
FPGA-Implementation of an online
Symbolic Controller Synthesizer using
OpenCL and the Atlas-SoC board

Bachelor Thesis

Scientific work to obtain the degree
B.Sc. Electrical Engineering and Information Technology

Department of Electrical and Computer Engineering
Technische Universität München

Supervised by Mr Mahmoud Khaled

Assistant Professorship of Hybrid Control Systems

Submitted by Low Jian How Leon

106B Punggol Field

Apt. 17-534 Singapore 822106

+65 97614376

Filed On München, on 18 June 2018

Abstract

This thesis introduce the use of De0-Nano-SoC board with OpenCL functionality to

synthesize online symbolic controller. OpenCL was used due to its computational

speed that allows system to be able work efficiently in real time.

Developed by my supervisor Mahmoud Khaled, the OpenCL kernel function is

to construct symbolic abstraction of dynamical systems using growth bound and

synthesis symbolic controllers using fixed point operations on the symbolic model

through over-approximating the reachabile sets.

The De0-Nano-SoC was used due to its easy configuration and avaliability. In

this thesis, we would aim to try understand the OpenCL programming framework

and coding style and change the source code provided by my supervisor so as to

allow it to be implemented on the board.

1

Acknowledgement

I would first like to thank my thesis advisor Mahmoud Khaled of the Hybrid Control

Systems group, Department of Electrical Engineering and Information Technology

at the Technical University of Munich(TUM). The door to his office was always

available whenever I run into difficulties or questions pertaining to the thesis. He

will steer me in the right direction whenever help is needed from him.

I would also like to express profound indebtedness to my parents and friends for

providing me with unwavering support and continuous encouragement through the

course of researching and writing this thesis. This accomplishment would not have

been possible without them.

2

Contents

1 Introduction 4

1.1 Motivation . 4

1.2 Related Work . 5

1.3 Overview . 6

2 DE0-Nano-SoC 7

2.1 Introduction . 7

2.2 Specifications . 7

2.3 Applications . 10

3 Open Computing Language(OpenCL) 11

3.1 Introduction . 11

3.2 Architecture of OpenCL . 12

4 Implementation 14

4.1 VectorAdd Example . 14

4.1.1 Setting up of the environment 14

4.1.2 Compilation of the vectorAdd example 15

4.1.3 Results . 16

4.2 Analysis of Developed OpenCL Program 17

4.2.1 Challenges Faced . 17

4.2.2 Conclusion . 18

3

Chapter 1

Introduction

1.1 Motivation

For all hardware and software products that are developed, the most important

ingredient that determine the success of the products are how reliable and fast it

function in real-world applications. In the hybrid control field, the significance of

the synthesis of controllers for any hybrid systems has become of utmost importance.

With the continuous fervor to improve the synthesis of controllers, we will look

into using different alternatives to expand the options that would benefit the func-

tionality. In this thesis, we will focus on primarily on Open Computing Langauge

(OpenCL) [3] a free and widely used Application programming interface(API), which

work in tandem with the Computer Processing Unit(CPU) to provide better compu-

tation speed. Next we would also look into using Altas-SoC board, De0-Nano-SoC

as the base to find out how well and reliable it works for the synthesis of controllers.

4

1.2 Related Work

Firstly before discussing the usage of the FPGA implementation of an online sym-

bolic controller synthesizer using OpenCL and the Altas-SoC board, there are other

softwares that implement the online symbolic controller synthesis that help us un-

derstand more on the synthesis of online symbolic controller.

One example would be the open software tool called SCOT[4] that is developed

by Dr Matthias Runnger and Dr. Majid Zamani from the department of the Hy-

brid Control Systems Group in Technical University of Munich (TUM). By using

Lipschitz type estimate on the right-hand-side of the differential with different pa-

rameters, it is able to create symbolic models for the facilitation of the synthesis of

controllers.

Furthermore, it uses C++ as the main language and MATLAB as an user in-

terface for the generation of simulation for the code which help in visualising the

controller in movement. This makes it easier for other users to further develop their

programs.

Figure 1.1: Example of the output of the online symbolic controller[4]

5

1.3 Overview

This paper is structured in the following outline. Chapter 2 gives an short overview

on the Altas-SoC board that we are using for the OpenCL program to function as

automatically symbolic controllers.

Chapter 3 gives an overview on OpenCL for its usage and its general framework.

We would further discuss in details about how we intend to use it for the synthesizes

of the the controllers.

In Chapter 4, we will discuss on how we ensure that the OpenCL files could be

compiled, and steps undertaken to make the executable file.

6

Chapter 2

DE0-Nano-SoC

2.1 Introduction

Developed by Terasic.Inc, the DE0-Nano-SoC Development Kit showcase a sturdy

hardware design built for the Altera System-on-Chip(SoC) FPGA. It uses the dual-

core Cortex-A9 embedded cores with industrial-standard programmable logic to

make designing more flexible. [1]

Furthermore, it has a processor, peripherals and memory interface that are able

to communicate easily with the FPGA fabric using a high-bandwidth interconnect

backbone. Moreover, it has lots of other functions such as ethernet, analog functions.

2.2 Specifications

∗FPGA Device

• Cyclone V SoC 5CSEMA4U236N Device

• Dual-Core ARM CORTEX-A9(HPS)

∗Configuration sources

• Serial configuration flash-EPCS128

• Embedded USB-Blaster II(JTAG)

∗Memory Device

• 1GB(2x256Mx16) DDR3 SDRAM

7

• MICRO SD Card Socket

∗Communication Port

• USB OTG Port(USB Micro-AB connector)

• UART to USB(USB Mini-B Connector)

• 1 Gigabit Ethernet PHY with RJ45 Connector

∗Connectors

• Two 40-pin Expansion Headers

• One 10-pin ADC I/P Header

• One LTC Connector

∗Switches, Buttons and Indicators

• 3 User Keys

• 4 User switches

• 11 User LEDs

• 2 HPS Reset Buttons

∗Sensors

• G-Sensor on HPS

Layout Block Diagram

Figure 2.1: Front layout of DE0-Nano-SoC

8

Figure 2.2: Back layout of DE0-Nano-SoC

Figure 2.3: Back layout of DE0-Nano-SoC

9

2.3 Applications

There are many different applications that we can use to create with the De0-Nano-

SoC board. Some examples would be creating a Graphical User Interface(GUI) Paint

whereby user can draw on a touchscreen board using the De0-Nano-SoC board as

the processor.

However what we are more focused on is the FPGA portion of the board.Thus we

will delve in deeper on the interaction between OpenCL and the FPGA part of the

De0-Nano-SoC. One of the many application used to illustrate the interaction would

be the computation speed to show the images of a Mandelbrot set zoom sequence.

Figure 2.4: Mandelbrot set zoom Sequence[5]

By using the board attached with a display screen board, the hardware configu-

ration file(.aocx) and the executable file which were implemented on the board will

accelerate the computation speed of the Mandelbrot set zoom sequence.

10

Chapter 3

Open Computing Language(OpenCL)

3.1 Introduction

OpenCL(OpenCL) is a framework for accelerating software algorithms programs

that can be execute in parellelism across multiple platforms such as central process-

ing units (CPUs), graphics processing units (GPUs) , digital signal processors(DSPs)[3]and

much more.

The first version,OpenCL 1.0 was developed in 2008 by the Khronos Group,

an independent standards consortium. Programming language is called OpenCL

C based on C99[2]which is C-like. With it being developed since 2008, there are

lots of application being created. To name a few like in graphics, there are Adobe

Photoshop, Photoscan and etc. Furthermore for CAD and 3D Modelling would be

programs like Autodesk Maya and LuxRender.

11

3.2 Architecture of OpenCL

In this section we would briefly describe the OpenCL Programming Model to fur-

ther understand what we are working with, in the architecture there are 3 main

modelsref:bopencl

•Platform Model - host interwined with OpenCL device(s) which consists of com-

pute units which are further divided into processing Elements

Figure 3.1: Platform Model[3]

•Execution Model - consists of two different types of execution, kernels for the

OpenCL file and host programs that is executed on the host. The space of the

execution is defined by the NDRange

•Memory Model - divided into two parts , one for the host and the other for the

memory device

∗Host

• Host Memory : available to host and is defined outside of OpenCL, memory

objects are transported from the OpenCL API

• Device Memory : available to kernels executing on OpenCL devices

12

∗Device

• Global : all work-items and work-groups have read and write access on both

host and device

• Constant : only work-items have read access, but host have both read and

write access

• Local : for data-exchange for work-items in a work group

• Private : only accessible for one work-item

Figure 3.2: OpenCL Memory Model[3]

13

Chapter 4

Implementation

4.1 VectorAdd Example

In this section I am going to implement an example to familiarise ourselves with the

OpenCL FPGA by creating the required files and the setting up of the environment.

There will be an compilation on the host before executing it on the board.

4.1.1 Setting up of the environment

For different Cyclone V devices, they are different board support packages(BSP)

for OpenCL. The BSP that was available for the DE0-Nano-SoC only support the

FPGA 14.0 SDK for OpenCL. Environment variables and license file should be saved

to the /.bashrc file to be set as permanent variables for the OpenCL SDK.

Figure 4.1: Environment Variables on /.bashrc

Figure 4.1 This figure shows all the parameters to be be inputted for the OpenCL

SDK.

14

4.1.2 Compilation of the vectorAdd example

In order to execute the program on the board, we would need two kind of files, one

.aocx file and one executable file. For the .aocx file, we have to compile the OpenCL

file(.cl) to produce it.

Figure 4.2: vectorAdd Kernel Function

In the figure, the kernel function have 3 global arrays, 2 of the global arrays

are for the input and the last array is for the output. In the function, you need to

get the index of the work item so that it figure out which element array to sum.

To compile the .aocx file, we need to type the following command lines to the ter-

minal, which are source $ALTERAOCLSDKROOT\init opencl.sh to go to

the host OpenCL environment and

aoc device/vectorAdd.cl -o bin/vectorAdd.aocx –board de0 nano soc sharedonly

for compilation.

Once the .aocx file is complied, we have to direct path with the following com-

mand line /opt/altera/14/0/embedded/embedded commandshell.sh in the

terminal to access the cross compiler in the FPGA 14.0 SDK for OpenCL. Using

GNU Makefile, we create an executable file by cross compiling the AOCL libraries

and the host code.

15

4.1.3 Results

As discussed in the previous sections, once the files are made we have to transfer the

.aocx file(hardware configuration file) and the executable file into the board and run

it on the terminal with minicom. Using the BSP provided by the manufacturer the

SD card image thats supports the OpenCL functionality was load onto the board,

this allow us to test if the program was able to communicate with the board itself.

Figure 4.3: Results for the vectorAdd

In order to run the executable file, we need access the OpenCL functionality in

the board itself by typing source ./init opencl.sh in the terminal. Furthermore,

we need to reconfigure the board to know which .aocx file we are using by typing

acol program /dev As shown in the figure above, after executing the vectorAdd

is shows the kernel time use to compute the vector addition with specific number of

elements. In conclusion we are able to familiarise ourselves with the functionality

of the OpenCL and the FPGA board.

16

4.2 Analysis of Developed OpenCL Program

Based on what we are had learned on the concept on OpenCL and De0-Nano-SoC

using the vectorAdd example. We will try to implement the already developed

OpenCL program provided by my supervisor Mahmoud Khaled. Firstly we would

need to create the .aocx files from the kernel files.

The OpenCL program kernel function is to construct symbolic abstraction of

dynamical system using growth bound and synthesis symbolic controllers using

fixed-point operations on the symbolic model constructed by over-approximating

the reachabile sets.

4.2.1 Challenges Faced

∗Kernel file design cant be fit on the device

While compiling the kernel file, one of the challenges was spilt the kernel function

into 4 different functions as the board specification cant fit the design of the kernel

file.

Figure 4.4: Diagram for Kernel Function

The first function would be the initialisation, the next two functions would be

to construct the system with growth bound and synthesis symbolic controllers. The

last kernel function would be check the functionality of the program.

17

In order for the kernel files to be able to interact with each other as a whole

kernel function, I need to include all variables into the memory bag. Furthermore

I need to change some variables to memory access so that all kernel files could be

linked.

∗Altering the main.cpp file

As mention in the previous chapter for the program to run on the board, we need 2

kinds of files in order for it to work. Thus we have to also change the environment

of the developed host code(main.cpp) to the same one given from the vectorAdd

example.

Thus I need to include more variables into the struct data of the host code,

moreover I need to reserve the memory correctly for the newly modified structure so

that when examining the execution time of each kernel, the results would be more

accurate.

4.2.2 Conclusion

Using vectorAdd example, i was able to sucessfully implement the kernel file on

the board. From the example, my knowledge improved greatly on how to create an

environment whereby I could use OpenCL on the board. Without the board support

package for the board and the cross compiler for the De0-Nano-SoC, I was unable

to move further in runnning the example.

From the understanding that i gained from the example. I extend it to the

OpenCL kernel provided, i was able to sucessfully compile 4 .aocx files for the

hardware configuration of the board. However I was from the the executable file

due the difference in ultilities files and header files for the OpenCL kernel. Due to

that those errors, it affect the whole structure of the code. However I believe that

once the errors are rectified, the synthesis of the online symbolic controller would

be possible.

18

Bibliography

[1] De0-nano-soc board specifications.

[2] Introduction to openclTM programming.

[3] Kronos Group. Opencl.

[4] Matthias Rungger and Majid Zamani. Scots: A tool for the synthesis of symbolic

controllers.

[5] https://rocketboards.org/foswiki/view/Projects/OpenCLMandelbrotDemoOnAtlasSoC

19

