a set of specifica-
tions to be imposed on the control system, a symbolic controller can be synthesized using the
symbolic model, which by construction meets the required specifications in the symbolic
model, see O. Maler et al., “On the synthesis of discrete controllers for timed systems”, in:
STACS 95, Springer, pp. 229—242 (1995) and A. Pnueli et al., “On the synthesis of an asyn-
chronous reactive module”, in: Proceedings of the 16th International Colloquium on Autom-
ata, Languages and Programing, Springer, pp. 652—671 (1989). The symbolic controller

can subsequently be refined to obtain a controller for the real control system.

[0004] This technique is applicable to a wide range of systems and can be automated to au-
tomatically synthesize controllers starting from a mathematical model of the control system

dynamics and the desired specifications.
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[0005] However, due to the exponential complexity of this task with the number of state var-
iables and input parameters, currently available tools are limited to control systems with only
very few state variables and input parameters and can require large amounts of computing
time, see e.g. M. Mazo et al., “Pessoa: A tool for embedded controller synthesis”, in: Com-
puter Aided Verification, Springer, pp. 566—569 (2010) and M. Rungger et al., “SCOTS: A
tool for the synthesis of symbolic controllers”, in: Proceedings of the 19th International Con-
ference on Hybrid Systems: Computation and Control, ACM, pp. 99-104 (2016). They are
thus not suitable for most potential applications, especially if the controller synthesis is to be

performed in real time.

US 2009/0217235 A1 discloses a method for self-debugging a computer program operating in
a distributed processing environment. A fault in a plurality of processing devices is detected
and classified according to fault classifications in order to execute a response specified by the

fault classifications for revising the computer program.

US 2012/0191446 A1 describes a system for building a parser generator, which generates a
parser for a grammar and comprises modules for verifying that the grammar is well-formed
and belongs to a predetermined class of grammars as well as that semantic actions embedded

in the grammar are terminating semantic actions.
SUMMARY OF THE INVENTION

[0006] The object of the invention is thus to provide a method and a device for a fast and
resource-efficient synthesis of correct-by-construction controllers, which is applicable to a

large range of control systems.

[0007] This object is met by a method according to Claim 1, a computer program according
to Claim 24 and a device according to Claim 25. Embodiments of the present invention are

detailed in the dependent claims.

[0008] The method for synthesizing a correct-by-construction controller for a control system
comprises the following steps: (1) receiving a mathematical model of the control system with
a plurality of state variables ¥ and a plurality of control parameters i, wherein the mathemat-
ical model characterizes at least in part the change of the state variables ¥ in response to the
control parameters 4 as a control input ; (2) receiving at least one specification for the state
variables ¥ and/or the control parameters u; (3) identifying available processing elements;

(4) discretizing at least a part of a space spanned by (¥, ) to obtain a set of tuples (¥;,%;); (5)

determining based on the mathematical model for each tuple (J?l-,ﬁ’j) in the set of tuples at
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least one successor state Xf; (6) obtaining an initial winning set of tuples based on saidat least
one specification; (7) determining an updated winning set of tuples, wherein said determina-
tion comprises comparing the at least one successor state Xy of each tuple with the initial
winning set of tuples, wherein said comparison is distributed over the available processing
elements by choosing one processing element from the available processing elements for each
tuple to perform the comparison and wherein the available processing elements are used
simultaneously at least in part; receiving information pertaining said comparison from the
processing elements; and determining the updated winning set of tuples based on said in-
formation; (8) comparing the updated winning set with the initial winning set to obtain a
convergence measure; (9) repeating said determination of the updated winning set of tuples
to obtain a new updated winning set of tuples if said convergence measure does not meet a
predefined convergence criterion, wherein the previous updated winning set of tuples is used
as the initial winning set for said determination and is provided at least in part to the availa-
ble processing elements; and (10) constructing a controller for the control system from said
new updated winning set of tuples. The numbering of the steps above is for clarity only and
does not indicate a certain order. As far as technically feasible, the steps can be permuted and

the method and any embodiment thereof can be performed in an arbitrary order.

[0009] This method provides a fast and efficient way to synthesize correct-by-construction
controllers. By distributing the comparison of the successor states with the initial target set or
the previous updated target set over multiple processing elements, the issue of computation
time increasing exponentially with the complexity of the control system can be converted into
a resource problem, for which the computation time decreases with the number of available
processing elements. With this, one can take advantage of the massive parallel computing
capabilities offered by modern systems like computing clusters or cloud computing. This
enables the synthesis of correct-by-construction controllers for a wide range of control sys-
tems, especially control systems with a large number of state variables and/or control param-
eters. Previously, symbolic controller synthesis was not suited for such systems due to the
limited computing time in practical applications. In particular, the method facilitates the syn-
thesis of controllers for systems in continuously changing environments, which canrequire
frequent updates of the controller and thus can require strict deadlines for the times spent for

controller synthesis.

[0010] In the first step, a mathematical model of the control system is received. This mathe-
matical model describes the state of the control system by a plurality of state variables, which
can be expressed in the form of a state vector ¥ containing the state variables x®, x(®, ..., x(,
The control input to the control system is described by a plurality of control parameters u®,

u®, ..., um expressed as a control vector i. These parameters are to be used by the controller
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to control the state of the control system, i.e. the goal of the controller is to determine the
control input ¥ depending on the current state ¥ provided to the controller. Each of the state
variables and each of the control parameters may be a continuous or discrete quantity. The
state variables span a continuous state space and the control parameters span a continuous

input space.

[0011] The mathematical model characterizes the response of the control system to the con-
trol input U at least in part, i.e. an estimate for the change of the state variables can be deter-
mined based on the mathematical model given the current state ¥. The mathematical model

can describe the dynamics of the control system exactly or approximately. The mathematical

model may for example comprise a set of differential equations ¥ = f(#,1). Alternatively, the
mathematical model may contain information based on which a response of the control sys-
tem can be determined, e.g. a Hamiltonian, a Lagrangian, a set of intrinsic parameters of the

control system and/or any other mathematical description of the control system.

[0012] In addition to the mathematical model, at least one specification for the state varia-
bles X and/or the control parameters u is received. The at least one specification can for ex-
ample contain one or more target states or a range of target states, which the control system
should reach; one or more safe states or a range of safe states, which the system should re-
main in; and/or one or more unsafe states or a range of unsafe states, which the control sys-
tem should avoid. The at least one specification may comprise a set of boundary conditions,
i.e. ranges for one or more state variables and/or ranges for one or more control parameters
that the system should not exceed. If the at least one specification is more than one specifica-
tion, the specifications may have priorities associated with them. For example, the at least
one specification may comprise secondary specifications that are not to be enforced strictly,

but that can be optimized for if possible.

[0013] The method comprises identifying available processing elements, i.e. processing ele-
ments that can be used at least in part for the execution of computation tasks. The available
processing elements may be distributed over multiple computation devices and may contain
processing elements of different types of computation devices, e.g. central processing units
(CPUs), graphic processing units (GPUs), field-programmable gate arrays (FPGAs), applica-
tion specific integrated circuits (ASICs) and other types of hardware accelerators (HWAS).
The identification of available processing elements may be repeated multiple times, e.g. to
update the list of available processing elements at different points in time while performing
the method.
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[0014] At least a part of a space spanned by the state variables and control parameters is dis-
cretized, wherein the respective range for each continuous state variable and each continuous
control parameter is converted into a set of discrete values. The discretized space is a set of
tuples, or pairs, (¥;,1;), where i and j are indices labelling the state vectors and control vec-
tors, respectively. For each state variable and control parameter, the spacing between the
discrete values may be inhomogeneous and the range to be discretized may consist of multi-

ple intervals.

[0015] After the discretization, at least one successor state X is determined for each tuple
(X;,1;) in the set of tuples, wherein said determination is based on the mathematical model.
The at least one successor state can for example be a state that the control system is expected
to be in according to the mathematical model, if the control system is initially in the state X;
and the control input #; is applied for a certain amount of time. The time may be chosen de-

pending on the control system, the mathematical model and/or the method used for deter-
mining the at least one successor state. If the at least one successor state is not contained in
the discretized state space, it may be approximated by the closest state from the discretized
state space. A symbolic model of the control system may be obtained from the successor sates

by defining a set of transition rules associating each tuple (%;, i;) to the corresponding at least

one successor state J_éf'

[0016] Based on the at least one specification, an initial winning set of tuples is chosen from
the set of tuples, wherein the initial winning set consists of at least one tuple. The initial win-
ning set of tuples can for example contain tuples associated with one or more target states,
e.g. by combining one or more target states determined by the at least one specification with

one or more control vectors, which may also be chosen based on the at least one specification.

[0017] In the next step, an updated winning set of tuples is determined from a comparison of
the at least one successor state of each tuple with the initial winning set of tuples. This com-
parison is performed by distributing the associated computation tasks over the available pro-
cessing elements. To this end, for each tuple in the set of tuples one processing element from
the available processing elements is chosen. This processing element executes the computa-
tion tasks to compare the at least one successor state of this tuple with the initial winning set
of tuples. Thereby, the set of tuples is divided into subsets, each of which is assigned to a dif-
ferent processing element of the available processing elements. For each processing element,
a queue of tasks may be determined for performing the comparison for each tuple within the
respective subset. The queue of tasks may contain multiple sequences of tasks, wherein each

sequence of tasks comprises the tasks for comparing the at least one successor state of one
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tuple with the initial winning set of tuples. The queue of tasks can be sent to the respective
processing element for execution. The available processing elements are used simultaneously
at least in part, i.e. at least two of the available processing elements execute computation

tasks in parallel at at least one point in time during this step.

[0018] Subsequently, information pertaining said comparison is received from the processing
elements. This information may be provided by the processing elements after performing the
comparison for the entire corresponding subset or may be provided sequentially whenever
the comparison has been performed for one or more tuples. Based on this information, an
updated winning set of tuples is determined from the set of tuples. Said information for a
given tuple may for example be whether the tuple is to be included in the updated winning set
of tuples or whether the initial winning set contains any tuples fulfilling certain conditions
with respect to the at least one successor state of this tuple. Additionally, the at least one
specification may also be taken into account for the determination of the winning set, e.g.
additional conditions for tuples to be included in the updated winning set may be obtained

from the at least one specification.

[0019] The updated winning set is compared with the initial winning set to obtain a conver-
gence measure, wherein said convergence measure quantifies a degree of similarity between
the two sets. This process may also be performed in parallel by distributing the comparison
over the available processing elements. This convergence measure is compared to a prede-
fined convergence criterion, which specifies a desired degree of similarity between the initial
winning set and the updated winning set. If the convergence measure does not meet the pre-
defined convergence criterion, the determination of the updated winning set of tuples is re-
peated to obtain a new updated winning set of tuples. This new updated winning set is de-
termined as described above, wherein the updated winning set determined previously serves
as the initial winning set, i.e. the initial winning set is replaced by the previous updated win-
ning set. The previous updated winning set is thus provided at least in part to the available
processing elements. To reduce the amount of data to be exchanged, the part of the previous
updated winning set provided to an available processing element may be chosen such that it
contains only tuples which are relevant for the comparison with the respective subset of tu-
ples assigned to this processing element, e.g. based on bounds for the corresponding succes-
sor states. The distribution of the computation tasks over the available processing elements
may be different from the distribution used previously. If the convergence measure meets the
predefined convergence criterion, the previous updated winning set is defined to be the new

updated winning set.
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[0020] Finally, a controller for the control system is constructed from said new updated win-
ning set of tuples. The controller comprises a set of rules, based on which a state vector ¥
provided as an input can be uniquely associated to a control vector u. The state vector can be
from the continuous state space and the control vector can be in the continuous input space.
Constructing the controller may comprise selecting tuples from the new updated winning set
and the use of interpolation/extrapolation methods to obtain the set of rules, which can be

applied to state vectors from the continuous state space.

[0021] In one example of the present invention, also the determination of the successor
states can be performed by distributing the associated computation tasks over the available
processing elements. For each tuple in the set of tuples, one processing element is chosen
from the available processing elements. This processing element executes the computation
tasks to determine the at least one successor state of this tuple. Thereby, the set of tuples is
divided into subsets, each of which is assigned to a different processing element of the availa-
ble processing elements. These subsets do not have to be identical to the subsets used for the
comparison of the successor states with the initial winning set. For each processing element,
a queue of tasks may be determined for performing the determination of the at least one suc-
cessor state for each tuple within the respective subset. The queue of tasks may contain mul-
tiple sequences of tasks, wherein each sequence of tasks comprises the tasks for determining
the at least one successor state of one tuple. The queue of tasks may be sent to the respective
processing element for execution. The available processing elements can be used simultane-

ously at least in part during this step.

[0022]In a preferred embodiment, identifying the available processing elements may com-
prise determining a type of processing element for each available processing element. The
type of processing element describes which kind of computation device the respective pro-
cessing element belongs to, e.g. CPU, GPU or a type of HWA. Additionally, the type of pro-
cessing element may contain information on the specific type of computation device, e.g. the
type of CPU, GPU or HWA, and/or specifications like the clock speed or the memory re-
sources. The determination of the successor states and/or the comparison of the successor
states with the initial winning set can be adapted to the type of processing element for each
available processing element. This adaptation may involve optimizing the instructions for
executing the corresponding computing tasks based on the type of processing element, e.g. to
exploit the large cache memory of CPUs or the parallel architecture of GPUs. The adaptation
may be implemented by providing a kernel with implementations of the corresponding algo-

rithms that are fine-tuned to the respective processing element.
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[0023]In another example of the present invention, identifying available processing ele-
ments may further comprise determining the available computing power and/or the available
memory resources of the available processing elements. For this, the computing power and
memory resources of a processing element that are currently used, e.g. by other applications
or processes, may be determined in addition to specifications contained in the type of the
processing element. Furthermore, past usage statistics may be analyzed as well as infor-

mation on future use if available.

[0024] In a preferred embodiment, the distribution over the available processing elements
for the determination of the successor states and/or for the comparison of the successor
states with the initial winning set can be determined based on the types of the available pro-
cessing elements, the available computing power of the available processing elements, that
memory resources of the available processing element or a combination thereof. For this, the
size of the subsets that the set of tuples is divided into may be chosen based on this infor-
mation about the available processing elements. In particular, the subsets may be selected in
such a way that the available processing elements need the same time for executing the tasks
assigned to them to reduce the total computation time required for these steps. For example,
a subset assigned to a processing element with a high available computing power may be
larger than a subset assigned to a different processing element with a lower available compu-
ting power. The subsets used for the determination of the successor states and the subsets

used for the comparison of the successor states with the initial winning set may be different.

[0025] Alternatively or additionally, the distribution over the available processing elements
for the determination of the successor states and/or for the comparison of the successor
states with the initial winning set may be determined taking into account the communication
overhead for exchanging data with the available processing elements. For example, the dis-
tribution for the successor state comparison may be chosen such that the amount of data that
has to be exchanged with the available processing elements for obtaining the convergence
measure and/or for repeating the determination of the updated winning set is minimized.
The distribution for the determination of the successor states may be chosen in a way that

reduces the data exchange required to perform the successor state comparison.

[0026] The method according to an embodiment of the present invention can further com-
prise iteratively repeating the determination of the updated winning set of tuples until the
convergence measure meets the predefined convergence criterion. For this, every time a new
updated winning set is determined, it is compared with the previous updated winning set to
obtain the convergence measure. The convergence measure is compared to the predefined

convergence criterion. If the convergence measure satisfies the convergence criterion, the
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method proceeds to the construction of the controller. Otherwise, another iteration of the
determination of the updated winning set is performed. The new updated winning set used
for the construction of the controller may also be referred to as final winning set. The conver-
gence criterion may be the same for all iterations or may be adapted between two subsequent
iterations. For example, the convergence criterion may be relaxed with the number of per-
formed iterations in order to ensure a completion of the method or a maximum number of

iterations may be specified.

[0027] In another example of the present invention, constructing the controller may com-
prise constructing a symbolic controller from the new updated winning set of tuples and re-
fining said symbolic controller to obtain the controller. To construct the symbolic controller,
a set of discrete rules may be extracted from the new updated winning set, wherein the set of
rules uniquely identifies a control vector for a given state vector, X; — ;. The set of discrete
rules may be restricted to the discretized space or a subspace of the discretized space. Obtain-
ing the set of discrete rules may involve a determination step, wherein a unique control vec-
tor is associated with a state vector ¥;, e.g. if the new updated winning set contains multiple
tuples with the same state vector ¥;. The unique control vector may for example be deter-
mined by randomly selecting one of the multiple tuples or by averaging u; over two or more
of the multiple tuples. Alternatively, a tuple may be chosen based on secondary specifica-

tions.

[0028] The refinement of the symbolic controller is the generalization of the set of discrete
rules of the symbolic controller to the set of rules of the controller, which can be applied to
the continuous state space. In one example, the rules for the controller may be to approxi-
mate a continuous state vector ¥ by the closest discrete state factor X;and to use the discrete
rules of the symbolic controller as a lookup table to determine the control vector. Alternative-
ly, an average or weighted average of the control vectors associated with a plurality of discrete
state vectors in the vicinity of ¥ may be used. In other examples, interpolation and/or extrap-
olation may be performed for the refinement, e.g. to obtain a mathematical function mapping

a state vector X to a control vector u(¥X).

[0029] The method according to an embodiment of the present invention can further com-
prise generating source code that can be used to implement the controller in a control unit.
For this, the set of rules of the controller may be expressed as source code for a software
and/or hardware implementation, e.g. C++ code for a software implementation or VHDL
code for a hardware implementation. The source code may be provided to a control unit au-

tomatically or may be provided to a user, e.g. as a source code building block. When execut-
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ing the source code, the control unit may be configured to determine a control vector accord-

ing to the set of rules of the controller for a state vector provided as an input.

[0030] In a preferred embodiment, determining said at least one successor state comprises
determining an upper bound and a lower bound for a set of successor states. To determine
the at least one successor state for a tuple, a set of successor states may be calculated based
on the mathematical model. This may allow for accounting for uncertainties, e.g. in the de-
termination of the state vector, in the application of the control vector, in the mathematical
model and/or in numerical methods used for determining successor states. For a given tuple,
a set of successor states may be determined by calculating a successor state for a plurality of
state vectors and/or a plurality of control vectors, for example within predetermined uncer-
tainty ranges around X; and i, respectively, and/or by determining additional successor
states for each calculated successor state, e.g. by adding or subtracting a predetermined un-
certainty. To reduce memory requirements, the set of successor states may be characterized
by a small number of states, e.g. a lower bound and an upper bound defining a hyper-
rectangle in the state space. The at least one successor state may comprise the lower bound

and the upper bound and/or a subset of the set of successor states.

[0031] In one example of the present invention, the discretization of at least a part of the
space spanned by the state variables and control parameters may comprise mapping said part
of the space to a lower-dimensional space, in particular a two-dimensional flat space. For the
latter, the corresponding part of the state space as well as the corresponding part of the input
space are mapped to a one-dimensional space each. This facilitates indexing of the tuples in
the discretized space, e.g. using pairs of integer indices, and may be advantageous for per-

forming computational tasks as well as for the storing of data.

[0032] In a preferred embodiment of the present invention, the discretization may be deter-
mined taking into account information on the mathematical model and/or the at least one
specification. The subspaces of the state space and the input space to be discretized as well as
the spacings used for the discretization may be chosen based on this. The chosen state sub-
space may for example be required to contain target states determined by the specification as
well as the current state of the control system. Furthermore, the size of the subspaces to be
discretized may be limited based on properties of the control system. In another example, the
spacing may be non-uniform and may account for properties of the mathematical model, e.g.
the spacing for a control parameter may be closer in regions where the state of the control
system depends strongly on this parameter or the spacing for a state variable may be closer in

a region where the mathematical model exhibits particular features.



10

15

20

25

30

WO 2020/070206 -11- PCT/EP2019/076738

[0033] The discretization can further be determined based on information pertaining the
available processing elements. The size of the subspaces and the spacings may be chosen de-
pending on the available computing power and/or memory resources. For example, the re-
quired computation time may be estimated and the size of the subspaces and the spacings

may be chosen such that the estimated computation time is below a certain threshold.

[0034]In one example of the present invention, the mathematical model can comprise a sys-
tem of differential equations or a set of differential equations may be derived from the math-
ematical model. In these cases, determining the at least one successor state may comprise
numerically solving said system of differential equations at least in part, e.g. via a Runge-

Kutta method or a linear multistep method.

[0035] Comparing the at least one successor state X of each tuple with the initial winning set
of tuples may comprise determining whether the initial winning set contains at least one tu-
ple (X, ;) with X, = X. If the at least one successor state is a plurality of states, this determi-
nation may be performed for one or more states of the plurality of states. A tuple may for ex-
ample be included in the updating winning set if this condition is fulfilled for all successor
states of the tuple, i.e. the updated winning set contains all tuples (X;,u;) with successor
states Xy for which the initial winning set contains at least one tuple (¥, ;) with X, = X for
each of the at least one successor states of the tuple (ii,ﬁ’j). In other examples, a certain

number of states or fraction of states of the at least one successor state fulfilling the afore-

mentioned condition may be required.

[0036]If the at least one successor state comprises a lower bound and an upper bound, the
comparison procedures discussed here may be conducted using a set of state vectors defined
by the lower and upper bound instead of using the at least one successor state. Such a set of
state vectors may for example contain the states enclosed by the hyper-rectangle connecting

the lower and upper bound.

[0037] Additionally, it may be required that the tuple (X;, ;) is already contained in the initial
winning set in order for it to be included in the updated winning set. Furthermore, additional
conditions for tuples to be included in the updated winning set may be obtained from the at
least one specification. The at least one specification may for example specify boundaries for
the state vector and/or control vector, e.g. a minimum value and/or maximum value for at

least one of the state variables and/or control parameters.

[0038] In one example of the present invention, the convergence measure quantifies the

overlap of the updated winning set with the initial winning set. The convergence measure can
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for example be the number of tuples that are only contained in one of the sets. Alternatively,
the convergence measure can be the fraction of tuples that only contained in one of the sets,
wherein the fraction is defined as the number of tuples contained in only one of the sets di-
vided by the total number of tuples contained in both sets. The predefined convergence crite-
rion may specify a minimum absolute or relative overlap, e.g. a maximum number or fraction

of tuples that are only contained in one of the sets.

[0039] In another example of the present invention, the controller is provided to a control
unit of the control system after it has been constructed. The controller may for example be
provided by transmitting the corresponding set of rules or as a source code as discussed
above. The controller may be provided to the control unit via a computer network, in particu-

lar the internet.

[0040] The control system may for example be a computer-controlled physical system, in
particular a cyber-physical system. A computer-controlled physical system may comprise a
plurality of sensors, which measure quantities characterizing the state of the control system
and/or the surroundings of the control system. The sensors may be computer-controlled and
the state variables may be determined automatically from the measured quantities. In one
example, at least one of the state variables can characterize a position or velocity of a me-
chanical element of the control system, in particular a relative position or velocity. Other
state variables may characterize a voltage, a current, a light intensity, a temperature, a pres-
sure, a force, an acceleration, a mass, a length, an angle, a time and/or another physical
quantity. In addition, the computer-controlled physical system may comprise a plurality of
computer-controlled control elements, which perform actions depending on one or more of
the control parameters. The computer-controlled physical system may comprise a plurality of
independently controlled subsystems and/or may be operated in the vicinity of other com-
puter-controlled physical systems. In particular, the computer-controlled physical system
may be configured to communicate with other computer-controlled physical systems. The
control unit may be part of the control system and may be configured to receive the state vec-
tor e.g. as a plurality of digital signals and/or analog signals as well as to send the control

vector e.g. as a plurality of digital signals and/or analog signals.

[0041] In one example, the method according to the present invention can be performed in
real-time during operation of the control system. For this, a mathematical model of the con-
trol system based on the current state and the current surroundings of the control system
may be received or a general mathematical model of the control system may have been re-
ceived at an earlier time and subsequently be updated based on the current state and the cur-

rent surroundings of the control system, e.g. by receiving a plurality of variable parameters of



10

15

20

25

30

WO 2020/070206 -13- PCT/EP2019/076738

the model. In particular, the method may be performed repeatedly in real-time during opera-
tion of the control system. The method may for example be performed with a fixed frequency,
i.e. the method is repeated after a certain amount of time. Alternatively or additionally, the
method may be performed whenever updated specifications are provided, whenever the state
of the control system has changed or whenever another predefined condition is fulfilled. Each
time the method is executed, a controller is synthesized, which subsequently may be put in
action to control the control system until a new controller becomes available. Thereby, a con-
tinuous control of the control system can be achieved, which can adapt dynamically to chang-

ing surroundings.

[0042] The present invention also provides a computer program comprising computer-
readable instructions, such that said instructions, when read by a computer device, cause said

computer device to implement a method according to the invention.

[0043] Furthermore, the present invention provides a device for synthesizing a correct-by-
construction controller for a control system using a method according to the invention. The
device comprises (1) at least two processing elements; (2) a computing platform interface
coupled to the at least two processing elements for exchanging data with the at least two pro-
cessing elements; (3) a resource identification unit coupled to the computing platform inter-
face for identifying available processing elements of the at least two processing elements; (4)
an interface unit for receiving the mathematical model of the control system and the at least
one specification and for providing the synthesized controller; (5) a management engine cou-
pled to the resource identification manager and the interface unit for determining the distri-
bution over the available processing elements for the determination of the successor states
and for the comparison of the successor states with the initial winning set and for determin-
ing corresponding queues of tasks for execution on the available processing elements; and (6)
a task scheduling unit coupled to the computing platform interface and the management en-
gine for receiving said queues of tasks from the management engine and managing the execu-

tion of the queues of tasks on the available processing elements.

[0044] Each of the at least two processing elements may be a processing element of a CPU, a
GPU, or a HWA, e.g. a FPGA or a ASIC. The at least two processing elements may belong to
the same computational device, e.g. multiple cores of a CPU, or may be distributed over mul-
tiple computational devices, in particular computation devices of different types. Each of the

at least two processing elements may have a memory resource associated therewith.

[0045] The at least two processing elements are coupled to a computing platform interface,

which handles the exchange of data with the at least two processing elements. The computing
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platform interface may be configured to exchange data between each of the at least two pro-
cessing elements and one or more additional components coupled to the computing platform
interface. Furthermore the computing platform interface may be configured to exchange data

between the at least two processing elements themselves.

[0046] The resource identification unit coupled to the computing platform interface is con-
figured to determine which of the at least two processing elements can be used to execute at
least some computation tasks associated with performing a method according to the inven-
tion. For this, the resource identification unit may be configured to obtain information re-
garding the at least two processing elements, in particular regarding the current state of the

at least two processing elements.

[0047] The interface unit is configured to receive the mathematical model of the control sys-
tem and the at least one specification as well as to provide the synthesized controller. For
this, the interface unit may be configured to communicate with other devices, for example via
wired connections like CAN, LAN, and/or USB and/or via wireless connections like WLAN.
The interface unit may be connected to a control unit of the control system for directly
providing the synthesized controller. Alternatively or additionally, the interface unit may be
connected to another device, e.g. a computer, and/or comprise means for direct access by a
user. The interface unit may further be configured to receive a request to perform a method

according to the invention, e.g. as a digital or analog trigger signal.

[0048]The management engine is coupled to the resource identification manager and the
interface unit. The management engine is configured to determine the distribution of compu-
tation tasks over the available processing elements for the comparison of the successor states
with the initial winning set as described above, i.e. by dividing the set of tuples into subsets,
each of which is assigned to a different processing element of the available processing ele-
ments. Furthermore, the management engine is configured to determine a queue of tasks for
each of the available processing elements for performing the comparison for each tuple with-
in the respective subset. The management engine may be configured to initiate the execution
of a method according to the invention when the interface unit receives a request, the math-

ematical model and/or the at least one specification.

[0049] The task scheduling unit is coupled to the management engine and to the computing
platform interface. The management engine is configured to provide the queues of tasks to
the task scheduling unit. The task scheduling unit is configured to manage the execution of
the queues of tasks on the respective processing elements. The task scheduling unit may ad-

ditionally be configured to collect the results from the available processing elements as well
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as to manage the exchange of data between processing elements and with the processing el-

ements via the computing platform interface as required.

[0050] In a preferred embodiment, the management engine can further be configured to
determine the distribution of computation tasks over the available processing elements for
the determination of the successor states as described above, i.e. by dividing the set of tuples
into subsets, each of which is assigned to a different processing element of the available pro-
cessing elements. Additionally, the management engine can be configured to determine a
queue of tasks for each of the available processing elements for performing the determination

of the at least one successor state for each tuple within the respective subset.

[0051] In an example of the present invention, the resource identification unit may be con-
figured to determine the type of processing element for each available processing element.
The type of processing element describes which kind of computation device the respective
processing element belongs to, e.g. CPU, GPU or a type of HWA. Additionally, the type of
processing element may contain information on the specific type of computation device, e.g.
the type of CPU, GPU or HWA, and/or specifications like the clock speed or the memory re-

sources.

[0052] In another example of the present invention, the resource identification unit can be
configured to determine the computing power and/or available memory resources of the
available processing elements. For this purpose, the resource identification unit may be con-
figured to determine the computing power and memory resources that are currently used,
e.g. by other applications or processes, in addition to specifications contained in the type of a
processing element. The resource identification unit may further be configured to analyze
past usage statistics of the available processing elements as well as information on future use

if available.

[0053] In particular, the resource identification manager may be configured to determine the
computing power of the available processing elements by executing tasks associated with the
determination of the successor states and/or the comparison of the successor states on the
available processing elements. In this way, an estimate of the actual computing power of the
available processing elements may be obtained. The resource identification manager may for
example be configured to perform the determination of the at least one successor state for
one tuple on each of the available processing elements and to measure the elapsed time. Al-
ternatively or additionally, the resource identification manager may e.g. be configured to per-
form the comparison of the at least one successor state of one tuple with the initial winning

set on each of the available processing elements and measure the elapsed time.
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[0054] As mentioned above, the processing elements may be processing elements of a CPU, a
GPU, a FPGA, an ASIC and/or another type of hardware accelerator.

[0055] In one example of the present invention, the interface unit may be configured to re-
ceive the mathematical model of the control system and the at least one specification as well
as to provide the synthesized controller via a computer network, in particular the Internet.
The interface unit may further be configured to receive a request to perform a method ac-

cording to the invention via a computer network.

[0056]In an example of the present invention, the device can further comprises a logging
unit, which is coupled to the management engine. The logging unit may be configured to re-
ceive data from the management engine, to store this data and to provide it to the manage-
ment engine at a later time. The logging unit may further be configured for external access via
the interface unit. The management engine may be configured to send data to the logging
unit, e.g. debugging data or protocol data relating to the execution of a method according to

the invention.

LIST OF FIGURES

[0057] In the following, a detailed description of the invention and exemplary embodiments

thereof is given with reference to the figures. The figures show schematic illustrations of

[0058] Fig. 1: a symbolic controller synthesis method according to prior art

[0059] Fig. 2a: a device for synthesizing a correct-by-construction controller according to

an exemplary embodiment of the invention

[0060] Fig. 2b: a flow chart of a method to synthesize a correct-by-construction control-

ler in accordance with an embodiment of the invention

[0061] Fig. 3: a flow chart of a method to identify available processing elements accord-

ing to an embodiment of the invention

[0062] Fig. 4a: a flow chart of a method for a parallel determination of a symbolic model

in accordance with an embodiment of the invention

[0063] Fig. 4b: a parallel determination of a symbolic model according to an embodi-

ment of the invention
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[0064] Fig. 5a: a flow chart of a method for a parallel determination of an updated win-

ning set in accordance with an embodiment of the invention

[0065] Fig. 5b: a parallel determination of an updated winning set according to an em-

bodiment of the invention

DESCRIPTION OF THE PREFERRED EMBODIMENTS

[0066] Fig. 1 schematically illustrates the concept of symbolic controller synthesis as known
from prior art. The aim is to design a controller 10 for a control system 12, wherein the con-
troller 10 comprises a set of rules to be executed by a control unit. The current state of the
control system 12 is characterized by a plurality of state variables x, x(@), ..., x® and can be
described by a state vector X containing all of the state variables. The control system 12 has a
number of control parameters u®, u®, ..., u™), which can be used to control the state of the
control system 12 and are described by a control vector 4 containing the control parameters.

The set of rules of the controller 10 relate a state vector ¥ to a control vector .

[0067] The control system 12 can for example be an automated physical system like an au-
tonomous car. In this case, the state variables could be the position and velocity of the car
and the control parameters could be the position of the throttle and the angle of the steering
wheel. In the following, an autonomous car is often used as an example for illustration. How-
ever, this should not in any sense be understood as a limitation for the subject-matter of the
invention, which relates to the synthesis of controllers for technical control systems of any
kind. Such control systems could for example be other automated physical systems like ro-
bots or cyber-physical systems like smart homes, smart grids or industrial process control

systems.

[0068] The control unit receives the current state ¥ of the control system 12 as well as a set of
specifications for the control system 12 describing a target state of the control system 12 and
possibly a set of boundary conditions. In the case of an autonomous car, the target state could
for example by a target position and the boundary conditions could be the speed limit and the
boundaries of the road. Based on the specifications, the controller 10 should determine a set
of control parameters i to meet the specifications, i.e. to reach the target state under the im-
posed boundary conditions. A car could for example be accelerated to reach a certain target
velocity by changing the position of the throttle or the car’s steering wheel could be controlled
to autonomously reach a pre-defined target position, e.g. some coordinates specified by a

passenger using a navigator device.
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[0069] The response of the control system 12 in a given state X to the control input % can be
described by a mathematical model, which relates the change in the state ¥ to the current
state ¥ and the control input #. This mathematical model can for example be a set of differen-
tial equations
¥ =f(& 1)

The mathematical model forms the basis for designing the controller 10. To obtain a suitable
controller 10, the mathematical model has to capture the essential dynamics of the control
system 12 at least approximately. Depending on the complexity of the control system 12, ob-

taining a suitable model may be a difficult task on its own.

[0070] In symbolic controller synthesis, a controller 10 is constructed in three steps, which
are illustrated in Fig. 1 and detailed in the following: (1) finite abstraction of the mathemati-
cal model to obtain a symbolic model 14, (2) synthesis of a symbolic controller 18 based on
the symbolic model 14 and the set of specifications 16, and (3) refinement of the symbolic

controller 18 to obtain a refined controller 20 for the actual control system 12.

[o071] In the first step, the continuous space spanned by the state variables X and the con-
trol parameters u is discretized to obtain a discrete space comprising a set of tuples (¥;,;),
where i and j are indices labelling the state vectors and control vectors, respectively. Subse-
quently, a successor state Xf is determined for each tuple (X;,1;) using the mathematical
model, wherein %; corresponds to the state that the control system 12 is expected to end up in
if it is initially in state ¥; and the control input ; is applied for a predefined amount of time.
Obtaining the successor state may involve solving the mathematical model exactly or numeri-
cally. The resulting symbolic model 14 thus consists of a plurality of transition rules associat-
ing each tuple (¥;,u;) to a successor state ¥;. In Fig. 1, the higher-dimensional discrete space
is illustrated by mapping it to a flat 2D space using the indices i and j as coordinates such
that a tuple (¥;,1;) corresponds to the square at position (i,). Accordingly, the transition
rules are depicted as horizontal arrows linking a tuple (¥;, ;) with the tuple (%,;) corre-
sponding to the successor state X at the same control vector ;. For clarity, the transition

rules are shown only for a select subset of tuples.

[0072] In the following step, a symbolic controller 18 is synthesized based on the symbolic
model 14 and the specifications 16 for the control system 12. This synthesis is conducted in
such a way that the symbolic controller 18 automatically meets the specifications 16 when
applied to the symbolic model 14. The resulting symbolic controller 18 is hence “correct-by-
construction”. As detailed below, this can for example be achieved by an iterative determina-

tion of a final winning set of tuples that forms a fixed-point set with respect to one or more



10

15

20

25

30

WO 2020/070206 -19- PCT/EP2019/076738

target states, i.e. when applying a feedback based on the final winning set to the control sys-
tem 12, the control system 12 will remain within the final winning set and will eventually con-

verge towards the target states.

[0073] At first, an initial winning set is defined, which can e.g. be the target states. This win-
ning set is then updated iteratively, wherein each iteration comprises the following steps: The
successor states for all tuples in the discrete space are obtained from the symbolic model 14.
For each tuple, the successor state is compared to the initial winning set and based on this
comparison an updated winning set is defined. For example, each tuple with a successor state
X¢, for which the initial winning set contains a tuple (X;, ;) with X; = %, can be added to the
updated winning set, whereas tuples for which the aforementioned condition is not met are
not contained in the updated winning set. Alternatively, the updated winning set could only
contain tuples that meet the aforementioned condition and are from the initial winning set.
Afterwards, the initial winning set and the updated winning set are compared to obtain a
convergence measure, e.g. an overlap between the sets, and by comparing this convergence
measure with a convergence criterion a decision is made whether to perform another itera-
tion or to terminate the iterative determination. Before beginning with the next iteration, the
initial winning set is redefined by replacing it with the updated winning set. In this way, the
initial winning set can change from iteration to iteration, wherein new tuples may enter the

set and/or other tuples previously contained in the set may leave the set.

[0074] The convergence criterion can be chosen such that it ensures that the final updated
winning set, also referred to as final winning set, forms a fixed-point set as defined above.
The convergence criterion can be the equivalence between the initial and the updated win-
ning sets, i.e. the iteration can be continued until the initial winning set and the updated
winning set are identical. For example, when using the aforementioned condition to deter-
mine the updated winning set, this would be the case when for each tuple in the initial win-
ning set a tuple exists in the initial winning set for which the state vector is identical to the

successor state of the former.

[0075] This facilitates the generation of the symbolic controller 18, which comprises a set of
rules that identify a control vector for a given state vector, ¥; — u;. These rules can be ob-
tained from the final updated winning set, e.g. by averaging i over all tuples in the final up-
dated winning set with a given ¥; or randomly selecting a tuple from the tuples in the final
updated winning set with a given ¥;. By construction, this symbolic controller 18 will enforce
the specifications 16 provided initially in a discrete control system whose dynamics are gov-

erned by the symbolic model 14.
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[0076] Finally, the symbolic controller 18 is refined to obtain a refined controller 20 for the
actual control system 12, i.e. a controller capable of handling state vectors from the continu-
ous state space. This refinement can involve an interpolation and/or extrapolation process to
extract rules that can be applied to a continuous state vector from the discrete set of rules of
the symbolic controller 18. These rules can for example comprise a mathematical function
mapping a state vector X to a control vector U (X). The refined controller 20 is then designed
such that it provides a control vector to the control system 12 according to these rules in re-
sponse to a state vector as an input. Alternatively, the refined controller 20 could approxi-
mate a continuous state vector by a discrete state vector contained in the discrete state space

and use the rules of the symbolic controller 18 as a look-up table.

[0077] Fig. 2a shows an example for a device 100 according to an embodiment of the present
invention, which can be used to implement a method as depicted in Fig. 2b. The device 100
comprises a central processing unit (CPU) 102 with a processing element 104, a graphics
processing unit (GPU) 106 with a two processing elements 108, 110 as well as a hardware
accelerator (HWA) 112 with a processing element 114. Each of the processing elements 104,
108, 110 and 114 can have a memory resource associated therewith. Alternatively or addition-
ally, processing elements within the same computation device, e.g. processing elements 108
and 110, may share a common memory resource. With a variety of processing elements at
hand, the device 100 is capable of matching the requirements of various applications by dis-
tributing tasks over the processing elements 104, 108, 110, and 114. CPUs, for example, are
suitable for complex serial mathematical computations, which may arise when constructing
the symbolic model, e.g. for solving differential equations numerically. GPUs, on the other
hand, typically contain many, but less-powerful processing elements and are thus particularly
well suited for a massive parallelization of tasks, e.g. for computing the updated winning set.
HWaAs, e.g. an FPGA, can operate in a low-power mode, which may be advantageous for em-

bedded applications that require real-time execution of the provided method.

[0078] The processing elements 104, 108, 110 and 114 are coupled to a computing platform
interface 116, which handles the exchange of data between the processing elements 104, 108,
110 and 114 and components connected with the computing platform interface 116. Data may
be exchanged between the processing elements 104, 108, 110 and 114 themselves as well as
between each of the processing elements 104, 108, 110 and 114 and each of the components
connected with the computing platform interface 116. Additionally, processing elements
within the same computation device, e.g. processing elements 108 and 110, may be config-

ured to exchange data with each other independent of the computing platform interface 116.



10

15

20

25

30

WO 2020/070206 -21- PCT/EP2019/076738

[0079] In the example shown in Fig. 2a, a resource identification unit 118 and a task schedul-
ing unit 120 are coupled to the computing platform interface 116. The resource identification
unit 118 is configured to identify available processing elements that can be used at least in
part for the execution of tasks associated with the method according to the invention. Addi-
tionally, the resource identification unit 118 is configured to determine the type of processing
element for the available processing elements, i.e. which kind of computation device the re-
spective processing element belongs to, e.g. CPU, GPU or a type of HWA. The resource iden-
tification unit 118 may further be configured to obtain information regarding the available
computing power and/or memory resources of each of the available processing elements as
detailed below.

[0080] The device 100 further comprises an interface unit 122 for communication with other
devices, in particular to receive the specifications 240 and the mathematical model of the
control system 12 for which a controller is to be synthesized and to provide the synthesized
controller. For this, the interface unit 122 may be configured to communicate via wired con-
nections, e.g. CAN, LAN or USB, and/or via wireless connections like WLAN. The interface
unit 122 may be directly connected to the control unit of the control system 12. Alternatively
or additionally, the interface unit 122 may be connected to another device, e.g. a computer,

and/or comprise means for direct access by a user.

[0081] The core part of the device 100 is the management engine 124, which is coupled to
the interface unit 122, the resource identification unit 118 and the task scheduling unit 120.
The management engine 124 is configured to execute the method according to the invention,
in particular to determine the distribution of tasks for the associated computations as de-

scribed below in detail.

[0082]To perform these tasks, the device 100 comprises a task scheduling unit 120, which
receives queues of tasks for execution on the available processing elements, manages the exe-
cution of these queues and collects results from the available processing elements. The task
scheduling unit 120 handles the exchange of data between processing elements 104, 108, 110,

114 via the computing platform interface 116 as required for the task execution.

[0083] The device 100 can further contain a logging unit 126 for storing and providing data,
e.g. information on the controller synthesis acquired during execution of the method accord-
ing to the invention, which may be used for debugging. For this, the logging unit 126 is cou-

pled to the management engine 124.
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[0084] The device 100 depicted in Fig. 2a only constitutes one example for an embodiment
of the present invention and a variety of modifications are possible in other examples. The
number of processing elements and computation devices can be different and in particular
much larger than shown in Fig. 2a. A device according to the present invention may contain
multiple computing devices of the same type. Furthermore, two or more of the components

could be formed by a single unit providing the respective functionalities.

[0085] Fig. 2b depicts a flow diagram representing a method according to an embodiment of
the present invention for synthesizing a correct-by-construction controller 20 for a control

system 12, which could for example be implemented with device 100.

[0086]In a first step 130, a mathematical model of the control system 12 is received, which
characterizes the response of the control system 12 to a given control vector i, i.e. the change
of the current state ¥ as a result of the control input. The mathematical model can character-
ize the response exactly or approximately. As described above, the mathematical model can
for example be a set of differential equations describing the dynamics of the control system
12. Alternatively, the mathematical model may comprise information based on which a re-
sponse of the control system 12 can be determined, e.g. a Hamiltonian or Lagrangian or a set

of intrinsic parameters of the control system 12.

[0087] The first step 130 further comprises receiving at least one specification for the state
variables and/or the control vector. This specification can for example be one or more target
states or a range of target states, which the control system 12 should reach or remain in, e.g. a
certain position or velocity for an autonomous car. The specification may be given as formu-
lae in a certain specification modeling language, e.g. linear temporal logic (LTL) formulae or
automata on infinite strings. The formulae can then be translated to a corresponding set of
states or tuples. The specifications may contain conditions to be imposed on the control pa-
rameters, e.g. boundaries like a maximum angle for the steering wheel or a maximum posi-
tion of the throttle to limit the acceleration. Additionally, a priority may be assigned to the
specifications. For example, a speed limit may be required to be strictly enforced, whereas

comfort settings like the maximum throttle position can have a lower priority.

[0088]Subsequently, the method proceeds with step 132, in which available processing ele-
ments are identified that can be used for executing computations. The step 132 is described in

more detail below with reference to Fig. 3.

[0089] Afterwards, the continuous state space containing all possible state vectors ¥ and the

continuous input space spanned by the input vectors i are discretized at least in part to ob-



10

15

20

25

30

WO 2020/070206 -23- PCT/EP2019/076738

tain a set of tuples (¥;,4;), for which a symbolic model 190 and a symbolic controller is to be
determined. For this, a subspace of the continuous state space and a subspace of the continu-
ous input space are selected, wherein each subspace may contain an arbitrary part of the re-
spective space or the entire respective space. The tuples (¥;, ;) are chosen from the combina-
tion of the subspaces, e.g. using a periodic pattern with a fixed spacing. The subspaces to be
discretized as well as the spacings used for the discretization may be chosen based on the
provided specifications, the available processing elements, the mathematical model and/or
additional information on the control system 12. For example the chosen state subspace may
be required to contain the target state as well as the current state. The size of the subspaces to
be discretized may be limited based on properties of the control system 12, e.g. the range for
the velocity of a car may be bounded by the maximum velocity of the car or the range for the
position of a car may depend on the area covered by the sensors observing the surroundings
of the car. The size of the subspaces and the spacings can be chosen depending on the availa-
ble computing power and/or memory resources. Furthermore, the spacing can be non-
uniform and can account for properties of the mathematical model, e.g. the spacing for a con-
trol parameter may be closer in regions where the state of the control system 12 depends
strongly on this parameter or the spacing for a state variable may be closer in a region where
the mathematical model exhibits particular features. In the case of an autonomous car, this

can for example be a region in which a pedestrian or a parked car was detected.

[0090] Following the discretization, a symbolic model 190 is determined for the set 180 of
tuples by a parallel computation assigning at least one successor state to each tuple based on

the mathematical model as detailed below with reference to Fig. 4.

[0091] In step 138, an initial winning set 230 of tuples is determined based on the at least
one specification for the state variables and/or the control vector. This initial winning set 230
can for example contain some or all of the tuples from the set 180 of tuples that meet one or
more of the specifications, e.g. all tuples corresponding to a target position for a car or to a

velocity range specified for a car.

[0092] Subsequently, an updated winning set 242 of tuples is obtained through a parallelized
comparison of the successor states determined in step 140 with the initial winning set 230 of

tuples. The step 140 is illustrated in Fig. 5 and described in more detail below.

[0093] After determining the updated winning set 242, the updated winning set 242 and the
initial winning set 230 are compared with each other in step 142. From this comparison, a
convergence measure is obtained, which quantifies the overlap between the two sets. This

convergence measure can for example be the number or fraction of tuples that are only con-
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tained in one of the sets. This convergence measure is then compared to a predefined conver-
gence criterion, which specifies a desired degree of similarity between the initial winning set
230 and the updated winning set 242. The convergence criterion may for example require
that the two sets are identical or that the fraction of tuples which only appear in one of the

sets is smaller than a certain threshold.

[0094] If the convergence measure does not meet the convergence criterion, the method re-
turns to step 138 to determine a new updated winning set. To this end, the initial winning set
230 is replaced by the updated winning set 242 before proceeding to step 140 for the deter-
mination of the new updated winning set as described below, i.e. the previously determined
updated winning set 242 is used as the initial winning set 230 when repeating step 140. Step
140 then results in a new updated winning set that replaces the updated winning set 242. In
this way, the updated winning set 242 is modified iteratively until the convergence criterion

is fulfilled, yielding a final winning set 244, namely the latest new updated winning set.

[0095] The same convergence criterion may be used for all iterations. Alternatively, the con-
vergence criterion may be adapted between iterations, e.g. to ensure a completion of the
method within a specified amount of time. For this, the convergence criterion can be modi-
fied depending on the number of performed iterations or a maximum number of iterations

can be set.

[0096] Once the convergence measure satisfies the convergence criterion in step 142, the
method proceeds to step 144, where a controller for the control system 12 is constructed us-
ing the final winning set 244, which is collected from all processing elements participating in
step (140). This controller is designed such that it determines a control vector i as an output
to be provided as a control input to the control system 12 in response to a state vector X re-
ceived from the control system 12. The rules associating a state vector X to a control vector u

are determined based on the final winning set 244.

[0097] The construction of the controller can comprise determining a symbolic controller
from the final winning set 244 and refining the symbolic controller to obtain the controller
for the control system 12. The construction of the symbolic controller involves extracting a set
of rules which uniquely identify a control vector for a given state vector, X; — u;. This defines
the output u; that the controller will provide to the control system 12 when receiving the state
vector ¥; as an input. The symbolic controller is restricted to the discretized space, i.e. the
tuple (X;,u;) has to be contained in the discretized space. Since the final winning set 244 may
contain multiple tuples with the same state vector X;, constructing the symbolic controller

may require a determination step, wherein a unique control vector is associated with the state
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vector X;. This can be achieved e.g. by randomly selecting one of the multiple tuples with the
state vector ¥; or by averaging i; over two or more of the multiple tuples. Alternatively, a tu-
ple can be chosen based on the provided specifications. For this, the specifications may con-
tain one or more secondary specifications which can e.g. be additional criteria that are not to
be enforced strictly, but that can be optimized for if possible. Such a secondary specification
could for example be that the acceleration should be as small as possible to maximize comfort
for a passenger in an autonomous vehicle. In this case, the tuple resulting in the smallest ac-
celeration would be selected. If multiple secondary specifications are provided, priorities may

be assigned to the secondary specifications for the determination step.

[0098] The refinement of the symbolic controller comprises the determination of one or
more rules associating a continuous state vector ¥ to a control vector # to obtain a controller
that is capable to process an input from the continuous state space. In one example, the rule
could be to determine the discrete state vector ¥; that is closest to the continuous state vector
% and to use the symbolic controller as a look-up table to obtain the corresponding discrete
control vector u; as the output control vector 4. Alternatively, an average or weighted average
of the u; associated with a plurality of discrete state vectors that are close to ¥ may be used. In
another example, an interpolation and/or extrapolation could be performed with the discrete
set of rules of the symbolic controller to obtain a mathematical function mapping a state vec-

tor X to a control vector u(X).

[0099] In addition to the determination of the rules associating a state vector X to a control
vector u, the construction of the controller for the control system 12 can comprise generating
source code that can be used to implement the controller in a control unit, in step 146. The
control unit can be configured to execute the source code in order to determine a control vec-
tor for a state vector received e.g. as a plurality of digital signals and/or analog signals and to
send the control vector e.g. as a plurality of digital signals and/or analog signals to a control
system 12. The source code can be provided automatically to the control unit for implementa-
tion or can be provided to a software/hardware developer, e.g. as a source code building
block.

[0100] The sequence of the steps illustrated in Fig. 2b and described above is only one par-
ticular example. As far as technically feasible, the steps can be permuted and the method and
any embodiment thereof can be performed in an arbitrary order. This also applies to the or-
der of the substeps that the steps shown in Fig. 2b are comprised of as illustrated in Fig. 3 to

Fig. 5 and described below.
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[0101] In Fig. 3, an exemplary method for the determination of available processing elements
in step 132 is illustrated as a flowchart. The purpose of the step 132 is to identify the pro-
cessing elements which can be used at least in part for the parallel computations in step 136
and/or step 140. Furthermore, additional information on the available processing elements
may be obtained, which can be useful for determining the distribution of computation tasks
over the available processing elements. In step 150, the processing elements in the system
that the method according to the invention is executed on are analyzed to obtain a list of pro-
cessing elements which are suitable for the executing the computation tasks and are currently
available, e.g. have sufficient spare computation capacities to speed up the parallel computa-
tions given their current workload. For device 100, this list might for example contain the

processing elements 104, 108, 110, and 114.

[0102] Step 132 may comprise determining the type of processing elements for the available
processing elements in step 152, i.e. what type of computation device they belong to. Pro-
cessing element 104 would for example be identified as a CPU processing element, whereas
processing element 110 would be identified as a GPU processing element. The step 152 may
include obtaining further information on the processing elements, e.g. the type of CPU 102,
GPU 106 or HWA 112 or specifications like the clock speed or the available memory re-

sources.

[0103] Subsequently, in step 154, based on the information about the available processing
elements, customized kernels may be compiled for executing the computations on the availa-
ble processing elements. These kernels can be fine-tuned to the respective type of processing
element in order to optimize the computation performance, e.g. by adapting the computa-

tions to the parallel architecture of GPUs or exploiting the large cache memory of CPUs.

[0104] In addition to the specifications of the available processing elements obtained in step
152, the actual computing power of the available processing elements may be determined in
step 156, e.g. by executing some of the computations tasks for the determination of the sym-
bolic model 190 in step 136 and/or for the determination of the updated winning set 242 in
step 140 and measuring the elapsed time. This allows for more reliable estimates of the num-
ber of computation tasks a given processing element can execute in a certain amount of time
and thus facilitates the efficient distribution of tasks for the parallel computations as de-

scribed below.

[0105] Fig. 4a depicts a flow chart of an example for the parallel determination of the sym-
bolic model 190 in step 136, the basic concept of which is illustrated in Fig. 4b. In Fig. 4a and

4b, it is assumed that four processing elements are used, e.g. the processing elements 104,
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108, 110, and 114 in the device 100. This only constitutes one specific example and the meth-
od and concept described in the following can easily be extended to any finite number of pro-

cessing elements.

[0106] In a first step 160, a distribution of the computing tasks for the determination of the
successor states over the available processing elements is determined. For this, the set 180 of
tuples is divided into subsets 182, 184, 186, and 188, which when taken together contain all
tuples (¥;,u;) of the set 180 of tuples. Each subset is assigned to a different processing ele-
ment of the available processing elements, e.g. subset 182 to processing element 104, subset
184 to processing element 108, subset 186 to processing element 110, and subset 188 to pro-
cessing element 114. While in general it is desirable to use as many processing elements as
possible to speed up the computation, the communication overhead arising from data ex-
change with and between the processing elements increases with the number of processing
elements involved, which may limit the computation speed at some point. In some situations
it may therefore be advantageous to only use some of the available processing elements, i.e.

the number of subsets may be smaller than the number of available processing elements.

[0107] The subsets 182-188 can have the same size, i.e. contain the same number of tuples.
Preferably, however, the size of the subsets 182-188 is chosen individually based on infor-
mation about the processing elements 104, 108, 110, and 114, in particular the types of pro-
cessing elements, the available computing power of the processing elements, the memory
resources of the processing elements or a combination thereof. For example, CPUs are suita-
ble for complex serial mathematical computations and may be assigned a larger number of
tasks when constructing the symbolic model, which may involve solving differential equa-
tions numerically. The computation time for the determination of the successor states can be
minimized by choosing the subsets 182-188 such that the available processing elements 104,
108, 110, and 114 need the same time for executing the tasks assigned to them, i.e. the size of
the subspace associated with a processing element scales with the number of successor state
determinations the processing element can perform in a given amount of time. In Fig. 4b, the
subsets 182-188 are chosen such that they form simply-connected areas in the flat 2D space.
The tuples in each subset can, however, be chosen arbitrarily from the set 180 of tuples. Pref-
erably, the tuples in each subset are chosen to minimize communication overhead due to data
exchange with the processing elements, in particular taking into account the subsequent de-
termination of the updated winning set 242 in step 140 as well as the potentially different

data exchange rates with the processing elements and between different processing elements.

[0108] In step 162, the data required for the determination of the successor states is provided

to the respective processing elements, e.g. the tuples (¥, i;) for which the successor states are



10

15

20

25

30

WO 2020/070206 -28- PCT/EP2019/076738

to be determined as well as information pertaining the mathematical model. Depending on
the memory resources of the processing elements, the entire respective subset is provided at
once or the subset is divided further into subsets of the subset, which are provided sequen-
tially whenever the tasks associated with the preceding subset of the subset have been exe-

cuted.

[0109] For each processing unit, a queue of tasks is established to perform the successor state
determination for each tuple within the respective subset, e.g. a queue 166 for processing
element 104, a queue 168 for processing element 108, a queue 170 for processing element
110, and a queue 172 for processing element 114. Each queue 166, 168, 170, 172 contains mul-
tiple sequences of tasks, wherein each sequence of tasks comprises the tasks for determining
the at least one successor state JZf for one tuple (¥%;, ﬁ’j). This is illustrated in Fig. 4a for a situa-
tion, in which the set 180 of tuples contains twelve tuples with i € [1,4] and j € [1,3]. In the
sequence 173 of tasks, the at least one successor state for the tuple (¥,,,) is determined. The
queues 166, 168, 170, 172 of tasks are sent to the respective processing elements and execut-
ed in step 164. The execution is performed in parallel at least in part as indicated by the verti-
cal alignment of the queues 166, 168, 170, 172 of tasks. Preferably, the subsets 182-188 are
chosen such that each processing element finishes the execution of the respective queue of

tasks at the same time.

[0110] For each tuple (¥;,%;), the at least one successor state ¥ is determined based on the

mathematical model. The at least one successor state can for example be a state that the con-
trol system 12 is expected to be in according to the mathematical model, if the control system
12 is initially in the state ¥; and the control input 4; is applied for a predetermined amount of
time. This predetermined amount of time can be chosen depending on the control system 12,
the mathematical model and/or the method used for determining the at least one successor
state. If the mathematical model is a set of differential equations governing the dynamics of
the control system 12 or if a set of such differential equations can be derived from the math-
ematical model, the at least one successor state may be determined by numerically solving
the set of differential equations at least in part, e.g. via a Runge-Kutta method or a linear
multistep method. Preferably, the at least one successor state is contained in the discretized
state space. If the at least one successor state is not contained in the discretized state space,
e.g. if it lies between two states from the discretized state space, it may be approximated by
the closest state from the discretized state space. Furthermore, if a successor state lies outside
of the range of the discretized state space, it may be marked in some way to indicate an out-

of-bound state.
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[0111] The at least one successor state can be more than one successor state, e.g. to account
for uncertainties in the determination of the state vector, the application of the control vec-
tor, the mathematical model and/or the numerical methods. For example, a successor state
center may be calculated in step 174, i.e. the state that the control system 12 is expected to be
in according to the mathematical model, if the control system 12 is initially in the state X; and
the control input ; is applied for the predetermined amount of time. Subsequently, in step
175 a lower bound and an upper bound for the successor state center can be determined,
which define a hyper-rectangle in the state space, e.g. as an estimate for the uncertainties.
For this, a set of successor states may be determined, for example by calculating successor
states for a plurality of state vectors and/or a plurality of control vectors, e.g. within prede-
termined uncertainty ranges around ¥; and u;, respectively, and/or by determining additional
successor states for each calculated successor state, e.g. by adding or subtracting a predeter-
mined uncertainty. The set of successor states can be approximated by the lower and upper
bound, e.g. by choosing a hyper-rectangle in the state space that contains the entire set or a
certain fraction of states from the set. The at least one successor state can then be defined as
the set comprising the lower bound and the upper bound. The at least one successor state
may additionally contain the successor state center as well. Alternatively, the at least one suc-
cessor state may comprise the entire set of successor states or a subset of the set of successor
states. To reduce the memory requirements, the at least one successor state preferably is a
small number of successor states characterizing the set of successor states, e.g. one or more

lower bounds and one or more upper bounds defining a hyper-volume in state space.

[0112] In step 176, the results of the computations in step 164 are collected by obtaining the
at least one successor state for each tuple from the respective processing element. This collec-
tion may be performed once the entire queue of tasks for a given processing element has been
executed or the data may be collected sequentially whenever a sequence of tasks has been
executed. Subsequently, the data for all tuples is combined in step 178 to form the symbolic
model 190. The symbolic model 190 contains transition rules for each tuple (X;, ;) in the set
180 of tuples, with each rule associating one of the at least one successor state to the tuple
(X;, ;). Thus, if the at least one successor state consist of a lower bound and upper bound,
there are two rules per tuple, one defining the transition to the state corresponding to the
lower bound and a second one defining the transition to the state corresponding to the upper
bound.

[0113] In other examples of embodiments of the method according to the present invention,
the steps 176 and 178 may be modified or omitted altogether, e.g. to reduce the communica-
tion overhead associated with the exchange of data with processing elements. For example, a

symbolic model covering only the respective subspace may be determined directly on a pro-
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cessing element. Alternatively, the at least one successor state may be collected and/or ex-
changed between the processing elements only for some of the tuples in the subsets 182-188,
e.g. to determine a symbolic model covering the subset used for the determination of the up-

dated targets set in step 140 for each processing element.

[0114] Fig. 5a shows an exemplary flowchart for the parallel determination of an updated
winning set 242 in step 140 using four processing elements, e.g. the processing elements 104,
108, 110, and 114 in the device 100. An illustration of this process is depicted in Fig. 5b. As for
Fig. 4a and 4b, this number of processing elements is only a specific example and the method
and concept described in the following can easily be extended to any finite number of pro-

cessing elements.

[0115] In step 200, a distribution over the available processing elements is determined for
the computing tasks for the comparison between the initial winning set 230 and the at least
one successor state for each tuple in the set 180 of tuples. The procedure for this is similar to
step 160. The set 180 of tuples is divided into subsets 232, 234, 236, and 238, which when
taken together contain all tuples (x;, ;) of the set 180 of tuples. Each subset is assigned to a
different processing element of the available processing elements, e.g. subset 232 to pro-
cessing element 104, subset 234 to processing element 108, subset 236 to processing element
110, and subset 238 to processing element 114. The size and tuples for each of the subsets
232-238 are chosen in a similar way as described above for the subsets 182-188. For the it-
erative determination of the final winning set 244 as described above the communication
overhead is of particular importance as data has to be exchanged between processing ele-
ments multiple times. The number of processing elements and thus the number of subspaces
used in step 140 may be different from the one used in step 132. For example, GPUs contain
many processing elements, which allow for a massive parallelization of computing tasks, and
can thus be particularly suitable for the comparison with the initial winning set 230 as well as

for computing the updated winning set.

[0116] Subsequently, the data required for the computing tasks assigned to a processing ele-
ment is provided to the respective processing element in step 202, in particular data relating
to the corresponding subset, the initial winning set 230, the symbolic model 190 and the
specifications 240. To reduce the amount of data that has to be exchanged, only the data
which is relevant for the corresponding subset may be provided. Depending on the memory
resources of each processing element, the data may be provided at once or sequentially dur-
ing the execution of the tasks. As mentioned above, the symbolic model 190 may at least in

part already be stored by the processing elements.
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[0117] For each processing unit, a queue of tasks is established to perform the comparison
for each tuple within the respective subset, e.g. a queue 208 for processing element 104, a
queue 210 for processing element 108, a queue 212 for processing element 110, and a queue
214 for processing element 114. Each queue contains multiple sequences of tasks, wherein
each sequence of tasks comprises the tasks for comparing the at least one successor state of a
tuple with the initial winning set 230. This is illustrated in Fig. 5a for a situation, in which the
set 180 of tuples (¥;, ;) contains twelve tuples with i € [1,4] and j € [1,3]. In the sequence 216
of tasks, this comparison is performed for the tuple (¥,,,). The queues 208, 210, 212, 214 of
tasks are sent to respective the processing elements and executed in step 206. The execution
is performed in parallel at least in part as indicated by the vertical alignment of the queues
208, 210, 212, 214 of tasks. Preferably, the subsets 232-238 are chosen such that each pro-

cessing element finishes the execution of the respective queue of tasks at the same time.

[0118] In a sequence of tasks like the sequence 216, the at least one successor state X for the
respective tuple is obtained, e.g. from a memory associated with the processing element, and
subsequently compared with the initial winning set 230. Based on this comparison, the tuple
is marked as good or bad to indicate whether it should be included in the updated winning set
242. The tuple can for example be marked as good if the initial winning set 230 contains at
least one tuple (%, ;) with ¥, = ¥, for each of the at least one successor state, or for a certain
number or fraction of states of the at least one successor state. Alternatively, if the at least
one successor state contains a lower bound and an upper bound, the tuple may be marked as
good if all of the tuples in the set 180 of tuples that are enclosed by a hyper-rectangle defined
by the lower and upper bound, or a certain number or fraction of these tuples are part of the
initial winning set 230. Tuples to be marked as good may additionally be required to already
be contained in the initial winning set 230. The specifications 240 may contain further condi-

tions which have to be fulfilled as well by tuples to be marked as good.

[0119] The tuples marked as good in step 206 are collected from the available processing
elements in step 224 and then combined to obtain the updated winning set 242 in step 226.
The updated winning set 242 is compared with the initial winning set 230 in step 142 obtain
a convergence measure as described above. Alternatively, the available processing elements
may perform a comparison of the tuples marked as good in their subset with the correspond-
ing subset of the initial winning set 230 and only provide information pertaining this com-

parison for the convergence check.

[0120] If an additional iteration is to be performed following the convergence check in step
142, data relating to the updated winning set 242 is provided to the processing elements as in

step 202 to replace the data relating to the initial winning set 230. To reduce the amount of



10

WO 2020/070206 -32- PCT/EP2019/076738

data that has to be exchanged, information may be provided only about tuples which have
been added and/or removed in the updated winning set 242 as compared to the initial win-
ning set 230 and are relevant for the corresponding subset. Subsequently, steps 206, 224,
and 226 may be repeated to obtain a new updated winning set. For this, the same task distri-
bution as in the previous iteration may be used or alternatively step 200 may be repeated to

obtain a new distribution of tasks prior to repeating step 206.

[0121] This procedure is repeated until the convergence criterion is met for the new updated
winning set 244, at which point the method proceeds to the controller construction in step

144 as detailed above.

[0122] The embodiments of the present invention disclosed herein only constitute specific
examples for illustration purposes. The present invention can be implemented in various
ways and with many modifications without altering the underlying basic properties. There-

fore, the present invention is only defined by the claims as stated below.



10

15

20

25

30

35

WO 2020/070206 -33- PCT/EP2019/076738

LIST OF REFERENCE SIGNS

10 — Controller

12 — Control system

14 — Symbolic model

16 — Specifications

18 — Symbolic controller

20 — Refined controller

100 — Device for synthesizing a correct-by-construction controller
102 — Central processing unit (CPU)
104- Processing element

106 — Graphics processing unit (GPU)
108 — Processing element

110 — Processing element

112 — Hardware accelerator (HWA)
114 — Processing element

116 — Computing platform interface
118 — Resource identification unit

120 — Task scheduling unit

122 — Interface unit

124 — Management engine

126 — Logging unit

130 — Step of receiving the mathematical model and specifications
132 — Step of identifying available processing elements

134 — Step of discretizing the space

136 — Step of determining the symbolic model

138 — Step of obtaining the initial winning set

140 — Step of determining the updated winning set

142 — Step of checking the convergence

144 — Step of constructing the correct-by-construction controller

146 — Step of generating source code for implementing the correct-by construction controller

150 — Step of determining available processing elements
152 — Step of determining the type of the available processing elements
154 — Step of compiling kernels for executing computations on available processing elements

156 — Step of determining the computing power of the available processing elements
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160 — Step of determining the task distribution for determining the symbolic model
162 — Step of providing data to processing elements for successor state determination
164 — Step of the parallel determination of successor states

166 — Queue of tasks

168 — Queue of tasks

170 — Queue of tasks

172 — Queue of tasks

173 — Sequence of tasks

174 — Step of calculating a successor state center

175 — Step of determining the lower bound and the upper bound for a set of successor states
176 — Step of collecting results from the parallel determination of successor states

178 — Step of determining the symbolic model from the collected data

180 — Set of tuples

182 — Subset of the set of tuples
184 — Subset of the set of tuples
186 — Subset of the set of tuples
188 — Subset of the set of tuples
190 — Symbolic model

200 — Step of determining the task distribution for determining the updated winning set
202 — Step of providing data to processing elements for updated winning set determination
206 — Step of comparing successor states with initial winning set in parallel

208 — Queue of tasks

210 — Queue of tasks

212 — Queue of tasks

214 — Queue of tasks

216 — Sequence of tasks

218 — Step of obtaining successor state from memory

220 — Step of comparing successor state with initial winning set

222 — Step of determining marking tuples to be included in updated winning set

224 — Step of collecting results of successor state comparison

226 — Step of determining the updated winning set based on successor state comparison

230 — Initial winning set

232 — Subset of the set of tuples
234 — Subset of the set of tuples
236 — Subset of the set of tuples
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238 — Subset of the set of tuples
240 — Specifications
242 — Updated winning set

244 — Final updated winning set
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CLAIMS

1. A method for synthesizing a correct-by-construction controller for a control system (12), the

method comprising the following steps:

receiving a mathematical model of the control system (12) with a plurality of state var-
iables ¥ and a plurality of control parameters i, wherein the mathematical model
characterizes at least in part the change of the state variables X in response to the con-

trol parameters 4 as a control input;

receiving at least one specification (240) for the state variables X and/or the control

parameters u;
identifying available processing elements;

discretizing at least a part of a space spanned by (X, %) to obtain a set (180) of tuples
(%;,1;), where i and j are indices labelling the state vectors and control vectors, respec-

tively;

determining, based on the mathematical model, for each tuple (¥;,%;) in the set (180)

of tuples at least one successor state X;

obtaining an initial winning set (230) of tuples based on said at least one specification
(240);

determining an updated winning set (242) of tuples, wherein said determination com-

prises:

comparing the at least one successor state ¥ of each tuple with the initial win-

ning set (230) of tuples, wherein said comparison is distributed over the availa-
ble processing elements by choosing one processing element from the available
processing elements for each tuple to perform the comparison and wherein the

available processing elements are used simultaneously at least in part;

receiving information pertaining said comparison from the available processing

elements; and
determining the updated winning set (242) of tuples based on said information;

comparing the updated winning set (242) with the initial winning set (230) to obtain a

convergence measure,
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repeating said determination of the updated winning set (242) of tuples to obtain a
new updated winning set (244) of tuples if said convergence measure does not meet a
predefined convergence criterion, wherein the previous updated winning set (242) of
tuples is used as the initial winning set (230) for said determination and is provided at

least in part to the available processing elements; and

constructing a controller for the control system (12) from said new updated winning

set (244).

The method according to claim 1, wherein said determination of the successor states is dis-
tributed over the available processing elements by choosing one processing element from
the available processing elements for each tuple to determine X and the available processing
elements are used simultaneously at least in part for said determination of the successor

states.

The method according to claim 1 or 2, wherein identifying the available processing elements
comprises determining a type of processing element for each available processing element,
and wherein said determination of the successor states and/or said comparison of the suc-
cessor states with the initial winning set (230) is adapted to the type of processing element

for each available processing element.

The method according to any one of the preceding claims, wherein identifying available pro-
cessing elements further comprises determining the available computing power and/or the

available memory resources of the available processing elements.

The method according to any one of the preceding claims, wherein the distribution over the
available processing elements for the determination of the successor states and/or for the
comparison of the successor states with the initial winning set (230) is determined based on
the types of the available processing elements, the available computing power of the availa-
ble processing elements, the available memory resources of the available processing ele-

ments, or a combination thereof.

The method according to any one of the preceding claims, wherein the distribution over the
available processing elements for the determination of the successor states and/or for the

comparison of the successor states with the initial winning set (230) is determined taking in-
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to account the communication overhead for exchanging data with the available processing

elements.

The method according to any one of the preceding claims, wherein said determination of the
updated winning set (242) of tuples to obtain a new updated winning set (244) of tuples is
repeated until said convergence measure obtained by comparing the new updated winning
set (244) with the previous updated winning set (242) meets said predefined convergence

criterion.

The method according to any one of the preceding claims, wherein constructing said con-

troller comprises:

constructing a symbolic controller from said new updated winning set of tuples (244),

and

refining said symbolic controller to obtain the controller.

The method according to any one of the preceding claims, wherein constructing said con-

troller comprises generating source code for an implementation of the controller.

The method according to any one of the preceding claims, wherein determining said at least
one successor state X, comprises determining an upper and lower bound for a set of succes-

sor states.

The method according to any one of the preceding claims, wherein said discretization of at
least a part of the space spanned by (X, ¥) comprises mapping said part of the space spanned

by (X, u) to a lower-dimensional space, in particular a two-dimensional flat space.

The method according to any one of the preceding claims, wherein said discretization of at
least a part of the space spanned by (X, 1) is determined based on the mathematical model

and/or the at least one specification (240).

The method according to any one of the preceding claims, wherein said discretization of at
least a part of the space spanned by (%, i) is determined based on information pertaining the

available processing elements.
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The method according to any one of the preceding claims, wherein said mathematical model
comprises a system of differential equations and determining said successor states X com-

prises numerically solving said system of differential equations at least in part.

The method according to any one of the preceding claims, wherein comparing the at least

one successor state X, of each tuple (¥;,%;) with the initial winning set (230) of tuples com-
prises determining for at least one of the at least one successor state of the tuple (¥;,1;)
whether the initial winning set (230) contains at least one tuple (¥, ;) with ¥}, = X¢, where k

and [ are indices labelling the state vectors and control vectors, respectively.

The method according to claim 15, wherein the updated winning set (242) contains all tuples
(x;,1;) with successor states Xy for which the initial winning set (230) contains at least one

tuple (X, u;) with X, = X; for each of the at least one successor state of the tuple (x;, ;).

The method according to claim 15, wherein the updated winning set (242) contains all tuples
(x;,1;) with successor states x; for which the initial winning set (230) contains the tuple
(;,1;) and contains at least one tuple (¥, ;) with X}, = X for each of the at least one succes-

sor state of the tuple (¥;,u)).

The method according to any one of the preceding claims, wherein said convergence meas-
ure quantifies the overlap of the updated winning set (242) with the initial winning set (230)

and said predefined convergence criterion specifies a minimum absolute or relative overlap.

The method according to any one of the preceding claims, wherein said controller is provid-

ed to a control unit of the control system (12).

The method according to any one of the preceding claims, wherein said control system (12)

is a computer-controlled physical system, in particular a cyber-physical system.

The method according to claim 20, wherein at least one of said state variables characterizes

a position or velocity of a mechanical element of the control system (12).

The method according to any one of the preceding claims, wherein said method is per-

formed in real time during operation of the control system (12).
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23. The method according to claim 22, wherein said method is performed repeatedly with a

24.

25.

fixed frequency or whenever updated specifications (240) are provided or whenever the

state of the control system (12) has changed.

A computer program comprising computer-readable instructions, such that said instruc-
tions, when executed by a computer device, cause said computer device to implement a

method according to any one of the preceding claims.

A device for synthesizing a correct-by-construction controller for a control system (12), the
device being configured to execute the method of any one of claims 1 to 23, wherein the de-

vice comprises:

at least two processing elements (104, 108, 110, 114);

a computing platform interface (116) coupled to the at least two processing elements
(104, 108, 110, 114) for exchanging data with the at least two processing elements (104,

108, 110, 114);

a resource identification unit (118) coupled to the computing platform interface (116)
for identifying available processing elements of the at least two processing elements

(104, 108, 110, 114);

an interface unit (122) for receiving the mathematical model of the control system (12)

and the at least one specification (240) and for providing the synthesized controller;

a management engine (124) coupled to the resource identification unit (118) and the
interface unit (122) for determining the distribution over the available processing ele-
ments for the comparison of the successor states with the initial winning set (230) and
for determining corresponding queues (208, 210, 212, 214) of tasks for execution on

the available processing elements;

a task scheduling unit (120) coupled to the computing platform interface (116) and the
management engine (124) for receiving said queues (208, 210, 212, 214) of tasks from
the management engine (124) and managing the execution of the queues (208, 210,

212, 214) of tasks on the available processing elements.

26. The device according to claim 25, wherein the management engine (124) is further config-

ured to determine the distribution over the available processing elements for the determina-
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tion of the successor states and for determining corresponding queues (166, 168, 170, 172) of

tasks for execution on the available processing elements.

The device according to claim 25 or 26, wherein the resource identification unit (118) is con-

figured to determine the type of processing element for each available processing element.

The device according to any one of claims 25-27, wherein the resource identification unit
(118) is configured to determine the computing power and/or available memory resources of

the available processing elements.

The device according to claim 28, wherein the resource identification unit (118) is config-
ured to determine the computing power of the available processing elements by executing
tasks associated with the determination of the successor states and/or the comparison of the

successor states with the initial winning set 230 on the available processing elements.

The device according to any one of claims 25-29, wherein said processing elements (104,
108, 110, 114) are processing elements of a central processing unit (CPU) (102), a graphics
processing unit (GPU) (106), a field-programmable gate array (FPGA), an application-
specific integrated circuit (ASIC) and/or another type of hardware accelerator (HWA) (112).

The device according to any one of claims 25-30, wherein said interface unit (122) is config-
ured to receive the mathematical model of the control system (12) and the at least one speci-
fication (240) and to provide the synthesized controller via a computer network, in particu-

lar the internet.

The device according to any one of claims 25-31, further comprising a logging unit (126)
coupled to the management engine (124) for logging data received from the management

engine (124).
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