
Complexity Analysis of a Parallel Algorithm
for Symbolic Controller Synthesis

Bachelor Thesis

Scientific work to obtain the degree
B.Sc. Electrical Engineering and Information Technology

Department of Electrical and Computer Engineering
Technische Universität München

Supervised by

Submitted by

Filed On

Prof. Dr. Majid Zamani & Mr Mahmoud Khaled

Assistant Professorship of Hybrid Control Systems

TUM Department of Electrical and Computer Engineering

Guay Wei Jun Gordon

München, on 12 June 2018

Abstract

This Bachelor Thesis represents an already-established algorithm
for the synthesis of symbolic controllers into a parallel algorithm for
pFaces. This thesis begins with an overview of OpenCL, Big-O No-
tation, Search Algorithms, Parallel Algorithms and analysing parallel
algorithms in order to provide a better understanding of the complex-
ity and design of the algorithms in relation to the two sub-tasks in
Fixed-point (FP) kernels under pFaces. The first of the two tasks is
Abstract Algorithm. Second, Synthesis algorithm. For each individ-
ual FP kernels, a parallel algorithm is represented from an established
C code by implementing a combination of C++ and OpenCL.The al-
gorithms are mainly described for the PRAM(Parallel Random Access
Machine). Following that, an evaluation of the application of parallel
complexity is conducted. From these two tasks, they will be able to
integrate into pFaces. In addition, it reviews and explains the the-
ory of parallel computation. Finally, it presents an understanding to
parallel algorithms, OpenCL and complexity theory.

i

Acknowledgement

For Mum and Dad, the bastions of support during my pursuit of this Bache-
lor’s degree. You have provided me with unyielding love and encouragement
over the years. Nothing can express my gratitude.

I wish to thank my supervisors Prof. Dr Majid Zamani and Mr Mahmoud
Khaled for introducing me to parallel algorithms, OpenCL and the complex-
ity theory for algorithms. I am grateful to their dedication, encouragement
and patience with me during this Bachelor Thesis in Munich.Also, to the pro-
fessionals of Department of Hybrid Control System and TUM Asia, without
their invaluable assistance and support, the completion of this thesis would
not have been possible.

ii

Contents

1 OpenCL - Open Computing Language 1
1.1 What is OpenCL? . 1
1.2 Basic Ideas of OpenCL Programs 1
1.3 OpenCL Terms . 1
1.4 Why are there developments for OpenCL? 2
1.5 Goals of OpenCL . 2
1.6 Uses of OpenCL . 2
1.7 OpenCL Platform Model . 3
1.8 OpenCL Memory Model . 3

1.8.1 Private Memory . 4
1.8.2 Local Memory . 4
1.8.3 Global Memory . 5
1.8.4 Constant Memory . 5
1.8.5 Rules of OpenCL Memory Model 5

1.9 Setting up an OpenCL Program 5
1.10 Understanding the Host Program 6
1.11 Global Dimensions . 6
1.12 Local Dimensions . 6
1.13 Data Movement . 7

2 Big-O Notation 8
2.1 Understanding Big-O notation 8

2.1.1 Upper and Lower bounds 8
2.2 Orders of Functions . 9
2.3 Functions of Big-O notation 9
2.4 Expression of Algorithms with Big O notation 10
2.5 Growth Functions of Big-O notation 10

2.5.1 How Big-O grows with respect to input 10
2.5.2 How fast runtime grows 10
2.5.3 Relative to input . 10

2.6 Typical Growth Behaviour of Big-O Functions 11
2.7 Properties of Calculations . 11
2.8 Big-O - Exponential Complexity Example O(2n) 12

3 Computation of Big-O Notation 14
3.1 Linear Search Algorithm (LSA) 14

3.1.1 Execution . 14
3.1.2 Run Time Analysis . 14

3.2 Binary Search Algorithm (BSA) 14

iii

3.2.1 Execution . 14
3.2.2 Runtime Analysis of BSA 15

3.3 Breadth First Search Algorithm(BFS) 15
3.3.1 Execution . 15
3.3.2 Space Complexity for BFS 16
3.3.3 Time Complexity for BFS 17
3.3.4 Adjacency Lists . 17
3.3.5 Graph Terminologies 17
3.3.6 Properties of Breadth First Search 17
3.3.7 Applications of Breadth First Search 18

4 Parallel Algorithms 19
4.1 Introduction . 19
4.2 Why is there development for parallel algorithms? 19
4.3 Parallel Computing . 20

4.3.1 Resources of Parallel Computing 20
4.4 Measures used for evaluating the performance of a Parallel

Algorithm . 21
4.5 Background . 22

5 Models of Parallel Computation 25
5.1 Models of Computation . 25

5.1.1 SISD Computers . 26
5.1.2 MISD Computers . 26
5.1.3 SIMD Computers . 27
5.1.4 MIMD Computers . 27

5.2 The Shared - Memory Model 27

6 The Parallel Random Access Machine (PRAM) 31
6.1 Variants of PRAM . 31
6.2 Examples of Parallel Algorithms 33

6.2.1 Sum on the PRAM . 33
6.2.2 Matrix Multiplication of the PRAM 34

7 Analysing Parallel Algorithms 36
7.1 Parallel Complexity Theory 36

7.1.1 Sequence of Statements 36
7.1.2 If - Then - Else . 36
7.1.3 Loops . 37
7.1.4 Nested Loops . 37

7.2 Statements with function or procedure calls 37

iv

7.3 Amdahl’s Law . 38
7.3.1 History of Amdahl’s law 38
7.3.2 Introduction to Amdahl’s law 38
7.3.3 Example of Amdahl’s Law 39

8 Representing the 2 Algorithms from pFaces 40
8.1 Abstractions Algorithm . 40
8.2 Synthesis Algorithm . 41

v

1 OpenCL - Open Computing Language

1.1 What is OpenCL?

OpenCL (Open Computing Langauge) is a specification standard for the
development of data parallel applications. Developed by Khronos Group, it
is a programming framework which integrates parallel computing across mul-
tiple vendors and hardwares. It uses low-level language for high-performance,
heterogenous, data parallel computation.

OpenCL takes advantage of all the computing power on Personal Com-
puters, including processors, Graphic Processing Units (GPUs) and Central
Processing Units (CPUs). It accelerates parallel computations and is most
appropriate for the computing of devices with large amounts of data par-
allelism. Each Computation problem breaks down into smaller lots and is
executed with the various processing unit. [1]

1.2 Basic Ideas of OpenCL Programs

OpenCL is a programming language for writing parallel programs to leverage
on the advantages of the number of processors and multi-core architecture in a
computing system. An OpenCL program consists of three basic components:
Compute Devices - processors such as GPUs and CPUs; Data Buffers - a
region of the physical memory storage used to temporarily store data and;
Kernels - an OpenCL program that processes blocks of data stored in data
buffers, where the data is usually organised in N dimensional arrays. [2]

1.3 OpenCL Terms

1. Platform - Vendor Specific OpenCL implementation

2. Context - Devices selected to work together

3. Device - Physical devices supporing OpenCL, CPU/GPU/Accelerator

4. Host - Client Side calling code, the code you write from your application

5. Kernel - Blueprint function which does the work

6. Work Item - A unit of work executing a kernel

7. Work Groups - A collection of work items

1

8. Command Queue - The only way to communicate with a device, send
it commands

9. Memory - local / global / private / constant

10. Buffer - Area of memory on the GPU

11. Compute unit - Basically a work group and its local memory [3]

1.4 Why are there developments for OpenCL?

OpenCLs computational performance has shifted from clock speed to cores,
having multiple CPUs and programmable GPUs. In addition, OpenCL sup-
ports parallel computations which means that it has the ability to execute
the same code on various architectures. Further, OpenCL is device agnostic.
In other words, it not only has the flexibility to move from device to device,
but, it can be anything so long as it fulfils the requirement of executing the
program.

1.5 Goals of OpenCL

The goals of OpenCL can be described as follows:

1. Single Computing Model for clean Application Programming Interface
(API)

2. Easy to use and needs to be lightweight and efficient

3. Minimum errors for math functions

4. IEEE-754 compliant in round behaviour

5. Ability to write a code and run it on different accelerator devices

1.6 Uses of OpenCL

OpenCL is frequently used to leverage CPUs, GPUs and other processors
to accelerate parallel computations. It is able to obtain significant speedups
for computationally intensive applications and is applied in many industries
such as medical and financial institutions. OpenCL is also used for image,
video and audio processing. Additionally, OpenCL has the ability to write
accelerated portable code across different devices and architectures. [4]

2

1.7 OpenCL Platform Model

The OpenCL Platform Model consists of one Host and one or more OpenCL
Devices. Each of these devices is composed of one or more compute units.
Each compute unit is divided into one or more processing elements as shown
in Figure 1 below. The memory in the model is further divided into host
memory and device memory.

Figure 1: The OpenCL Platform Model [1]

1.8 OpenCL Memory Model

The Open CL Memory Model consists of four virtual memory regions.

1. Private Memory

2. Local Memory

3. Global Memory

4. Constant Memory

3

Figure 2: An OpenCL Memory Model [1]

1.8.1 Private Memory

In a work-items private memory, there is scarcity in resources and only a
few tens of 32-bit words per work-item can be executed on a GPU. Private
memory is created and managed by delcaring it statically inside a kernel. If
too much memory is used, it either spills into the global memory or reduces
the number of work-items which can be executed at the same time.This may
result in a decrease in performance. [2]

1.8.2 Local Memory

A work-group’s shared memory usually consists of tens of kilobytes per com-
pute unit. The local memory is used to hold data which can be reused by all
the work-items in a workgroup. Due to multiple work-groups running con-
currenly on each compute unit, only a fraction of the total local memory size
may be available to each workgroup. Local memory is created and managed
by host with the following set of instruction: [2]

cl :: LocalSpaceArg localmem = cl::Local(sizeof(float)*N);

4

1.8.3 Global Memory

In the global memory, read or write access is available for all work-items and
all work-groups.

1.8.4 Constant Memory

In the Constant Memory, there is only read access for all work-items and
work-groups.[2]

1.8.5 Rules of OpenCL Memory Model

1. Threads can share memory with other threads in the same Work-Group

2. Threads can synchronize with other threads in the same Work-Group

3. Global and Constant Memory is accessible by all threads in all work-
groups

4. Global and Constant Memory is often cached inside a Work-Group

5. Each thread has registers and private memory

6. Each Work-Group has a maximum number of registers it can use.

1.9 Setting up an OpenCL Program

1. Setup

• Get the devices

• Create a context (for sharing between devices)

• Create command queues (for submitting work)

2. Compilation

• Create a program

• Build the program (compile)

• Create Kernels

– get global id() uniquely identifies each work item executing
the kernel

– get local id() uniquely identifies each work item in a work
group

5

3. Create memory objects

4. Enqueue writes - to copy data to the GPU

5. Set the kernel arguments

6. Enqueue kernel executions

7. Enqueue reads to copy data back from the GPU

8. Wait for all commands to finish (Wait is needed that the enqueue
actually executes the queue because OpenCL is asynchronous and runs
at the same time)

1.10 Understanding the Host Program

1. The host program is the code that runs on the host to:

• Setup the environment for the OpenCL program

• Create and manage kernels

2. There are 5 simple steps in a basic host program:

• Define the platform... platform = devices + context + queues

• Create and Build the program (dynamic library for kernels)

• Setup memory objects

• Define the kernel (attach arguments to kernel function)

• Submit commands .. transfer memory objects and executes the
kernel

1.11 Global Dimensions

Parallelism is defined by the 1D,2D or 3D global dimensions for each kernel
execution (Kernel is the item you are executing). A work-item (thread) is
executed for every point in the global dimensions.

1.12 Local Dimensions

The global dimensions are broken down evenly into local work-groups.
Each work-group is logically executed together on one compute unit. Syn-
chronization is only allowed between work-items in the same work-group

6

1.13 Data Movement

Data movement involves getting the data to the device and back. Therefore,
the user has to allocate global data, write it from the host, allocate local
data and copy data from global to local memory. [4]

7

2 Big-O Notation

The Big-O notation, also known as Landau’s symbol, is a symbolism used
in complexity theory to describe the asymptotic behaviour of functions. It
is used in Computer Science to illustrate the performance and complexity of
an algorithm. The Big-O notation depicts the speed of function’s growth or
decline and specifically describes the worst-case scenario or execution time
of the algorithm.Big-O describes an upper bound of the algorithm.With the
help of the Big-O notation, we are able to make a statement on the efficiency
of an algorithm.

Big-O analysis not only provides a good illustration to evaluate an al-
gorithm’s efficiency at a high level, but also demonstrates the expected be-
haviour in relation to input sizes. An understanding of the Big-O will allow us
to further understand a function and determine the type of runtime expected
and whether any improvements can be made.[5]

2.1 Understanding Big-O notation

How efficient is a particular algrothim? Efficiency covers a span of resources
which includes memory usage, disk usage, and CPU (time usage). Perfor-
mance describes how much time or memory is used when the program is
running.
Complexity describes how the algorithm scales when the size of the problem
gets arbitrarily large. When considering the efficiency of an algorithm, we
always look at the worst case scenario. [6]

2.1.1 Upper and Lower bounds

A substantial part of computer science research consists of designing and
analysing new algorithms which are more efficient. This would establish an
‘upper’ bound. Most of the upper bounds focuses on the execution time
and describes the asymptotic behaviour and is expressed using the Big-O
notation.
An Upper Bound is established by the algorithm using the least number
of steps in the worst case scenario. Conversely, a Lower Bound indicates
to us that no algorithm will be able to solve problem in lesser number of
steps in the worst case. Thus, there will not be a reason for trying to design
algorithms which would be more efficient.

8

2.2 Orders of Functions

Notation Name Example
O(1) Constant Calculating (−1)n

O(n) Linear Searching for item in an array
O(n2) Quadratic Selection Sort, Insertion Sort
O(n3) Quadratic Multiplication of 2 n× n matrices

O(log(n)) Logarithmic Binary Search
O(n log(n)c) Linearithmic Heapsort, merge sort

O(cn) Exponential Solving travelling salesmen problem by DP
O(n!) Factorial Solving travelling salesmen by brute force

2.3 Functions of Big-O notation

O(1) describes an algorithm that will execute within the same time regard-
less of the size of the input data set. The input array could be 1 or many
items, but O(1) would only require one “step”. The order of 1 also means
that it is a constant.
O(n) describes an algorithm which as a lineary growth in performance in
direct proportion to the size of the input data. O(n) is usually seen as a
linear search finding all values one by one. It is executed by locating one
match in the whole array. Each of the input accounts for a smaller share of
processing.
O(n2) describes an algorithm with a performance behaviour that is directly
proportional to the square of the size of the input data. It is seen as a square
running time and is typical of algorithms that all pairwise combinations off
data item process. An example of this algorithm would be multiplying a
matrix by a vector.
O(n3) describes an algorithm that is usually executed with the multiplication
of matrices
O(2n) describes an algorithm whose growth doubles with each addition to
the input data set. The curve of O(2n) function is exponential. The curve
starts off slow, but exponentiates quickly. An example of the O(2n) function
is the recursive calculation of Fibonacci nummbers.
O(log n) shows that the algorithm executes in proportion to the logarithm
of the problem size. (i.e the algorithm increases with n at a slower rate).
As the amount of data increases with an increase in n, the log(n) result will
be dramatically different. An example of the O(log(n)) function algorithm
would be the binary search algorithm.
O(n log n) describes a more advanced sorting algorithm, quicksort, merge-
sort. Mergesorts sorts the elements in the array recursively. This means that

9

the algorithms to the problem is solved by dividing it into sub-problems.
This is much more efficient in looking for the particular element as values
are onlly compared once.
O(cn) describes an exponential time. An example would be a recursive Fi-
bonacci implementation

2.4 Expression of Algorithms with Big O notation

The primary function of order notation in computer science is to compare the
efficiency of the various algorithms. Big-O notation allows the programmer to
analyse the efficiency of the algorithms and better evaluate the performance
of an algorithm.

2.5 Growth Functions of Big-O notation

The Big-O notation enables us to represent the asymptotic growth of a func-
tion neglecting the constants and lower-order additive terms. The order of
growth is determined by the fastest growing term.

2.5.1 How Big-O grows with respect to input

In the Big-O notation, the runtime is expressed by how quickly it grows
relative to the input and when the input gets arbitarily large.

2.5.2 How fast runtime grows

The runtime of the algorithm is dependant on the speed of the processor and
therefore, the Big-O notation represents how quickly the runtime grows

2.5.3 Relative to input

In the Big-O notation, the size of the input n affects the growth of the
runtime. The runtime growth is evaluated by means of a variable. As such,
the size of the input is used in terms of a variable.

10

2.6 Typical Growth Behaviour of Big-O Functions

Figure 3: Growth Behaviour of Functions [7]

2.7 Properties of Calculations

The following shows the calculation rules of the Big-O notation:

1. f(n) = O(f(n))

2. Removing the multiples
c×O(f(n)) = O(f(n)), where c is a constant

3. Sum Rule:
O(f(n)) +O(f(n)) = O(f(n))

4. Maximum values:
O(f(n)) +O(g(n)) = O(max(f(n), g(n)))

5. O(O(f(n))) = O(f(n))

6. Multiplication of terms:
O(f(n))×O(g(n)) = O(max(f(n), g(n)))

7. O(f(n)× g(n)) = f(n)×O(g(n))

11

2.8 Big-O - Exponential Complexity Example O(2n)

If algorithm A’s worst-case time complexity tA(n)=(n2), and algorithm B’s
worst-case time complexity tB(n)=(2n), O(2n) will grow much faster than
O(n2) after input size n is larger than a certain value, as shown in Figure 4.

Figure 4: Comparison of curve between O(n2) and (2n)

Multiplying and adding constants and other terms shifts and stretches
the graphs. This may result in both curves crossing paths. However the
exponential function will still grow much faster than the polynomial curve.

The example in Figure 5 shows Algorithm A’s worst-case time complexity
tA(n)=10(n2)+1000 & Algorithm B’s worst-case time complexity tB(n)=2n

10

For small inputs, Algorithm A, whose time complexity is quadratic, takes
more time than algorithm B, whose time complexity is exponential. How-
ever, when the input size exceeds 15, Algorithm A becomes faster and, sub-
sequently, the larger the input, the larger the advantage Algorithm A has
over Algorithm B.[8]

12

Figure 5: Comparison of curve between tA(n)=10(n2)+1000 and tB(n)=2n

10

13

3 Computation of Big-O Notation

3.1 Linear Search Algorithm (LSA)

LSA is a search which traverses a collection of elements until the desired
element is found or until the entire collection of elements has been searched.

3.1.1 Execution

The linear search is also known as the sequential search where it begins with
a first element and sequentially steps through an array, searching for the
particular element until the particular element is located. The algorithm
iterates across the array from left to right, searching for a particular element
until it is found.

3.1.2 Run Time Analysis

In the best case scenario, the search algorithm will produce immediate results
where T (n) = O(1). In the worst case scenario, the search has to browse
through all the elements in the array which produces T (n) = O(n). In an
average case, a successful search on the assumption that each arrangement
of the elements is equally likely, therefore,

T (n) =
1

n
=

n∑
i=1

i =
n+ 1

2
= O(n)

The LSA is a very simple process and is well suited for single-linked
list. This procedure is also suitable for unsortable array, however it is only
practical for small values of n.

3.2 Binary Search Algorithm (BSA)

Binary Search Algorithm is an algorithm which searches a sorted array by
reducing the search area by half each time. The search algorithm begins with
an interval that covers the whole array. If the target number is less than the
item in the middle interval, the search will then proceed only with the lower
half of the array. This step is repeated until the value is located or if the
interval is empty.

3.2.1 Execution

The BSA adopts the approach of divide and conquer. With each step, it
halves the search area by looking for an element with the element at the

14

center position of the entire array. The goal is to locate the element in
the middle. If the ideal number is equal to that, the search is completed.
Otherwise, the the search area will be reduced by half with each step.

3.2.2 Runtime Analysis of BSA

The advantage of a binary search over a linear search is astounding for search-
ing in an array for large numbers. In the worst case scenario, the search
area must be halved until it just contains 1 unit, which has a complexity of
O(log(n)). In the best case scenario, the algorithm obtains the immediate
result which has a complexity of O(1). For example, let input size n = 2
million, a linear search requires in the worst case of 2 million comparisons,
whereas a Binary Search only requires log (2 × 106) ≈ 20 comparisons. The
Binary Search Algorithm is not suited for data that changes frequently.

3.3 Breadth First Search Algorithm(BFS)

BFS is an approach most commonly used to traverse graphs.The process
of Graph Traversal includes visiting all vertexes and edges only once in a
well-defined order. In certain graph algorithms, the user has to ensure that
each vertex of the graph is visited only once. The order of the vertices being
visited is also important and it varies depending on the algorithm.

3.3.1 Execution

It begins with traversing from a starting node and subsequently traverses the
graph with the surrounding neighbour nodes which are connected directly to
the starting node. Subsequently, it proceeds on to the next-level neighbour
nodes.

There are usually 2 types of graphs, directed and undirected. A directed
graph has no particular set of directions, whereas an undirected graph has
no particular set of directions.

Figure 7 shows a graph with weights, G = (v, e) where v = set of vertices.
e = set of edges. Edges may or may not have weights. We have to take note
that an edge connects two vertices and can be denoted by it’s 2 endpoints.

15

Figure 6: Example of Directed & Undirected Graph

Figure 7: A graph ‘G’ with 5 vertexes & weights

3.3.2 Space Complexity for BFS

As all nodes of a level has to be saved until their child nodes in the next
level has been visited, the space complexity is proportional to the number of
nodes at the deepest level. For example, given a branching factor b and dept
d, the asymptotic space complexity is the number of nodes at the deepest
level O(bd). If the number of vertices in the graph is known ahead of time
and additional data structures are used to determine which vertices have
already been added to the queue, the space complexity can also be expressed
as O(|V|) where |V| is the cardinality of the set of vertices.
In the worst case, the graph has a dept of 1 and all vertices must be stored.
Since it is exponential in the dept of the graph, BFS is often impractical for
large problems on systems with bounded space. [9]

16

3.3.3 Time Complexity for BFS

In the worst case scenario in BFS, the search has to consider all paths to all
possible nodes. The time complexity of BFS would be 1+b2+b3+...bd which
is O(bd).
The time complexity can also be expressed as O(|E|+|V|) since every vertex
and every edge will be explored in the worst case. [9]

3.3.4 Adjacency Lists

The idea of adjacency lists is that you have an array (Adj) of size V. Each
element of the array is a pointer to the linked list and the array is indexed
by a vertex, Adj[u].

3.3.5 Graph Terminologies

1. A path is a walk where no vertex is repeated

2. A walk from x to y is a sequence of vertices

3. A cycle is a walk where no intermediate vertex gets repeated and y = x.

Figure 8: Graph Terminologies

3.3.6 Properties of Breadth First Search

1. Breadth First Search will always reach its goal if edges are finite.

2. The queue always consists of ≥ 0 vertices of distance k from s, followed
by ≥ 0 vertices of distance k + 1.

3. In any connected graph G, BFS computes the shortest paths from s to
all other vertices in time proportional to O(E + V).

17

3.3.7 Applications of Breadth First Search

1. Web Crawling - Google

2. Social Networking Facebook -locating friends near you or friends of
friends

3. Checking mathematical conjectures

4. GPS Navigation Systems - BFS is used to find alll neighboring locations

5. Path Finding - We can use Breadth First Depth First Traversal to find
if there is a path between two vertices.

18

4 Parallel Algorithms

4.1 Introduction

This chapter introduces several parallel models and how to specify a suitable
framework for presenting and analysing parallel algorithms.
Algorithms which are executed step by step are known as sequential algo-
rithms.Algorithms where several operations are executed simultaneously are
referred to as parallel algorithms. A parallel algorithm is further defined as
a process which simultaneously executes and communicates with each other
to solve a given problem.
To design an efficient algorithm, the efficient use of available resources is
crucial to maximise the speedup of the parallel algorithm. When the paral-
lel algorithm has been developed, the efficiency of the algorithm has to be
measured to evaluate its performance and efficiency on the parallel machine.
A method used to measure the efficiency is run time of the algorithm. Run
time can be referred to as the completion time for the algorithm to be ex-
ecuted completely. To be more precise, it can be described as the elapsed
time between the start of the first processor until the termination of the final
processor.
Directed acyclic graphs (DAGs) is used to represent certain parallel
computations in a natural way.
Shared-memory model is where a number of processors communicate
through a common global memory. It offers an attractive framework for
the development of algorithmic techniques for parallel computations.[10]

In the discussion of this Bachelor Thesis, the shared-memory model
will be the primary platform for designing and analyzing parallel algorithms.

4.2 Why is there development for parallel algorithms?

Over the years, the advancements in technology has doubled the regular
CPU clock-speed, enabling algorithms to be computed faster. However the
CPU has reached a maximum clock rate of 3Ghz in 2002. This was achieved
by Intel with a Pentium 4 processor. Following then, manufacturers have
turned to developing CPUs with more cores instead of faster cores. Because
of the switch, computation has changed from sequential opreations to parallel
operations. The parallelism in an algorithm has proved to be able to yield
improved performance on various computers. An example would be on a
parallel computer where operations in a parallel algorithm can be executed

19

simultaneously by different processors.[11]
Parallel algorithms opens up the possibility of assigning more resources to a
task and shortening the process of completion. In return, this will save time
and money. Parallel algorithms also have the ability to solve larger and more
complex problems, of which is impractical and impossible to solve on a single
computer due to the limited amount of memory available.

4.3 Parallel Computing

Hitherto, software has been written for serial computation all along. The
program is executed on a single computer with a single Central Processing
Unit (CPU), and is broken into a discrete series of instructions. Thereafter,
instructions are executed one after another, however only one instruction
may be executed at any point in time.
Parallel Computing is the simultaneous use of multiple compute resources to
solve a computation problem. This allows the program to be executed using
multiple CPUs. This is achieved by breaking the problem down into discrete
parts which can be solved concurrently. Thus, allowing the instructions from
each part to be simultaneously executed on different CPUs. [12]
Parallel computing is an evolution of serial computing that attempts to em-
mulate what has always been the state of affairs in the natural world: many
complex, interrelated events happening at the same time, yet within a cer-
tain sequence. Some examples include: meteorological patterns, rush hour
traffic in cities, automobile assembly line, and daily operations within a busi-
ness. The goal of parallel processing it to perform computations faster than
a single processor. This is achieved by implementing a number of processors
concurrently to execute the task.[13]

4.3.1 Resources of Parallel Computing

The compute resources includes a single computer with multiple processors,
or computers connected by a network. A parallel computer is simply a
collection of processors, typically of the same type, interconnected in a cer-
tain fashion to allow the coordination of their activities and the exchange of
data.[12]

20

Figure 9: Parallel Computing Model

4.4 Measures used for evaluating the performance of
a Parallel Algorithm

Given P to be a computational problem and n to be its input size. The
sequential complexity of P is T*(n). There is a sequential algorithm that
solves P within this time bound, and also proves that no sequential algorithm
can solve P faster. Let A be a parallel algorithm that solves P in time Tp(n)
on a parallel computer with p processors. Then the Speedup achieved by
A is defined to be

Sp(n) =
T ∗(n)

Tp(n)

Sp(n) represents the speedup factor obtained by algorithm A when p pro-
cessors are available. Ideally since Sp(n) ≤ p, we aim to design algorithms
that achieve Sp(n) ≈ p. However, certain factors attribute to a different
calculation. This comprises of insufficient concurrency in the computation,
delays introduced by communication, and overhead incurred in synchroniz-
ing the activities of various processors and in controlling the system. We
have to take note that T1(n), the running time of the parallel algorithm A
when the number p of processors is equal to 1, is not necessarily the same
as T*(n). Therefore the speedup is mesaured relative to the best possible
sequential algorithm. It is common practice to replace T*(n) by the time
bound of the best known sequential algorithm whenever the complexity of
the problem is not known.

A different performance measure of the parallel algorithm A would be the

21

calcuation of its efficiency, defined by

Ep(n) =
T1(n)

pTp(n)

.

This measure provides an indication of the effective utilization of the p
processors relative to the given algorithm. A value of Ep(n) ≈ 1, for some p,
indicates that algorithm A runs approximately p times of the processors is
doing “useful work” during each time step relative to theh total amount of
work required by algorithm A.

There exists a limiting bound on the running time, denoted by T∞(n),
beyond which the algorithm cannot run any faster, no matter what the num-
ber of processors. Hence, Tp(n) ≥ T∞(n) for any value of p, and therefore

the efficiency Ep(n)≤ T1(n)
pT∞ (n)

Therefore, the efficiency of an algorithm degrades quickly as p grows be-
yond T1(n)

T∞ (n)
. [10]

4.5 Background

Algorithms are often expressed in a high-level language and each algorithm
begins with a description of its input and output. Subsequently a statement
which consists of one or more sequences are added. The following statements
below are most commonly used developing parallel algorithms. [10]

Algorithm 1: Assignment statement

1 begin
2 variable:= expression
3 end

The expression on the right of Algorithm 1 is evaluated and assigned to
the variable on the left.

22

Algorithm 2: Begin / End Statement

1 begin
2 statement
3 statement
4 .
5 .
6 .
7 statement

8 end

Algorithm 2 defines a sequence of statements that must be executed in
the order in which they appear.

Algorithm 3: Conditional Statement

1 begin
2 if (condition) then
3 statement
4 else
5 statement
6 end

7 end

In algorithm 3, the if condition is evaluated, and the statement follow-
ing then is executed if the value of the condition is true. The else part
is optional; it is executed if the condition is false. In the case of nested
conditional statements, we use braces to indicate the if statement associated
with each else statement.

Algorithm 4: Loops

1 begin
2 for (variable 1 to variable 2) do
3 statement
4 end

5 end

Algorithm 4 demonstrates a for loop being executed: If the initial value
is less than or equal to the final value, the statement do will be executed, and
the value of the variable is incremented by one. Otherwise, the execution of
the loop terminates. The same process is repeated with the new value of the
variable, until that value exceeds the final value, in which case the execution
of the loop terminates.

23

Algorithm 5: Exit Statement

1 begin

2 end

Algorithm 5 explains an exit statement which causes the whole algorithm
to terminate.

The time and space bounds on the resources required by a sequential
algorithm are measured as a function of the input size which reflects the
amount of data to be processed. In our context, we are most interested in
the worst-case analysis of algorithms. Therefore, given an input size n,
each resource bound will represent the maximum amount of the particular
resource it required by any instance of size n. These bounds are expressed
asymptotically using the following standard notation.

T (n) = O(f(n)) if there exists positive constants c and n0 such that
T (n)≤ cf(n), for all n ≥ n0

T (n) = Ω(f(n)) if there exists positive constants c and n0 such that
T (n)≥ cf(n), for all n ≥ n0

T (n) = O(f(n)) if T (n) = O(f(n)) and T (n) = Ω(f(n))

The running time of a sequential algorithm is calculated by estimating
the number of basic operations required by the algorithm as a function of the
input size. In general, a unit time is calculated for each operating reading
from and writing into the memory, arithmetic operations and logic opera-
tions. The logic operations includes operations such as adding, subtracting,
comparing and multiplying two numbers. The model most suitable for our
purpose in this thesis will be the Random Access Memory (RAM) and
Parallel Random Access Memory (PRAM). These memories assumes
the presence of a central processing unit with access to a random-access
mmory. Subsequently, these memories handle the input and output opera-
tions. [10]

24

5 Models of Parallel Computation

The RAM model has been used successfully to predict the performance of se-
quential algorithms. Modeling parallel computaiton is much more challenging
given the new dimension introduced by the presence of many interconnected
processors. We are primarily interested in algorithmic models that can be used
as general frameworks describing and analyzing parallel algorithms. Ideally,
we would like our model to satisfy the following (conflicting) requirements:

1. Simplicity: The model shoud be simple enough to describe paral-
lel algorithms easily, and to analyze mathematically important per-
formances measures such as speed, communication, and memory uti-
lization. In addition, the model should not be tied to any particular
class of architectures, and hence should be as hard-ware independent
as possible.

2. Implementability: The parallel algorithms developed for the model
should be easily implementatble on parallel computers. In addition,
the analysis performed should capture in a significant way the actual
performance of these algorithms on parallel computers.

There are 3 commonly used parallel models. They are: parallel com-
parison trees, sorting networks and Boolean Circuits.

In sequential algorithms, the RAM model is used to successfully predict
the performance. In order to model parallel computation, there is a new
set of challenges with the introduction of many interconnected processors.
To develop an ideal model, we aim to keep the model simple and great in
implementation. [10]

5.1 Models of Computation

In both sequential and parallel computers, Parallel Computing operates by
executing a set of instructions called algorithms. These set of instructions or
algorithms instructs the computer about what it has to execute in each step.
Depending on the instruction and data stream, computers can be classified
into four categories:

1. Single Instruction Stream, Single Data stream (SISD)

2. Multiple Instruction Stream, Single Data stream (MISD)

3. Single Instruction Stream, Multiple Data stream (SIMD)

4. Multiple Instruction Stream, Multiple Data stream (MIMD)

25

5.1.1 SISD Computers

An SISD computer consists of a single processing unit receiving a single
stream of instructions from the control unit and operates it on a single stream
of data from the memory unit as shown in the figure below. At each step, the
processor receives only one instruction from the control unit and operates on
a single data from the memory unit. [14]

Figure 10: SISD

5.1.2 MISD Computers

In an MISD Computer, it contains multiple control units, multiple processing
units, and one common memory unit. This would mean that there are n
streams of instructions and one stream of data. Each of the processor here
has its own control unit and share a common memory unit. All the processors
obtain instructions individually from their own control unit and operate on
a single stream of data as per the instructions they have received from their
respective control unit. Therefore, parallelism is achieved by allowing the
processors to do different things at the same time. [14]

Figure 11: MISD

26

5.1.3 SIMD Computers

For the SIMD computer, it is a parallel computer which consists of one con-
trol unit, n identical multiple processing units, and shared memory. All
the processors in this computer operate under the control of a single in-
struction stream issued by a central control unit. The processors in this
computer operate synchronously. At each step, all the processors execute
the same instruction, while the remaining processors wait for the next set of
instructions. This class of computer can be further described as the Parallel
Random-Access Machine (PRAM) which will be elaborated in further detail
in the subsequent chapter. [14]

Figure 12: SIMD

5.1.4 MIMD Computers

The MIMD Computers have multiple control units, multiple processing units,
a shared memory or interconnection network. In this class of computers, it
has its own control unit, local memory unit, and arithmetic and logic unit.
Each of these units receives a different set of instructions from their respective
control units and operates on different sets of data.

5.2 The Shared - Memory Model

In a shared-memory model, many processors have access to a single shared
memory unit. The shared memory model consists of a number of processors
with individual local memory and it has the ability to execute its individual
local program. All the processes in the shared memory model exchange data
through communication with a shared memory unit. The individual proces-
sor has to be identified with a processor number or id .

27

There are 2 basic modes of operation in a shared memory model.. Firstly,
synchronous mode. In this mode, all the processors operate synchronously
under the control of a common clock. This synchronous shared-memory
model is known as parallel random-access machine (PRAM) model.
Secondly, asynchronous mode. The processors operate under a separate
clock in this mode. The programmer has to ensure the correct values are
obtained, since the value of a shared variable is deteremined dynamicallly
during the execution of the programs of the different processors.

In the following explanation, the shared memory model is a multiple
instruction multiple data (MIMD) type. This signifies that the pro-
cessor willl be able to execute instructions and data which are different from
those being executed or operated by any other processor during any given
time unit. For a given algorithm, the size of data transferred between the
shared memory and local memories of the different processors represents the
amount of communication required by the algorithm.[10]

The following algorithmic language is used for the 2 algorithms below.

global read(X, Y)

global write(U, V)

The effect of global read instruction is to move the block of data X stored
in the shared memory into the local variable Y .
The effect of global write is to write the local data U into the shared vari-
able V .

In the following example, we are demonstrating a Matrix Vector Multi-
plication on the Shared- Memory Model.

Let A be an n × n matrix, and let x be a vector of order n, both stored in
the shared memory. Assume that we have p ≤ n processors such that r=n

p
is

an integer and that mode of operation is asynchronous. Let A be partitioned
as follows:

A =

A1

A2

:
Ap

where each block Ai is of size r × n. The problem of computing the

product y=Ax can be solved in the following: Each processor Pi reads Ai

28

and x from the shared memory, and performs the computation z=Ax, and
finally stores the r components of z in the appropriate components of the
shared variable y

In algorithm 6, the notation A(l:u, s:t will be used to denote the sub-
matrix of A consisting of rows l, l+1, ...,t. The same notation can be used
to indicate a subvector of a given vector. Each processor executes the same
algorithm. [10]

Input: An n × n matrix A and a vector x of order n residing in the
shared memory. The initialzed local variables are (1) the order n, (2) the
processor number i, and (3) the number p ≤ n of processors such that r =
n/p is an integer.

Output: The components (i−1)r + 1 ir of the vector y = Ax stored
in the shared variable y.

Algorithm 6: Matrix Vector Multiplication on the Shared-Memory
Model
1 begin
2 global read(x,z)
3 global read(A((i-1)r+1:ir,1:n),B)
4 Compute w = Bz
5 global write(w, y((i− 1)r + 1 : ir))

6 end

In step 2, a concurrent read of the same shared variable x is required
by all the processors. At this instance, there are no more than 1 processor
attempting to write into the same location of the shared memory.

Steps 3 & 4 transfers O(n
2

p
) numbers from the shared memory into each

processor.
Step 4 is the only computation step that requires O(n

2

p
) arithmetic oper-

ations.
Step 5 stores (n

p
) numbers from each local memory into the shared mem-

ory.

Algorithm 6 has an important feature whereby processors do not need to
synchronise the activities due to the way the matrix vector product was parti-
tioned. It is also possible to deisgn a parallel algorithm based on partitioning
A and x into p blocks such that A = (A1, A2, ... Ap) and x = (x1, x2, ...
xp), where each Ai is of size n × r each xi is of size r. The product y = Ax is
now given by y=A1x1,A2x2, ...,Arxr. Hence, the processor Pi can compute
zi = Ai xi after reading Ai and xi from the shared memory, for 1≤ i ≤ p. At
this point, no processor should begin the computation of sum z1 + z2 + ... +

29

zr before ensuring that all the processors have completed their matrix vector
products. Therefore, an explicit synchronization primitive must be placed in
each processor’s program after the computation of zi = Aixi to force all the
processors to synchronise before continuing the execution of their programs.
[10]

30

6 The Parallel Random Access Machine (PRAM)

The PRAM is considered as one of the most straightforward method to model
a parallel computer. The PRAM consists of a number of sequential proces-
sors which has the ability to access a global shared memory asynchronously.
It is developed as an extension of the RAM model used in sequential algo-
rithm analysis. The individual processors will be able to access its shared
memory quickly and efficiently, similar to accessing its local memory.
The main advantages of the PRAM is its simplicity. It captures parallelism
and abstracting away communication and synchronisation issues related to
parallel computing.
The ability of abstraction offered by the PRAM is a fully synchronous col-
lection of processors as well as a shared memory which makes it popular for
parallel algorithm design. This would mean that the PRAM would store
all data in the shared memory. However, the abstraction may be viewed as
unrealistic from a practical point of view as full synchronisation using the
PRAM icurs a very high cost in parallel machines currently in use.[15]

A PRAM consists of the following:

1. A set of similar type of processors

2. All the processors share a common memory unit. Processors has the
ability to communicate themselves through a shared memory.

3. A memory access unit (MAU) connects the processor with the single
shared memory.

During the execution of of a parallel algorithm, n number of processors
gain access to the shared memory for reading input data, for reading or writ-
ing immediate results, and for writing the final results. The basic model of a
PRAM allows all processors to gain access to the shared memory simultane-
ously if the memory locations they are trying to acccess or write is different.
The SIMD can be further elaborated into 4 variants as described in the next
section.

6.1 Variants of PRAM

There are 4 variants of PRAM.

1. EREW - exclusive read exclusive write does not allow concurrent ac-
cess of the shared memory. If there are two or more processors at-
tempting to read from or write into the same memory cell currently,the
behaviour is undefined

31

Figure 13: Basic Architecture of PRAM

2. ERCW - exclusive read concurrent write does not allow concurrent
access of the reading the shared memory. However, it allows concurrent
writing into the memory cell.

3. CREW- Concurrent Read Exclusive Write allows reading into the
same memory cell but does not allow two concurrent write into the
shared memory which will lead into an undefined behaviour

4. CRCW- Concurrent Read Concurrent Write allows both reading and
writing into the memory cell concurrently. However, there are various
rules that arbitrate how concurrent writes are handled.

• in the arbitary PRAM, if there are multiple processors writing
into a single shared memory cell, only one processor succeeds in
writing into this cell.

• in the common PRAM, all the processors must write the same
value into a single shared memory cell, only then the arbitrary
processor willl succed in writing into this cell.

• in the priority PRAM, the processor with the highest priority will
succeed in writing.

Among the PRAM variants, the weakest PRAM is the EREW. A CREW
PRAM willl be able to simulate an EREW, while both the CREW and
EREW can be simulated by the more powerful CRCW PRAM. Therefore,
the algorithm can be deisgned for the common PRAM, executed on a priority
or arbitary PRAM while exhbiting similar complexity. [15]

Algorithms developed for PRAM model have been of type SIMD. That
is, all processors execute the same program such that, during each time unit,

32

alll the active processors are executing the same instruction, but with dif-
ferent data in general. However, we are still able to load different programs
into the local memories of the processors, as long as the processors can op-
erate synchronously; therefore, different type of instructions can be executed
within the unit time allocated for a step.

6.2 Examples of Parallel Algorithms

6.2.1 Sum on the PRAM

The following example below gives an example of a sum of the PRAM model.
Given an array A of n = 2k numbers, and a PRAM with n processors P1,
P2, ..., Pn, we wish to compute the sum S = A(1) + A(2) + ...+ A(n). Each
processor executes the same algorithm, given here for processor Pi. [10]

Input: An array A of order n = 2k stored in the shared memory of
a PRAM with n processors. The initialized local variables are n and the
processor number i.
Output: The sum of the entries of A stored in the shared location S. The
array A holds its initial value.

Algorithm 7: Sum on the PRAM

1 begin
2 global read A(i),a
3 global write ((a,B(i))
4 for h = 1 to log(n) do
5 if (i ≤ n/2h) then
6 begin
7 global read (B(2i− 1), x)
8 global read (B(2i), y)
9 Set z := x+ y

10 global write (z,B(i))

11 end

12 end

13 end
14 if i = 1 then
15 global write(z, S)
16 end

17 end

To simplify the presentation of PRAM algorithms in Algorithm 7, we
omit the details concerning the memory access-operations. An instruction

33

of the form SetA := B + C, where A, B, C are shared variables, should be
interpreted as following sequence of instructions.

1. global read (B,x)

2. global read (C,y)

3. Set z := x+ y

4. global read (z,A)

6.2.2 Matrix Multiplication of the PRAM

In the next example, an explanation of an algorithm for matrix multiplica-
tion on the PRAM will be introduced. [10]
Consider the problem of computing the product C of the two n × n matri-
ces A and B, where n = 2k , for some integer k. Suppose that we have n3

processors available on our PRAM, denoted by Pi,j,l where 1 ≤ i, j, l ≤ n.
Processor Pi,1,l computes the product A(i, l)B(l, j) in a single step. Then,
for each pair (i, j), the n processors Pi,j,l, where 1 ≤ l ≤ n, compute the sum∑∞

l=1A(i, l)B(l, j) as the example shown in Algorithm 7 earlier. [10]

Input: Two n×n matrices A and B stored in the shared memory, where
n = 2k. The initialised local variables are n, and thhe triple of indices (i,j,l)
identifying the processor.
Output: The product C = AB stored in the shared memory.

Algorithm 8: Matrix Multiplication on the PRAM

1 begin
2 Compute C’ (i,j,l) = A(i,l)B(l,j)
3 for h = 1 to log(n) do
4 if (i ≤ n/2h) then
5 set (C ′(i, j, l) := C ′(i, j, 2l − 1) + C ′(i, j, 2l))
6 end

7 end
8 if l = 1 then
9 setC(i, j) := C ′(i, j, 1)

10 end

11 end

We have observed that Algorithm 8 requires concurrent read capabilities
and that different processors may have access to the same data while exe-
cuting step 2. For example, processors Pi,1,l, Pi,2,l, ... Pi,n,l, all require A(i, l)

34

from the shared memory when step 2 is executed. Thus, this algorithm runs
on the CREW PRAM model. As for the running time, the algorithm take
O(log(n)) time.

However, a modification of step 4 in Algorithm 8 can be executed by re-
moving the if condition. This means (removing the whole statement C ′(i, j) :=
C ′(i, j, 1), then the corresponding algorithm requires a concurrent write of
the same value capability. In fact, processors Pi,j,l, Pi,j,2, ... Pi,j,n all attempt
to write the value C ′(i, j, 1) into location C(i, j).

35

7 Analysing Parallel Algorithms

7.1 Parallel Complexity Theory

There are many appproaches to determine the running time and complexity
of an algorithm. It depends on the type of statements used. [5]

7.1.1 Sequence of Statements

1 begin
2 statement 1
3 statement 2
4 .
5 .
6 statement k

7 end

The total time for executing the algorithm will be the addition of the
time taken for all statements.

Total T ime = (time for statement 1)+(time for statement 2)+(time for statement k)

If each of the statement only involves basic computations, then the time for
each statement is constant and the time taken will be O(1).

7.1.2 If - Then - Else

1 if (cond) then
2 block 1 (sequence of statements)
3 else
4 block 2 (sequence of statements)
5 end

In the above algorithm only either block 1 or block 2 will be executed.
Thus, the worst-case time is the slower of the two possibilities.

max(time(block1, (time(block2))

If block 1 requires a time of O(1) and block 2 requires a time of O(N),
therefore the if-then-else statement have a complexity of O(N).

36

7.1.3 Loops

Algorithm 9: Single Loop Algorithm

1 for l in 1 .. N loop do
2 sequence of statements
3 end

The loop in the above algorithm executes N times, therefore the sequence
of the statements also executes N times. If we assume the statements are
O(1), the total time for the loop is N ×O(1), which is O(N) overall.

7.1.4 Nested Loops

Algorithm 10: “For” Loop Algorithm

1 for l in 1 .. N loop do
2 for j in 1 .. M loop do
3 sequence of statements
4 end

5 end

In the above algorithm, the outer loop executes N number of times. Every
time the outer loop executes, the inner loop willl execute M number of times.
As a result, the statements in the inner loop execute a total of N ×M times.
Therefore, the complexity will be O(N ×M). In the event of a special case,
where the stopping condition of the inner loop is J < N instead of J < M ,
the complexity for the two loops will be O(N2).

7.2 Statements with function or procedure calls

In the event where a statement involves a function or procedure call, the
complexity of the statement includes the complexity of the function of pro-
cedure. Assuming that the function or procedure f takes constant time,
and the other function or procedure g takes a linear time proportional to
a parameter k. Then the statements below will have the time complexities
indicated

f(k)hasO(1)

g(k)hasO(k)

37

7.3 Amdahl’s Law

7.3.1 History of Amdahl’s law

Amdahl’s Law is named after Gene Amdahl, the chief architect of IBM’s first
mainframe series and founder of Amdahl Corporation. Amdah discovered
that there were some fairly stringent restrictions on how much of a speedup
one could get for a given parallelized task. To state the fundamental limita-
tion of parallel computing, Amdahl then formulated Amdahl’s Law. Amdahl
is most well known for formulating Amdahl’s law uncovering the limits of
parallel computing.

7.3.2 Introduction to Amdahl’s law

Amdahl’s law is a formula which gives the theoretical speed up of the pro-
gram with some instructions so as to obtain the overall speed of the program
Amdahl’s law defines the speedup which can be gained by using a particular
feature

Speedup =
Performance for entire task using the enhancement when possible

Performance for entire task without using the enhancement

Speedup tells us how much faster a task can be executed using the computer
with enhanced features as compared to the original computer.

Amdahl’s Law allows us to predict and obtain the speedup from the
enhancements which depends on two factors:

1. The fraction of the computation time in the original computer that can
be converted to take advantage of the enhancement

2. The improvement

Speedup =
1

(1− FRACenhanced + e)

If some fraction 0 < f < 1 of a computation must be executed se-
quentially, then the speed up which can be obtained when the rest of the
computation is executed in parallel, is bounded above 1

f
irrespective of p

38

7.3.3 Example of Amdahl’s Law

Let T1 denote the computation time on a sequential system, and we can split
the total time as follows:

T1 = ts + tp

where
ts is the computation time needed for the sequential part
tp is the computation time needed for the parallel part
Clearly, if we parallelize the problem, only tp can be reduced. Assuming ideal
parallelization, we get

Tp = ts +
ts
p

where p is the number of processors Therefore, we are able to get the speedup
of

S =
T1
Tp

=
ts + tp

ts + tp
p

Let f denote the sequential portion of the computation, i.e

f =
ts

ts + tp

Therefore, the speedup formula can be simplified into

S =
1

f + 1−f
p

less than 1
f
. [16]

We have to note that Amdahl’s law can only be applied to cases where
the problem size is fixed.

39

8 Representing the 2 Algorithms from pFaces

In this chapter, a representation of the parallel construction of Abstractions
and Synthesis in pFaces will be presented. Firstly, pFaces flattens each
space into a single-dimensional space, denoted by flattened space, where
each element is in this flattened space can be mapped back to the higher-
dimensional one. Next, the constroller synthesis sub-tasks follow the ab-
straction sub-tasks. The synthesis algorithm will then read the data already
present in the abstraction memory and quantize the over approximation of
the Hyper-rectangle in (x′l and x′h). The bounds are quantized with the same
quantization parameters used for the state space.

8.1 Abstractions Algorithm

For the Abstractions Algorithm, the sub-task executes the processing ele-
ment given a tuple (k, j). The actual vector in higher dimension will then
be reconstructed, i.e (xk, uj). The sub-task willl then compute the reachable
state from xk with the input uj and save only the higher and lower bounds
(x′l and x′h),

In Algorithm 11, the simplified version and explanation of complexity for
the Abstraction Algorithm is presented.

Algorithm 11: Abstractions Algorithm

Input: flat xu, ssDim, isDim, f
Output: XU bags.

1 begin
2 global read(flat xu[i], (x flat,u flat))
3 u = flat to concrete(u flat, isDim)
4 x = flat to concrete(x flat,ssDim)
5 (x h, x l)= compute OARS(f, x, u)
6 global write(x h,XU bag[i].x h)
7 global write(xl,XU bag[i].x l)
8 global write(0, XU bag[i].f lags)
9 end

We are able to estimate the amount of computation and communication
by the algorithm as follows:

In step 2, there is a concurrent read of the shared variable x flat and
u flat, It transfers values from x flat and u flat into the shared memory
flat xu[i]. There is a transfer of O(|X||U |

p
) as | flat xu | = | X || U | in

40

the shared memory which represents the total size of x & u into the shared
memory.

In relation to this algorithm, The input space is u, 2-dimension which
consists of u1 and u2.The state space is x, 3-dimension, which consists of x, y
and θ.

For steps 3 and 4, The complexity depends on the state space dimension
and input space dimension. The operation of the conversion from the index
to the value takes 3 loops for the input space u and 2 loops for the state
space x. We now have 2 points, x which is 3 dimension and u in 2 dimension.
Step 3 converts the index i to quantized vector xk which compromises of 2
values, (u, isDim). As there is a for loop to calculate the values from flat to
concrete. It obtains values from 0 to isDim, Thus, the complexity for step
3 will be O(isDmin) and the complexity for step 4 is O(ssDim).

Step 5 is the computation of overall approximation of reachable set us-
ing the ODE. This computation consists of 4 iterations in the Runge-Kutta
method, with a complexity of O(4ssDim), which is always dependant on the
constant.

Step 6, 7 and 8 stores the values into XU bags. which is similar to memory
read as it is reading and writing the same data into the memory. Hence, the
complexity isO(|X||U |

p
) due to the property: O(f(n)) +O(g(n)) = O(f(n)) if

O(f(n)) & O(g(n)) has the same value.

Therefore the overall complexity for the abstract algorithm is O(|x h×x l|
p

)
assuming that ssDim & isDim is less than p where p is the number of pro-
cessors.

8.2 Synthesis Algorithm

The synthesis algorithm follows the abstraction sub-task by reading (x′l and
x′h) from the abstraction memory. It proceeds to quantize the over approxi-
mation of the hyper-rectangle in (x′l and x′h). Next, it checks if all post states
have tuples (x, u) belong to the FP set. If it belongs to the FP set, the pair
(xk, uj) will be considered as a good pair to be included in the next update
of the FP set.

41

Algorithm 12: Synthesis Algorithm

Input: XU bags , q ,x h ,x l, local x flat = 0, localu flat = 0
,local flags = 0, all post in z = true,
my private xu behav post x flags = 0

Output: XU bags
1 begin
2 global read(XU bags[i].bag, bag)
3 flat post points = quantize hyperrectangle (bag.x h, bag.x l , q)
4 for k ∈ flat post points do
5 global read (XU bags[k].f lags,post x flags)
6 if (post x flags.isX A) or !(post x flags.is PiZ) then
7 all posts in z = false
8 break

9 end

10 end
11 if (all posts in Z) then
12 my private xu behav post x flags += isX T
13 end
14 global read (XU bags.[xu thread idx].f lags, xu flags)
15 if (x flags.is P iZ(k)) and (!x flags.isP iZ(k − 1)) or

(!x flags.isP iZ(k)) and (x flags.isP iZ(k − 1)) then
16 if (xu flags.is Z(k)) then
17 xu flags = isX T
18 end

19 end
20 if (all posts in Z) then
21 xu flags+=is Z(k)
22 else
23 xu flags-=is Z(k)
24 end
25 if !(xu flags.is Z(k − 1)) and (xu flags.isZ(k)) and

!(xu flag.isX A) then
26 my private xu behav flags+=is Z(k)
27 else
28 my private xu behav flags-=is Z(k)
29 end

42

30 if (my private xu behav flags! = ∅) then
31 atomic or(x flags[local idx x],my private xu behav flags)
32 end
33 if (!(xu flags.isX A)) then
34 global write(XU bag.[xu thread idx].f lags, xu flags)
35 end
36 [wait for all other processes]a

37 if (local idx u == 0) then
38 global read(x flags[local idx x],my private xu behav flags)
39 if (isX T ∈ my private xu behav flags) then
40 xu flags+=is P iZ
41 else
42 xu flags-=is P iZ
43 end
44 if (is Z(k) ∈ my private xu behav flags) then
45 xu flags+=isX S
46 else
47 xu flags-= isX S
48 end
49 global write(XU bag[x thread idx].f lags, xu flags)

50 end

aA processor i has number of subtasks |X||U |
p and all sub-tasks need to be completed

before continuing to step 37

For the Synthesis Algorithm, we are able to estimate the amount compu-
tation and communication as follows:

In Step 2, there is a concurrent read of bag from XU bags[i].bag. There-

fore, the complexity for Step 2 is O(|X||U |
p

).

For steps 4 to 9, the complexity of the for loop for flat post points will
be the number of posts, which can be bounded by O(| X |).
Step 6 is executed to check whether the is P iflag has this post state of (x,:)
in the Z set. The PiZ indicates that the x is in the projection of Z

In steps 11 and 12, if the condition (all posts in Z)is fulfilled, the com-
plexity will be O(| X |), which is covered in Steps 4 to 9 .

In step 12, isP iZ is declared and has to be set in localx flags.

43

In step 14, there is a concurrent read of the XU bags.[xu thread idx] to
xu flags. Step 18 is setting our own (x, u) flags to indicate whether we are
still in Z and reading our own xu flags. Therefore, the complexity for this
memory read would be O(|X||U |

p
).

The if condition in steps 15 to 18 requires a complexity of O(|X||U |
p

).

For steps 25 to 29, it has a if - then - else condition, this means that
either xu flags+=is Z(k − 1) or xu flags-=is Z(k − 1) is executed. Thus,
the complexity willl be the worst-case time of the two possibilities, which is
O(|X||U |

p
).

In steps 33 and 34, if not (xu flags.isX A) , it will store values into

XU bag with a complexity of O(|X||U |
p

).

In steps 36 to 50, the algorithm is waiting for the execution of all other
processes. With a problem size being n and p being the number of processes
and p < n, there are chunks of executions in this step, therefore it results in
a complexity of O(|X||U |

p
).

Summing up the complexity for the systhesis algorithms, the overall com-
plexity is O = max {| X |, |X||U |

p
}.

44

References

[1] J. Tompson and K. Schlachter, “An introduction to the opencl program-
ming model,” Person Education, vol. 49, 2012.

[2] S. McIntosh-Smith. Opencl. [Online]. Available:
https://www.nersc.gov/assets/pubs presos/MattsonTutorialSC14.pdf

[3] A. Munshi, B. Gaster, T. G. Mattson, and D. Ginsburg, OpenCL pro-
gramming guide. Pearson Education, 2011.

[4] L. Howes, “Opencl parallel computing for cpus and
gpus,” Advanced Micro Devices (AMD) presenta-
tion, http://developer. amd. com/gpu assets/OpenCL
Parallel Computing for CPUs and GPUs 201003. pdf, 2010.

[5] MIT, “Big o notation.”

[6] P. Danziger, “Big o notation,” Source internet: http://www. scs. ryer-
son. ca/˜ mth110/Handouts/PD/bigO. pdf, Retrieve: April, 2010.

[7] stack overflow. Big o complexity. [Online]. Avail-
able: https://stackoverflow.com/questions/487258/what-is-a-plain-
english-explanation-of-big-o-notation

[8] E. Horowitz, S. Sahni, and S. Rajasekaran, Computer algorithms C++:
C++ and pseudocode versions. Macmillan, 1997.

[9] Saylor.org. Breadth first search. [Online]. Available:
https://www.saylor.org/site/wp-content/uploads/2012/06/CS408-
2.3.2-BreadthFirstSearch.pdf

[10] J. JáJá, An introduction to parallel algorithms. Addison-Wesley Read-
ing, 1992, vol. 17.

[11] P. P. Mattsson, “Why havent cpu clock speeds increased in the last few
years?” COMSOL blog, 2014.

[12] V. Kumar, A. Grama, A. Gupta, and G. Karypis, Introduction to parallel
computing: design and analysis of algorithms. Benjamin/Cummings
Redwood City, 1994, vol. 400.

[13] B. Barney et al., “Introduction to parallel computing,” Lawrence Liver-
more National Laboratory, vol. 6, no. 13, p. 10, 2010.

45

[14] T. Point. Parallel algorithm - introduction. [Online]. Available:
https://www.tutorialspoint.com/parallel algorithm/index.htm

[15] A. Gerbessiotis, “The pram model.”

[16] J. Zapletal, “Amdahl’s and gustafson’s laws,” VSB-Technical University
of Ostrava, 2009.

46

