TUTl

Implementation of Symbolic Controllers
on FPGAs

Bachelor Thesis

Scientific work to obtain the degree
B.Sc. Electrical Engineering and Information Technology

Department of Electrical and Computer Engineering
Technical University of Munich.

Supervised by Prof. Majid Zamani
M.Sc. Mahmoud Khaled
Assistant Professorship of Hybrid Control Systems

Submitted by Maha Khalifa
Arcisstr. 21
80333 Munich

Filed on Munich , on 13.8.2018

This is to certify that:
(i) the thesis comprises only my original work toward the Bachelor Degree

(ii) due acknowledgement has been made in the text to all other material used

Maha Khalifa
12.8.2018

1

Acknowledgement

First and foremost, I would like to thank my supervisor Prof. Dr. Majid Zamani his support
and guidance through my bachelor project. I would also like to thank my supervisor
M.Sc.Mahmoud Khaled for his patience, support and help throughout the five months, I
am very grateful for the professional and excellent learning experience he has provided
me with.

I would also like to express my deepest and most sincere gratitude to my father Prof.
Dr. Ahmed Rashad for everything he has done for me and all the love he always gives
me. A well as my mother for her continuous care and support. In addition, my brothers
Sherif and Hisham for always pushing me forward and having my back.

Last but not least, I would like to thank all of my friends who supported me in this
phase, special thanks to my dearest friends Yomna Atef and Yomna Sherif for all the help,
and massive support they gave me throughout the journey.

Abstract

In this thesis, we are concerned about BDDs which stand for binary decision
diagrams, how to understand and construct them. We propose a new method of
representing symbolic controllers represented as BDDs on FPGAs or microcontrollers
in general.We deal with tools that convert these controllers into BDD and convert
them to controllers .bdd text files. Our main aim throughout the thesis is to discuss
step by step how we can understand these files, followed by implementation of the
BDD based symbolic controllers on FPGA.

11

CONTENTS iv

Contents
1 Introduction 1
1.1 Thesis objective and scopeo 1
2 Literature Review 1
2.1 Symbolic Controllers 2
2.2 SCOTS Tool 2
2.3 BDD2implement Tool 3
24 CUDD Library e 4
24.1 DDDMP Packageo 4
3 Binary decision Diagrams 6
3.1 Binary Decision Diagrams 6
3.2 Binary treeso 6
3.3 Traversal 8
3.4 Boolean Functions 11
3.4.1 Boolean Identities 12
342 bddfiles. 13
4 Methodology 14
4.1 Milestone I: Boolean operations on BDDs using CUDD library 14
4.1.1 CUDD LIBRARY 14
4.1.2 Boolean Operations using DDDMP package 15
4.2 Milestone II: Boolean operations on BDD without CUDD library 22
4.3 Milestone III: Understand .bdd files generated from SCOTS 24
4.3.1 Controller.bdd Text Files. 24
4.4 Milestone IV: Implement BDD based controller in memory 26
4.4.1 Algorithm to generate hex memory data of the BDD 27
4.4.2 Algorithm to traverse the BDD to identify the controller inputs . 29
4.5 Limitationso 30
5 Results and discussion 34
5.1 Algorithm to traverse the BDD to identify the controller inputs 34
5.2 Effect of our Algorithm in BDD2implement 38
5.3 Conclusion 39
6 Future Work 40
List of Figures 41

References 43

1 INTRODUCTION 1

1 Introduction

Control systems are usually modeled by differential equations describing how physical
phenomena can be influenced by certain control parameters or inputs. Although these
models are very powerful when dealing with physical phenomena, they are less suitable
to describe software and hardware interfacing the physical world. This has spurred a
recent interest in describing control systems through symbolic models that are abstract
descriptions of the continuous dynamics, where each symbol corresponds to an aggregate
of continuous states in the continuous model. Since these symbolic models are of the same
nature of the models used in computer science to describe software and hardware, they
provided a unified language to study problems of control in which software and hardware
interacts with the physical world. In this paper we show that every incrementally globally
asymptotically stable nonlinear control system is approximately equivalent to symbolic
model with a precision that can be chosen apriori. We also show that for digital controlled
systems, in which inputs are piecewiseconstant, and under the stronger assumption of
incremental inputtostate stability, the symbolic models can be obtained, based on a
suitable quantization of the inputs. [9]

1.1 Thesis objective and scope

The main objective of the thesis is to represent symbolic controllers in form of Binary
Decision diagrams to be injected in BDD2IMPLEMENT tools. So the BDD files are
generated from scots to be injected in bdd2implement generate software implementations
of BDD-based symbolic controllers.So throughout the whole thesis, we try to understand
the bdd files that are generated with the help of CUDD library, how it encodes data, how
to read it, how is binary decision diagrams are represented through this file. Afterwards ,
we construct a whole binary tree out of this binary decision diagrams represented as bdd
files through.This tree is constructed through C++ code that can access these bdd files,
read them and turn them into binary tree data structure to be saved as a memory.The
main function of our C++ code is to read these files, saves them as a tree, traverses the
tree.

2 Literature Review

2 LITERATURE REVIEW 2

2.1 Symbolic Controllers

Symbolic models are the right descriptions of continuous systems in which symbols rep-
resent aggregates of contiguous states. In the last few years, there has been a growing
interest in the use of symbolic models as a tool for reducing the complexity of control
designs. In fact, symbolic models enable the use of known algorithms in the context of
supervisory control and algorithmic theory, for controller synthesis.

Since the nineteens, many researchers faced the problem of identifying classes of dy-
namical and control systems that admit symbolic models. Our main aim was to show that
incrementally globally asymptotically stable nonlinear control systems with disturbances
admit symbolic models. When specializing in these results in linear systems.

In recent years we have experienced the development of various symbolic techniques
help in reducing the complexity of controller synthesis, these techniques are based on the
idea that many states can be treated equally when synthesizing controllers and so can be
replaced by a symbol. The models resulting from replacing equivalent states by symbols
termed symbolic models which are typically simpler than the original ones, in a way that
they have a lower number of states. In most cases, symbolic models could be constructed
with a finite number of states.

Control systems are usually modeled by differential equations describing how physical
phenomena can be influenced by certain control parameters or inputs. Although these
models are very powerful when dealing with physical phenomena, they are less suitable
to describe software and hardware interfacing with the world physically. This has pro-
moted a recent interest in describing control systems through symbolic models that are
fundamental descriptions of the continuous dynamics where each symbol corresponds to
an aggregate of contiguous states in the continuous model.

Since these symbolic models are of the same properties of the models used in computer
science, they provided a unified language to study problems of control in which both
software and hardware interact with the physical world.

[9]

2.2 SCOTS Tool

SCOTS is an open source software tool for the synthesis of symbolic controllers for
nonlinear control systems. It is implemented in C +4 and it comes with MATLAB
interface to access the synthesized controller from inside MATLAB. The tool is supposed
to be used and extended by researches in the area of formal methods for cyber- physical
systems. SCOTS provides a basic implementation to symbolic synthesis. SCOTS provides
an implementation of the various algorithms using two different data structures. One
implementation is based on binary decision diagrams (BDD), which is our main area of
interest in this Thesis.[12]

2 LITERATURE REVIEW 3

2.3 BDD2implement Tool

BDD2Implement is a C++ tool to generate hardware/software implementations of BDD-
based symbolic controllers. Having the tools SCOTS and SENSE that generate BDD-based
symbolic controllers of (networked) general nonlinear dynamical systems, BDD2Implement
completes missing ring in the automatic synthesis technique.

BDD2Implement accepts static or dynamic determinized symbolic controllers in the
form of BDD-files. The BDD files encode the controller dynamics as boolean functions. If
the provided controller is not determinized, BDD2Implement provides a determinization
of the controller.

Due to the technique used in BDD2Implement, the generated implementations are
formal. This guarantees the generated codes are exactly achieving the behavior in the pro-
vided controllers. As a result, the whole development cycle SCOTS/SENSE/BDD2Implement
is now formal.

BDD2Implement can generate codes in the following formats:

HARDWARE:

Verilog/VHDL modules

SOFTWARE:

C/C++ boolean-valued functions

BDD2Implement expects existing BDD-based symbolic controllers from SCOTS or
SENSE.

It starts by converting the multi-output boolean functions inside BDDs to multi single-
output functions. If the provided controller is not determinized, BDD2Implement provides
a determinization of the controller using several possible determinization methods. For
VHDL/Verilog, the boolean functions are dumped to the VHDL module contains the
boolean functions as maps from input-port to output-port. For dynamic controllers, the
HW module contains additional memory for the state of the controller. For C/C++, the
boolean functions are dumped as C++ codes. The C/C++ compiler at implementer-side
takes care of converting such boolean functions to machine codes.

It also expects information about the delay bounds in the NCS. Then, it operates
within the symbolic abstraction of the plants to construct a symbolic abstraction for NCS.
Plats symbolic models can be easily constructed using a tool like SCOTS.

BDD2Implement depends on the CUDD-3.0.0 library for manipulating BDDs, written
by Fabio Somenzi here. The dddmp library is also used for reading and writing BDDs
which already comes with CUDD.[1]

2 LITERATURE REVIEW 4

2.4 CUDD Library

CUDD stands for Colorado University Decision Diagram. It is a package for the manipu-
lation of Binary Decision Diagrams (BDDs), Algebraic Decision Diagrams (ADDs) and
Zero-suppressed Binary Decision Diagrams (ZDDs).

2.4.1 DDDMP Package

The DDDMP package inside CUDD library defines formats and rules to store DD on
file. More, in particular, it contains a set of functions to dump (store and load) DDs and
DD forests on f le in different formats. In the present implementation, BDDs (ROBDDs)
and ADD (Algebraic Decision Diagram) of the CUDD package (version 2.3.0 or higher)
are supported. These structures can be represented on files either in a text, binary, or
CNF (DIMACS) formats. The main rules used are following rules: A file contains a single
BDD/ADD or a forest of BDDs/ADD, i.e., a vector of Boolean functions. Integer indexes
are used instead of pointers to reference nodes. BDD/ADD nodes are numbered with
contiguous numbers, from 1 to NNodes (total number of nodes on a file). 0 is not used to
allow negative indexes for complemented edges. A file contains a header, including several
pieces of information about variables and roots of BDD functions, then the list of nodes.
The header is always represented in text format (also for binary). BDDs, ADDs, and
CNF share a similar format header. BDD/ADD nodes are listed following their numbering,
which is produced by a post-order traversal, in such a way that a node is always listed
after its Then/Else children.

Format

BDD dump files are composed of two sections: The header and the list of nodes. The
header has a common (text) format, while the list of nodes is either in text or binary
format, in our case it is text format. In text format nodes are represented with redundant
information, where the main goal is readability, while the purpose of binary format is
minimizing the overall storage size for BDD nodes. The header format is kept common to
text and binary formats for sake of simplicity: No particular optimization is presently done
on binary file headers, whose size is by far dominated by node lists in the case of large
BDDs.In text mode nodes are listed on a text line basis. Each a node is represented as (First
column—Node-index) (Second column — Var-extra-info) (Third column v— Var-internal-
index) (Fourth column—Then-index) (Fifth column—Else-index) where all indexes are
integer numbers. This format is redundant (due to the node ordering, Node-index is an
incremental integer) but we keep it for readability. Var-extra-info (optional redundant
eld) is either an integer (ID, PermID, or auxID) or a string (variable name). Var-internal-
index is an internal variable index: Variables in the true support of the stored BDDs are
numbered with ascending integers starting from 0, and follo (several thousands of DD
nodes).

e Example:

1 .ver DDDMP—2.0 /#Dddmp version informationx/

IS

© oo ~ [=2] ot

10

11

12

13

14

15

16

17

18

19

20

21

22

23

LITERATURE REVIEW)

.mode A/* File mode (A for ASCII text, B for binary mode).*/

.varinfo 0 /+«Var—extra—info (0: wvariable ID, 1: permID, 2: auzx ID, 3: wva:
.nnodes 11 /+Total number of nodes in the filex/

.nvars 6 /*Number of wvariables of the writing DD manager. +/

.nsuppvars 6 /*Number of wvariables in the true support of the store
.ids 01 23 45 /+*Variable IDs.x/

.permids 0 1 2 3 4 5 /*Variable permuted IDs.x/

.nroots 1 /+Number of BDD roots.x/

.rootids 11

.nodes
0

— = O 00~ O ULk W =
=N W Wk ototH
N W W Ot Ot
— O Ut = Wi~ OO
CO = Ui = DN OO

3 BINARY DECISION DIAGRAMS 6

3 Binary decision Diagrams

3.1 Binary Decision Diagrams

Binary decision diagram (BDD) or branching program is a data structure that is used
to represent a Boolean function. On a more abstract level, BDDs can be considered as a
compressed representation of sets or relations. Unlike other compressed representations,
operations are performed directly on the compressed representation, i.e. without decom-
pression. Other data structures used to represent a Boolean function include negation
normal form (NNF), and propositional directed acyclic graph (PDAG).

3.2 Binary trees

A binary tree is a tree data structure where each node has up to two child nodes, creating
the branches of the tree. The two children are usually called the left and right nodes.
Parent nodes are nodes with children, while child nodes may include references to their
parents. There are multiple types of binary tree.

1. Full Binary Tree
e If each node of the binary tree has either two children or no child at all, is said
to be a Full Binary Tree.
e Full binary tree is also called as Strictly Binary Tree.
e Every node in the tree has either 0 or 2 children.
e Full binary tree is used to represent mathematical expressions.
2. Complete Binary Tree
o If all levels of tree are completely filled except the last level and the last level
has all keys as left as possible, is said to be a Complete Binary Tree.

e Complete binary tree is also called as Perfect Binary Tree.

e In a complete binary tree, every internal node has exactly two children and all
leaf nodes are at same level.

e For example, at Level 2, there must be 22 = 4 nodes and at Level 3 there must
be 23 = 8 nodes.
3. Skewed Binary Tree
e If a tree which is dominated by left child node or right child node, is said to
be a Skewed Binary Tree.

e In a skewed binary tree, all nodes except one have only one child node. The
remaining node has no child.

e In a left-skewed tree, most of the nodes have the left child without corresponding
right child.

3 BINARY DECISION DIAGRAMS 7

e In a right-skewed tree, most of the nodes have the right child without corre-
sponding left child.

4. Extended binary tree
e Extended binary tree consists of replacing every null subtree of the original

tree with special nodes.

e Empty circle represents an internal node and filled circle represents the external
node.

e The nodes from the original tree are internal nodes and the special nodes are
external nodes.

e Every internal node in the extended binary tree has exactly two children and
every external node is a leaf. It displays the result which is a complete binary
tree.

5. Advantages of Binary Trees

e Trees reflect structural relationships in the data
e Trees are used to represent hierarchies
e Trees provide an efficient insertion and searching

e Trees are very flexible data, allowing to move subtrees around with minimum
effort

3 BINARY DECISION DIAGRAMS 8

3.3 Traversal

A traversal is a process that visits all the nodes in the tree. Since a tree is a nonlinear
data structure, there is no unique traversal. We will consider several traversal algorithms
with we group in the following two kinds.

e depth first traversal
e breadth first traversal
There are three different types of depth-first traversals :

e PreOrder traversal - visit the parent first and then left and right children.We
start from A, and following pre-order traversal, we first visit A itself and then move
to its left subtree B. B is also traversed pre-order. The process goes on until all the
nodes are visited. The output of pre-order traversal of this tree willbe A B D E
C F G

Algorithm

1. Step 1 Visit root node.
2. Step 2 Recursively traverse left subtree.

3. Step 3 Recursively traverse right subtree.

Hoot

o e
(% & %

D E
2 e 3'\;_ ey S e

Left Subtree Right Subtree

Figure 1: Pre-Order Traversal

3 BINARY DECISION DIAGRAMS 9

e InOrder traversal - visit the left child, then the parent and the right child. We
start from A, and following in-order traversal, we move to its left subtree B. B is

also traversed in-order. The process goes on until all the nodes are visited. The
output of inorder traversal of this tree willbe D B E A F C G

Algorithm

1. Step 1 Recursively traverse left subtree.
2. Step 2 Visit root node.
3. Step 3 Recursively traverse right subtree.

Root

L E r 5\ C F
/\ o
1088 -]-\:,. 3__\\0

N M

Left Subtree Right Subtree

Figure 2: In-Order Traversal

3 BINARY DECISION DIAGRAMS 10

e PostOrder traversal - visit the left child, then the right child and then the parent.
We start from A, and following Post-order traversal, we first visit the left subtree B.
B is also traversed post-order. The process goes on until all the nodes are visited.
The output of post-order traversal of this tree willbe D E B F G C A

Algorithm

1. Step 1 Recursively traverse left subtree.
2. Step 2 Recursively traverse right subtree.
3. Step 3 Visit root node.

Root

B L e
1&y 20 &Y 2@

S _— —

Left Subtree Right Subtree

Figure 3: Post-Order Traversal

3 BINARY DECISION DIAGRAMS 11

3.4 Boolean Functions

A Boolean function is described by an algebraic expression consisting of binary variables,
the constants 0 and 1, and the logic operation symbols +,*. For a given set of values of the
binary variables involved, the boolean function can have a value of 0 or 1. For example,
the boolean function F= x’ y + z is defined in terms of three binary variables x,y,z. The
function is equal to 1 if x=0 and y=1 simultaneously or z=1. Every boolean function
can be expressed by an algebraic expression, such as one mentioned above, or in terms
of a Truth Table. A function may be expressed through several algebraic expressions, on
account of them being logically equivalent, but there is only one unique truth table for
every function. A Boolean function can be transformed from an algebraic expression into
a circuit diagram composed of logic gates connected in a particular structure. Circuit
diagram for F.

A set of rules or Laws of Boolean Algebra expressions have been invented to help
reduce the number of logic gates needed to perform a particular logic operation resulting
in a list of functions or theorems known commonly as the Laws of Boolean Algebra.

Boolean Algebra is the mathematics we use to analyze digital gates and circuits. We
can use these Laws of Boolean to both reduce and simplify a complex Boolean expression
in an attempt to reduce the number of logic gates required. Boolean Algebra is, therefore,
a system of mathematics based on a logic that has its own set of rules or laws which are
used to define and reduce Boolean expressions.

The variables used in Boolean Algebra only have one of two possible values, a logic
0 and a logic 1 but an expression can have an infinite number of variables all labelled
individually to represent inputs to the expression, For example, variables A, B, C etc,
giving us a logical expression of A + B = C, but each variable can only be a 0 or a 1.

Examples of these individual laws of Boolean, rules, and theorems for Boolean Algebra
are given in the following table.

Canonical and Standard Forms Any binary variable can take one of two forms,
x or x’. A boolean function can be expressed in terms of n binary variables. If all the
binary variables are combined together using the AND operation, then there are a total-
combinations since each variable can take two forms. Each of the combinations is called
a minterm or standard product. A minterm is represented by m; where i is the decimal
equivalent of the binary number the minterm is designated.

In a minterm, the binary variable is un-primed if the variable is 1 and it is primed if
the variable is 0 i.e. if the minterm is xy’ then that means x=1 and y=0. For example,
for a boolean function in two variables the minterms are my=x’y’ , m;=x"y , mo=x’
y,m3=xYy

In a similar way, if the variables are combined together with OR operation, then the
term obtained is called a maxterm or standard sum. A maxterm is represented by M;
where i is the decimal equivalent of the binary number the maxterm is designated. In
a maxterm, the binary variable is un-primed if the variable is 0 and it is primed if the
variable is 1 i.e. if the minterm is x’+y then that means x=1 and y=0. For example, for
a boolean function in two variables the minterms are my=x+y,

3 BINARY DECISION DIAGRAMS

Minterms

Maxterms

12

X ¥ z Term Designation Term Designation
0 0 0 xy'z Mg Xty+z Mg
0 0 1 x'y'z my x+y+z M,
0 1 0 x'yz' s x+y'+z M
0 1 1 x'yz My Xx+y' +7 M;
1 0 0 X'z my ¥tytz M,
1 1] 1 xy'z ms ey+z Mz
1 1 0 xyz' Mg Xy 4z M;
1 1 1 XyZ ms X+y +7 M5

Figure 4: Minterms and Maxterms for function in 3 variables

3.4.1 Boolean Identities

Double Complement Law

Complement Law
A+A=1 (OR Form)
A.A=0 (AND Form)

Idempotent Law
A+A=A (OR Form)
A.A=A (AND Form)

Identity Law
A+0=A (OR Form)
A.1=A (AND Form)

Dominance Law
A+1=1 (OR Form)
A.0=0 (AND Form)

Commutative Law
A+B=B+A (OR Form)
A.B=B.A (AND Form)

Associative Law
A+(B+C)=(A+B)+C (OR Form)
A.(B.C)=(A.B).C (AND Form)

Absorption Law

3 BINARY DECISION DIAGRAMS

A.(A+B)=A
A+(A.B)=A

Simplification Law
A.(A+B)=AB
A+(A.B)=A+B

Distributive Law
A+(B.C)=(A+B).(A+C)
A.(B+C)=(A.B)+(A.C)

De-Morgan’s Law

(A.B)=A+B
(A+B)=A.B

3.4.2 .bdd files

13

In order to understand more how .bdd file works, we needed CUDD library as well as to

visualize these files for better understanding.

[C R B R S

=
N = O ©

4 METHODOLOGY 14

4 Methodology

In this chapter, we would like to discuss the Milestones of our project starts by CUDD
library, binary decision diagrams, how they are represented, how boolean operations are
applied to them. This is followed by controller.bdd files generated from scots, and finally,
how a whole binary tree can be constructed out of any controller.bdd file, as well as
representing it in memory in FPGAs or any other microcontrollers.

4.1 Milestone I: Boolean operations on BDDs using CUDD li-
brary

In this milestone, we focus more on CUDD library and how to use them in order to
generate a name.bdd files, to understand the CUDD, we have performed simple boolean
operations using binary decision diagrams.[5]

4.1.1 CUDD LIBRARY

The CUDD package is a package written in C for the manipulation of decision diagrams,
it supports Binary Decision Diagrams (BDDs), Algebraic decision diagrams(ADDs), and
Zero-Suppressed BDDs (ZDDs). The basic use of CUDD is as follows:

e Initialize a DdManager using Cudd—Init
e Create the DD

e Shut down the DdManager using Cudd-Quit(DdManager® ddmanager)
Sample code for the main program

The program below creates a single BDD variable

#include 7 util .h”
#include ”cudd.h”
int main (int argc, char xargv[])
DdManager xgbm; /* Global BDD manager.*/
char filename [30];
gbm = Cudd_Init (0,0,CUDD_UNIQUE_SLOTS,CUDD_CACHESLOTS,0); /* Initialize a new BDD manager.*/
DdNode xbdd = Cudd-bddNewVar(ghm); /*Create a new BDD variable*/
Cudd_Ref(bdd); /*Increases the reference count of a node*/

Cudd_Quit (gbm) ;
return O0;

4 METHODOLOGY 15

4.1.2 Boolean Operations using DDDMP package

The DDDMP package is a package inside CUDD library that defines formats and rules
to store decision diagrams on file, so it is basically used for generating the .bdd files.
After creating one node, we want to create a boolean function, which is full of multiple
nodes and then observe the graph. The code here generates two files; the ”.bdd file” and
"the .dot file”. The bdd file represents the binary decision diagram of the controller in
text file.

We use the method int Dddmp—cuddBddArrayStore from DDDMP library
that Dumps the argument array of BDDs to file. Dumping is either in text or binary
form, but in our case, we choose the text format. The BDDs are stored in the fp (already
open) file if not NULL. Otherwise, the file whose name is fname is opened in the write
mode, the header has the same format for both textual and binary dump. Names are
allowed for input variables (vnames) and represented functions (rnames). For the sake of
generality, and because of dynamic variable, ordering both variables IDs and permuted
IDs are included, new IDs are also supported (auxids).

Variables are identified with incremental numbers, according to their position in the
support set. In text mode, an extra info may be added, chosen among the following options:
name, ID, PermlID, or an auxiliary (auxids). Since conversion from DD pointers to integers
is required, DD nodes are temporarily removed from the unique hash table, this allows
the use of the next field to store node IDs.

Using int Dddmp_cuddBddArrayStore method Generates
Generates

Figure 5: Milestone 1

int Dddmp_cuddBddArrayStore (

DdManager * dd, manager

char * ddname, dd name (or NULL)

int nroots, number of output BDD roots to be stored
DdNode xx f, array of BDD roots to be stored

char ** rootnames, array of root names (or NULL)
char % varnames, array of variable names (or NULL)

N O Uk W N

10
11
12
13

METHODOLOGY

int % auxids, array of converted var IDs

int mode, storing mode selector
Dddmp——VarInfoType varinfo, extra
char % fname, file name

FILE * fp pointer to the store file

info for variables

in text mode

16

4 METHODOLOGY 17

e Algorithm Explanation

As mentioned in figure 5, our algorithm generates two output files, name.bdd file
and name.dot file.To make sure everything is going in the correct path of our
understanding to .bdd files, we would compare name.bdd file and name.dot file
with our self drawn binary descision diagram of each function to make sure the two
files are compatible.

1. Name.bdd file

This is a text file generated using CUDD Library, specifically DDDMP package,
this file describes the binary decision diagram of any function in a form of
columns of numbers, where each column represents a certain meaning. The
first two rows of any name.bdd file are the terminal nodes which are either
ZEeros Or ones.

— First Column:Node ID
The name of the node.

— Second Column:Node Level
Represents the level of each node.T in the second column means Terminal.
Thus, always nodelD 1 and 2 are the terminal nodes that represent in fact
zero and one. To know which is zero and which is one, we would know this
from the the third column that represents the Node Extra Info.

— Third Column:Node Extra Info
We only care about this column in the first two nodes only which are the
first two rows only. We are interested in the values drawn located in the
intersection of the first row (representing node 1)with the third column
e.g.,(1,3), and the second row (representing node 2) with the third column
e.g.,(2,3).

— Fourth column:If-Node
To reach the If-Node , a solid line is used.

— Fifth column:Else-Node
To reach the Else-Node , a dashed line is used.

2. Name.dot file
This is a visualisation to the Binary decision diagram created .

4 METHODOLOGY 18

1. And Gate
We would explain this example, and all other examples would follow the same
instructions used. Referring to figure 7 and 32, we observe from And.bdd figure 7,
there are five columns as discussed before, the first column contains nodes from 1
to 4 (means 4 nodes). Starting always from the last row of the file, thus we start
with node 4.

e Row 4 : The Node Id is 4 .The Node Level which is column 2 is 0. Therefore,
in figure 32 we observe that Node 4 is in Level 0. The If-Node which is the
fourth column is here 3. Thus, in figue 32, we observe Node 4 going to Node 3
with a solid line. The Else-Node is 2 , so a dashed line goes from Node 4 to

Node 2 .

e Row 3 : The Node ID is 3 .The Node Level which is column 2 is 1 , so in
figure 32 ,we observe that Node 3 is in Level 1. The If~-Node which is the fourth
column is here 1, so in figue 32 , we can observe Node 4 going to Node 1 with
a solid line.The Else-Node is 2 , so a dashed line goes from Node 3 to Node 2 .

e Row 2 : The Node ID is 2 .The Node Level which is column 2 is T which
I concluded means Terminal nodes . The Node Extra Info which is column
three here tells us whether this terminal node is 0 or 1 , here in this row , it is
terminal zero ,means that Node ID 2 is implicitly /technically meaning that it
is Node ID 0.The If-Node and Else-Node which is the fourth column and
fifth column are here 0 which means they point to NULL as we do not have a
node -Id with the value 0.

e Row 1: The Node ID is 1 .The Node Level which is column 2 is T which
I concluded means Terminal nodes.The Node Extra Info which is column
three here tells us whether this terminal node is 0 or 1, here in this row, it is
terminal zero, means that Node ID 1 is implicitly /technically meaning that it
is Node ID 1.The If-Node and Else-Node which is the fourth column and
the fifth column are here 0 which means they point to NULL as we do not
have a node -Id with the value 0.

4 METHODOLOGY 19

newuser@fmlab5-Precision-T1700: ~/Desktop/AND GATE

newuser@fmlab5-Precision-T1700 o D GATES make
thing to be done for .
fmlab5-Precision-T1700:~/Deskto D GATES export LD_LIBRARY_PATH=/opt/1

newuser@fmlab5-Precision-T170 / 4 / TES . /ANDGATE
Symbolic set saved to file: o
DdManager nodes: 6 | DdManager vars: 2 | DdManager reorderings: 0 | DdManager me
18523080
nodes 2 leaves 1 minterms
Oxee979 1index = @
Oxeed78 1index = 1

newuser@fmlab5-Precision-T1700:

Figure 6: And Terminal Commands

FO

araph.bdd (~/Desktop/AND GATE/FilesGenerated) - gedit

Open ¥ M 0

.ver DDDMP-2.0
.add

.mode A
.varinfo @
.nnodes 4

.nvars 2

.nsuppvars 2

.ids

.permids © 1

.nroots 1

.rootids 4 1

Plain Text v Tab Width: 8 ~ Ln1,Col1 > NS

Figure 7: And.bdd File Figure 8: And.dot File

4 METHODOLOGY 20

2. Nand Gate

oe newuser@Ffmlab5-Precision-T1700: ~/Desktop/NAND GATE
newuser@fmlab5-Precision-T170 / / GATES make
make: Nothing to be done for
newuser@fmlab5-Precision-T1706: 0 GATES export LD_LTIBRARY_PATH=/opt/
local/lib
newuser@fmlab5s-Precision-T1700: ktop/NAND GATES ./NAND
symbolic set saved to file: e
DdManager nodes: 6 | DdManager vars: 2 | DdManager reorderings: © | DdManager me
mory: 10523880
: 4 nodes 2 leaves 3 minterms
0x11d4fb index = @ 0x11d4fa
= ©x11d4fa index = 1]

newuser@fmlab5-Precision-T1700:

Figure 9: Nand Terminal Commands

graph.bdd (~/Desktop/NAND GATE/bdd) - gedit

Open ¥ [

.ver DDDMP-2.0
.add

.mode A
.varinfo @
.nnodes 4
.nvars 2
.nsuppvars 2
.ids 0 1
.permids @ 1
.nroots 1
.rootids 4
.nodes

ETN N

Te
T1
11
00

weoo
NN e e

.end

Plain Text v

Figure 10: Nand.bdd Figure 11: Nand.dot

4 METHODOLOGY

3. Complex Function 1

21

newuser@Ffmlab5-Precision-T1700: ~/Desktop/Complex Function 1

exbbs14

pfmlabs

Figure 12: Complex Function 1 Terminal Commands

graph.bdd (~/Desktop/Complex Function 1/bdd) - gedit

ver DDDHP-2.0
add
‘mode A

_vartnfo o
-nnodes 11

Plain Text v Tab width: 8 ~ tnicoll v NS

Figure 13: ComplexFunctionl.bdd

Figure 14: ComplexFunctionl.dot

4 METHODOLOGY 22

4.2 Milestone II: Boolean operations on BDD without CUDD
library

In this Milestone, we construct the binary tree to represent BDDs, then execute an OR
operation between two BDDs. Afterward, we traverse the resulted tree using in order
traversal method to test our logic. The main objective behind this milestone is to give a
small example of constructing and traversing the binary tree, as a preparation to Milestone
III, in which we would construct a bigger binary tree and traverse upon its nodes. In
addition, we compare the results obtained out of this example with a self-drawn example
in order to test its credibility.

e In-order traversal results of the Algorithm resulted tree

@ ® @ [home/maharashad/Desktop/ALGORITHM/Bare BDD O

Figure 15: In-order traversal results

4 METHODOLOGY

e In-order traversal results of the self-Drawn resulted tree

Figure 17: Result of OR operation

Figure 16: Or Operation

23

4 METHODOLOGY 24

4.3 Milestone III: Understand .bdd files generated from SCOTS

SCOTS is an open source software tool for the synthesis of symbolic controllers for
nonlinear control systems. The SCOTS takes a non-linear differential equation as an input
and generates files in a certain format which is name.bdd format. The name.bdd files
consist of two sections: The header and the list of nodes, where the header has a common
(text) format, while the list of nodes is either in text or binary format. In our case, the
list of nodes is in text format. These BDDs generated from SCOTS are actually in their
Reduced Order Binary Decision Diagram (ROBDD).

:> scots :D controlierbd

Figure 18: SCOTS

Non-Linear Differential Equation
for controller

4.3.1 Controller.bdd Text Files

They are files generated from SCOTS that represent the controller in form of binary
decision diagram.

e Don’t Cares
As we mentioned before, these files are in the most reduced form which is called
ROBDD. These ROBDDs are unlike prefect BDD, where every node points to two
children right in the next level. However, the ROBDD representation does not follow
this rule, a node points to another node that is in a level different from the next
level. We observe from figure 16, basically they skip levels. Referring to Node-ID 4,
which its dashed line skips a level and goes directly to the terminal node 1.

In order to express the path to the terminal node from anywhere, we use bits zero
and one, where zero represents the dashed line and one represents the solid line.
For example, the path from Node-ID 4 to zero is 11, which means a solid line from
Node-ID 4 to Node-ID 3, and another solid line from Node-ID 3 to terminal zero.

4 METHODOLOGY

Figure 19: Nand.dot File

25

@ ® © newuser@Fmlab5-Precision-T1700: ~/Desktop/NAND GATE
newuser@fmlab5-Precision-T1700:~/ /NAND GATES make
make: Nothing to be done for 'all'
newuser@fmlab5-Precision-T1700
local/lib
newuser@fmlabs-Precision-T1700 esktop/NAND GATES ./NAND
Symbolic set saved to file: e
DdManager nodes: 6 | DdManager vars: 2 | DdManager reorderings: ® | DdManager me
mory: 10523080
: 4 nodes 2 leaves 3 minterms

0x11d4fb index = @ T = 0x11d4fa

ox11d4fa 1index = 1 T=0

AND GATES export LD_LIBRARY_PATH=/opt/

1
1

newuser@fmlab5-Precision-T1700:~/ [NAND GATES I

Figure 20: Action Bits output using CUDD
library

4 METHODOLOGY

4.4 Milestone IV: Implement BDD based controller in memory

After we have already understood the bdd files, now we should convert the content of the
bdd files to a real data structure to be saved in memory. Thus, this step is split into two

source codes.

1. Algorithm to generate hex memory of the BDD

2. Algorithm to traverse the BDD to identify the controller inputs

Controllerbdd from
SCOTS

¥

‘ Main Algorithm ‘

After
testing its
credebility

Splitinto 2 files.

L J i) L J

Algorithm to
generate hex FPGA.txt
memary of the BDD |
Generates
Consists of

¥ ¥

Algaorithm to traverse

Hex memory of the the BDD to identify

BOD

Figure 21: Algorithm sequence of events

the controller inputs |

4 METHODOLOGY 27

4.4.1 Algorithm to generate hex memory data of the BDD

Here, we have constructed an algorithm that generates the memory data in hexadecimal
format to be stored in the FPGA, we accomplish this through three important steps in
the algorithm.

1. Extract data from controller.bdd file. As described in milestone I, how the con-
troller.bdd are identified in terms of binary decision diagrams, and what does each
column represent. The algorithm would read all these data and identify its meaning,
as we have described before.

2. Convert it into a binary tree. After reading the controller.bdd file and identifying
its meaning, we construct a whole binary tree based on these information.

3. Store the memory hex file. After constructing the full binary tree out of this con-
troller.bdd file, we would save it as a hex format in a file called " FPGA.txt”. This
file contains the traversal algorithm we use to traverse the tree, which contains the
memory data of the BDD, as well as the traversal algorithm to traverse this BDD.

4 METHODOLOGY

e Algorithm to generate hex memory Flowchart [6]

Start

Create
bddMNode *root
which represents our whole BDD
__represented as array of nodes |

Open
wvehicle_controller.bdd

» Read the file line by
line

" Hfireached the ™
“-._word".nodes” -~

No Yes

» Count number of
nodes "Mode-ID"

(Create array with the |
size of nodes for
each:Node-

ID Nodelevel,
Mode Extra Info, If-
Mode, [f-else

h

Start reading the file
from the beginning
again

(" Save the values of |
the 5 columns in the
5 Arrays from down

_ toup

| Save the 5 specification
ofthe node in “root”.each
in every index of the

¥ arraf v

| save "root” as hex |
memory in file
FPGA xt

Figure 22: Algorithm to generate hex memory data Flow chart

4 METHODOLOGY 29

4.4.2 Algorithm to traverse the BDD to identify the controller inputs

In this algorithm, we aim to identify the controller data, since this controller is a symbolic
controller, the node represents the states and the inputs represent the path that leads
to the terminal node. Since our main aim is to satisfy the controllers’ requirements and
reach terminal 1, we would need to traverse any given BDD to reach the terminal 1 in
order to identify the needed controller inputs that would lead to terminal 1.

X1

X2

U1

0 1

Figure 23: Binary Decision Diagram

After successfully constructing the whole binary tree that represents our controller
BDD, saved it in the memory in file FPGA.txt using Algorithm to generate hex
memory of the BDD, now we need to traverse the tree in order to identify the controller
inputs.

METHODOLOGY

‘ FPGA.txt ‘

Consists of

v h

Memaory of BDD
represented in a hex
format

Algorithm to traverse
the BDD to identify

Figure 24: Generated FPGA .txt file contents

4.5 Limitations

e ADD format VS BDD format

1. ADD format

the controller inputs |

30

In this section, we would discuss the limitations we have faced regarding mainly the
controller.bdd file formats, dddmp package in Cudd library and how we overcame the
problem.

Using CUDD Library, the controller.bdd files are generated in two formats, either in an
ADD format or in BDD format.Most tools use the BDD format, such

as SCOTS.

As we can observe in figure 25, it has two terminal nodes, Terminal 0 and Terminal
1.In addition, the path from a node to another is only represented through a solid

line or a dashed line

4 METHODOLOGY 31

|.ver DDDMP-2.8
.add

.mode A
.varinfo @
.nnodes 11
.nvars 6
.nsuppvars 6
.dds ® 12 3
.permids 8 1
.nroots 1
.rootids 11
.nodes 1

5
345 0

oD 00 = v WP
Lol LT R PRI T R e ey |
H ot Wk 2O O
W=lPrunhRPRrMNDO

Figure 26: Binary decision diagram

Figure 25: ADD format files

2. BDD format

As shown in figure 27, there are nodes with negative values, these negative values are
complemented edges, it means that when we reach these nodes, all paths afterward
are complemented. Looking at figure 16, we observe that the diagram does not
only have solid edges and dashed edges which means one and zero, but it has an
additional line which is the complement line. As well as only having one terminal
node called terminal 1. As a result, this format (BDD) makes our understanding of
the decision diagram very hard and more complex.

4 METHODOLOGY 32

|.ver DDDMP-2.0
.mode A
.varinfo 0
.nnodes 9
.nvars 6
.nsuppvars 6
.ids 8 1 2 3
.permids 0 1
.nroots 1
rootids -9 1
nodes
T1

45
2345

0
-1
-2 2

NO R RWRNR O

C DN O W
@R RN W WA N
00 O LW
w

S @R NWWA N

m
o

Figure 27: BDD format files Figure 28: Binary decision diagram

Solution

In order to avoid complexity, we have chosen to use the ADD format files instead of
BDD ones as it is more clear.Since most tools use BDD format as scots , we made
a slight change in the source code of SCOTS using these methods

e Dddmp_cuddAddStore() ;
e Cudd BddToAdd();
Steps
1.0pen SCOTS

2.0pen SymbolicSet.hh inside bdd file
3.Go to writeToFile() method.

© 00 N O Us W N

10
11
12
13

© 0 N O U s W N

e e e
G W N = O

4 METHODOLOGY 33

4. Replace these lines

int storeReturnValue = Dddmp_cuddBddStore (

mdest . getManager (),

NULL,

tosave.getNode (),

// (char**)varnameschar, // char ** varnames, IN: array of variable names (or NULL)
NULL, // char ** varnames, IN: array of variable names (or NULL)

NULL,

DDDMP MODE.TEXT,

// DDDMPVARNAMES,

DDDMP_VARIDS,

NULL,

file

);

with
DddNode *bdd;
bdd=Cudd-BddToAdd (mdest . getManager () ,bdd);
int storeReturnValue = Dddmp_cuddAddStore (
mdest . getManager (),
NULL,
bdd,
// (char**)varnameschar, // char ** varnames, IN: array of variable names (or NULL)
NULL, // char ** varnames, IN: array of variable names (or NULL)
NULL,
DDDMP MODE.TEXT,
// DDDMPVARNAMES,
DDDMP_VARIDS,
NULL,
file
);

e Binary Format VS Text Format

SCOTS generate name.bdd files in a binary format so , we had to change this format
to text inorder to be able to read the files .

Steps

1.0pen SCOTS

2.0pen SymbolicSet.hh inside bdd file

3.Go to writeToFile() method.

4.In cudd—BddStore() method,change DDDMP—MODE—BINARY to DDDMP—
MODE—TEXT

5 RESULTS AND DISCUSSION 34

5 Results and discussion

In this section, we show the output of our algorithms along with different examples.

5.1 Algorithm to traverse the BDD to identify the controller
inputs

Here, we show the results of the algorithm used to traverse the BDD in order to generate all
the possible input path that leads to terminal one in terms of zeros and ones which actually
represent dash lines and solid lines. We would compare the automatically generated output
when we compile the And gate algorithm using CUDD library we discussed in Milestone 1
with the Algorithm to traverse the BDD to identify the controller inputs.Action
bits describes the path needed to reach terminal 1, for example, bit 1 means” go with the
solid line”, bit 0 means ”"then go with the dashed line” and so on till it reaches Terminal
1.We must also state that we have done this test before we split the algorithm into two
algorithms as stated before.

5 RESULTS AND DISCUSSION 35

1. And Example
If we traced the BDD figure 32 starting from Node-ID 4, we would find that there
is only one way to reach terminal 1 which is from Node-ID 4 to Node-Id 3 through
a solid line, then from Node-ID 3 to Terminal 1 through a solid line, which means
Action bits should be equal to 11.

Figure 29: And.dot File

© S © newuser@fmlab5-Precision-T1700: ~/Desktop/AND GATE

newuser@fmlab5-Precision-T1700:~/Desktop/AND GATES make

make: Nothing to be done for 'all'.

newuser@fmlab5-Precision-T1700:~/Desktop/AND GATES export LD_LIBRARY_PATH=/opt/1
ocal/lib

newuser@fmlab5-Precision-T1700:~/Desktop/AND GATES ./ANDGATE

Symbolic set saved to file: e °

DdManager nodes: 6 | DdManager vars: 2 | DdManager reorderings: @ | DdManager me
mory: 10523080

: 4 nodes 2 leaves 1 minterms
ID = ©Oxee979 1index = @

T = Bxee978
ID = 0xeed78 index = 1 T=1

E]
E <]

11 1

newuser@fmlabs-Precision-T1700:~/Desktop/AND GATES il

Figure 30: Action Bits output using CUDD
library

read text

Figure 31: Action Bits output using our pro-
posed Algorithm

5 RESULTS AND DISCUSSION

2. Nand Example

| © |
Figure 32: And.dot File

® S @ newuser@fmlab5-Precision-T1700: ~/Desktop/NAND GATE

newuser@fmlab5-Precision-T1700:~/Desktop/NAND GATES make

make: Nothing to be done for 'all'

newuser@fmlab5-Precision-T1700:~/Desktop/NAND GATES export LD_LIBRARY_PATH=/opt/
local/lib

newuser@fmlab5-Precision-T1700:~/Desktop/NAND GATES ./NAND

Symbolic set saved to file: ¢ °

DdManager nodes: 6 | DdManager vars: 2 | DdManager reorderings: 0 | DdManager me
mory: 10523080

: 4 nodes 2 leaves 3 minterms
ID = 0x11d4fb index = @

ID = ©xild4fa 1index =1

x11d4fa E
=

T=20 1
T=0 1

newuser@fmlab5-Precision-T1700:~/Desktop/NAND GATES [

Figure 34: Action Bits output using our pro-
posed Algorithm

5 RESULTS AND DISCUSSION

3. Complex Function 1 Example

Figure 35: Complex1.dot File

@ & & maharashad@mahaRashad: ~/Desktop/Complex Function 1

unction

DdManager nodes: 26 | DdManager vars: 6 | DdManager reordering

s: © | DdManager memory: 16523080

11 nodes 2 leaves 0.5 minterms

0x11359b index ©x113599
©0x11359a 1index 0x113598
0x113598 index 0x113596
©0x113597 1index 0x113595
6x113595 1index 6x11358d
0x11358c index 1
6x11358d index
0x113596 index
6x113599 1index

0x11359a
(¢}
0x113597

(¢}
0x11358c
0
i
0Xx113595
0x113598

e
o
e

Figure 36: Action Bits output using CUDD
library

read text

100101
100110
101001
101010

Figure 37: Action Bits output using our pro-
posed Algorithm

5 RESULTS AND DISCUSSION 38

5.2 Effect of our Algorithm in BDD2implement

As mentioned before, BDD2Implement is a C++ tool to generate hardware/software im-
plementations of BDD-based symbolic controllers. Having the tools SCOTS that generate
BDD-based symbolic controllers of general nonlinear dynamical systems, BDD2Implement
takes the controller.bdd file from SCOTS and convert the BDD to truth table so the con-
troller is represented as a boolean function. In this thesis, we have taken the controller.bdd
file from SCOTS and converted the BDD to a data structure, put it in a file that traverses
the tree to be saved in memory directly. Representing a BDD in a truth table in terms of
space is inefficient. For example, having a boolean function with 100 variables would need
(2100) lines in order to represent all possible combination. On the other hand, representing
the BDD using a data structure as binary trees with the same nature as BDD makes it
more efficient, since the controller.bdd file generated from scots is already in the reduced,
most simplified form of the BDD [ROBDD)]

e —— R
Convert BDD to truth Convert BDD to data
Table structure
S S
P —— -
Boolean Function Generate memary
File
S S
e —— e ——
FPGA => FPGA
-
Consumes too much Consumes less
memaory an FPGA memory on FPGA
Dependent on Independet on
Libraries Libraries

Figure 38: Effect of our Algorithm in BDD2IMPLEMENT

5 RESULTS AND DISCUSSION 39

5.3 Conclusion

In this thesis, we are concerned about BDDs, how to understand and construct them.
We propose a new method of representing symbolic controllers represented as BDDs on
FPGAs or microcontrollers in general. We constructed a C++ implementation of BDDs
that can read name.bdd files generated from SCOTS or any other tool. First, we read these
files, understand them and then construct a binary tree to be saved as a hex format.In
addition, we traverse the tree in order to extract all the right outputs of the controller.
Afterwards, a template file is ready to be put in OpenCL then to microcontrollers.

Non-Linear
Differential
Equation

l

controller.bdd

Algorithm

1. Reads BDD

Traverses the tree 2. Saves it as Binary Tree

generates
Y Y
Controller Memory Hex »
Action bits Flle OpenCl
FPGA

Figure 39: Sequence of events

6 FUTURE WORK 40

6 Future Work

o Test the code on FPGA

After we have successfully generated the memory of the BDD and the "FPGA . .txt”
file is ready to be put directly in OpenCL, then Xilinx then tests it on FPGA. We
can do this using several examples that have been generated already using scots
such as vehicle 1, vehicle 2, unicycle or dedc.

e Add the algorithm to BDD2implement

LIST OF FIGURES

List of Figures

00 3 O O i W N~

Pre-Order Traversal
In-Order Traversal
Post-Order Traversal
Minterms and Maxterms for function in 3 variables
Milestone 1
And Terminal Commands
And.bdd File
And.dot File
Nand Terminal Commands
Nand.bdd

Complex Function 1 Terminal Commands
ComplexFunctionl.bdd
ComplexFunctionl.dot
In-order traversal results o000
Or Operation e
Result of OR operation
SCOTS . . .
Nand.dot File
Action Bits output using CUDD library
Algorithm sequence of events
Algorithm to generate hex memory data Flow chart
Binary Decision Diagram oL
Generated FPGA. txt file contents
ADD format files
Binary decision diagram
BDD format files
Binary decision diagram Lo
And.dot File
Action Bits output using CUDD library
Action Bits output using our proposed Algorithm
And.dot File
Action Bits output using CUDD library
Action Bits output using our proposed Algorithm
Complexl.dot File
Action Bits output using CUDD library
Action Bits output using our proposed Algorithm
Effect of our Algorithm in BDD2IMPLEMENT
Sequence of events

41

LIST OF ALGORITHMS 42

List of Algorithms

N O O W N~

And Gate 44
Nand Gate e 46
Complex Function 1 48
Complex Function 2 50
OR Operationon two BDDs, 52
Algorithm to generate hex memory of the BDD 55

FPGA.txt o 64

REFERENCES 43

References

[10]

[11]

[12]

[13]

[14]

[15]

[16]

BDD2implement . https://gitlab.lrz.de/hcs/BDD2Implement.

Binary Decision Diagrams . https://www.slideshare.net /haroonrashidlone/
binary-decision-diagrams.

Construct a complete binary tree from given array in level order fashion . https:
/ /www.geeksforgeeks.org/construct-complete-binary-tree-given-array /.

Construct Binary Tree from given Parent Array representation . https://www.
geeksforgeeks.org/construct-a-binary-tree-from-parent-array-representation/ .

CUDD Tutorials . http://davidkebo.com/cudd.

Given a binary tree, print all root-to-leaf paths . https://www.geeksforgeeks.org/
given-a-binary-tree-print-all-root-to-leaf-paths/.

Marco Benedetti. Istituto per la ricerca scientifica e tecnologica (irst) via sommarive
18, 38055 povo, trento, italy. 2005.

Giordano Pola, Antoine Girard, and Paulo Tabuada. Approximately bisimilar sym-
bolic models for nonlinear control systems. Automatica, 44(10):2508-2516, 2008.

Giordano Pola and Paulo Tabuada. Symbolic models for nonlinear control systems:
Alternating approximate bisimulations. SIAM Journal on Control and Optimization,
48(2):719-733, 2009.

Gunther Reissig and Matthias Rungger. Abstraction-based solution of optimal stop-
ping problems under uncertainty. In CDC, pages 3190-3196, 2013.

Gunther Reissig, Alexander Weber, and Matthias Rungger. Feedback refinement
relations for the synthesis of symbolic controllers. IEEE Transactions on Automatic
Control, 62(4):1781-1796, 2017.

Matthias Rungger and Majid Zamani. Scots: A tool for the synthesis of symbolic
controllers. In Proceedings of the 19th International Conference on Hybrid Systems:
Computation and Control, pages 99-104. ACM, 2016.

Fabio Somenzi. Binary decision diagrams. NATO ASI SERIES F COMPUTER
AND SYSTEMS SCIENCES, 173:303-368, 1999.

Fabio Somenzi. Cudd: Cu decision diagram package-release 2.4. 0. University of
Colorado at Boulder, 2009.

Paulo Tabuada. Symbolic models for control systems. Acta Informatica, 43(7):477—
500, 2007.

Paulo Tabuada. Verification and control of hybrid systems: a symbolic approach.
Springer Science & Business Media, 2009.

44

Appendix

1. And Gate

1 #include <array>

2 #include <iostream>

3 #include ”cuddObj.hh”

4 #include 7 util .h”

5 F#include ”"dddmp.h”

6

7 void print_.dd (DdManager *gbm, DdNode *dd, int n, int pr)

s {

9 printf(”?”DdManager nodes: %ld | ”, Cudd-ReadNodeCount(gbm)); /+*Reports the number of

live mnodes in BDDs and ADDsx/

10 printf (”?”DdManager vars: %d | 7, Cudd_-ReadSize(ghm)); /*Returns the number of BDD
variables in existencex/

11 printf(”DdManager reorderings: %d | 7, Cudd-ReadReorderings(gbm)); /*Returns the
number of times reordering has occurreds*/

12 printf (”DdManager memory: %ld \n”, Cudd-ReadMemoryInUse(gbm)); /*Returns the
memory in use by the manager measured in bytesx*/

13 Cudd-PrintDebug(gbm, dd, n, pr); // Prints to the standard output a DD and its
statistics : number of nodes, number of leaves, number of minterms.

14}

15

16 /xx

17 * Writes a dot file representing the argument DDs

18 * @param the node object

19 */

20 void write_.dd (DdManager *gbm, DdNode #dd, charx filename)

21

22 FILE xoutfile; // output file pointer for .dot file

23 outfile = fopen(filename ,”w”);

24 DdNode #xddnodearray = (DdNodex#)malloc (sizeof(DdNodex)); // initialize the
function array

25 ddnodearray [0] = dd;

26 Cudd_DumpDot (gbm, 1, ddnodearray , NULL, NULL, outfile); // dump the function to
dot file

27 free (ddnodearray) ;

28 fclose (outfile); // close the file x/

29}

30 int main() {

31 char filename [30];

32 DdManager xgbm; /x Global BDD manager. #*/

33 gbm = Cudd-Init (0,0,CUDD_UNIQUESLOTS,CUDD_CACHESLOTS,0); /#* Initialize a mew BDD
manager. +*/

34 DdNode *bdd, =*xx1, *x2;

35 x1 = Cudd.-bddNewVar(ghm); /#*Create a new BDD variable zl1x/

36 x2 = Cudd-bddNewVar(ghm); /*Create a new BDD variable z2x%/

37 bdd = Cudd_bddAnd(gbm, x1, x2); /#Perform AND Boolean operation+/

38 Cudd_Ref(bdd) ;

39 FILE xfile = fopen (”./FilesGenerated/graph.bdd” ,”w”);

40 int storeReturnValue = Dddmp_cuddBddStore(

41 gbm,

42 NULL,

43 bdd,

44 //(charx*)varnameschar, // char #* varnames, IN: array of wvariable mames (or NULL

45 NULL, // char #% varnames, IN: array of wvariable names (or NULL)

16 NULL,

47 DDDMP_MODE.TEXT,

48 // DDDMP.VARNAMES,

49 DDDMP_VARIDS,

50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

65
66
67
68

NULL,
file
)

fclose (file);

if (storeReturnValue!=DDDMP_SUCCESS)
throw ”Error: Unable to write BDD to file.”;

else

std :: cout << ”Symbolic set saved to file:

7<< filename << std::endl;

/+Update the reference count for the node just created.x/
bdd = Cudd-BddToAdd(gbm, bdd); /#*Convert BDD to ADD for display purposex/
print_dd (gbm, bdd, 2,4); /*Print the dd to standard output+*/
7./ FilesGenerated /graph.dot”); /*Write .dot filename to a string

sprintf (filename ,
*/
write_dd (gbm, bdd,

Cudd-Quit (gbm) ;

filename) ;

/*Write the resulting

cascade dd to a filex/

45

46

2. Nand Gate

1 #include <array>

2 #include <iostream>

3

4 #include ”cuddObj.hh”

5 F#tinclude 7 util.h”

6 F#include ”"dddmp.h”

7

8 void print-dd (DdManager *gbm, DdNode xdd, int n, int pr)

o {

10 printf(”?”DdManager nodes: %ld | ”, Cudd-ReadNodeCount(gbm)); /+*Reports the number of

live mnodes in BDDs and ADDsx/

11 printf(”?”DdManager vars: %d | 7, Cudd_-ReadSize(ghm)); /*Returns the number of BDD
variables in existencex/

12 printf(”?”DdManager reorderings: %d | 7, Cudd-ReadReorderings(gbm)); /*Returns the
number of times reordering has occurreds*/

13 printf (”DdManager memory: %ld \n”, Cudd-ReadMemoryInUse(gbm)); /*Returns the
memory in use by the manager measured in bytesx*/

14 Cudd-PrintDebug(gbm, dd, n, pr); // Prints to the standard output a DD and its
statistics : number of nodes, number of leaves, number of minterms.

15}

16

17 %

18 * Writes a dot file representing the argument DDs

19 * @param the node object

20 */

21 void write_.dd (DdManager *gbm, DdNode #dd, charx filename)

22

23 FILE xoutfile; // output file pointer for .dot file

24 outfile = fopen(filename ,”w”);

25 DdNode #xddnodearray = (DdNodex*)malloc(sizeof(DdNodex)); // initialize the
function array

26 ddnodearray [0] = dd;

27 Cudd_DumpDot (gbm, 1, ddnodearray , NULL, NULL, outfile); // dump the function to
dot file

28 free (ddnodearray) ;

29 fclose (outfile); // close the file x/

30}

31 int main() {

32 char filename [30];

33 DdManager xgbm; /x Global BDD manager. #*/

34 gbm = Cudd-Init (0,0,CUDD_UNIQUESLOTS,CUDD_CACHESLOTS,0); /#* Initialize a mew BDD
manager. */

35 DdNode *bdd, =*xx1, *x2;

36 x1 = Cudd-bddNewVar(ghm); /#*Create a new BDD variable z1x/

37 x2 = Cudd-bddNewVar(ghm); /*Create a new BDD variable z2x%/

38 bdd = Cudd.bddNand (ghm, x1, x2); /xPerform AND Boolean operationx/

39 Cudd_Ref(bdd) ;

40 FILE xfile = fopen (”./bdd/graph.bdd” ,”w”);

41 bdd = Cudd-BddToAdd(ghm, bdd);

42 int storeReturnValue = Dddmp_cuddAddStore(

43 gbm,

44 NULL,

45 bdd ,

46 //(chars«xvarnameschar, // char %% wvarnames, IN: array of wvariable names (or NULL)

47 NULL, // char #% varnames, IN: array of wvariable names (or NULL)

48 NULL,

49 DDDMP_MODE.TEXT,

50 // DDDMP.VARNAMES,

51 DDDMP_VARIDS,

52 NULL,

53 file
54)

55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

fclose (file);
if (storeReturnValue!=DDDMP_SUCCESS)
throw ” Error: Unable to write BDD to file.”;
else
std :: cout << ”Symbolic set saved to file: ”’<< filename << std::endl;

/*Update the reference count for the node just created.x/
/*Convert BDD to ADD for display purposex/
print-dd (gbm, bdd, 2,4); /*Print the dd to standard outputs*/
sprintf(filename, ”./bdd/graph.dot”); /+Write .dot filename to a stringx*/
write_dd (gbm, bdd, filename); /*Write the resulting cascade dd to a filex/

Cudd_Quit (ghm) ;

47

© 00 N O U As W N

=
o

-
[

12

13

14

15
16
17
18
19
20
21
22
23
24
25

26
27

28
29
30
31
32
33
34

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

52
53

48

3. Complex Function 1

#include <array>
#include <iostream>

#include ”cuddObj.hh”

#include ”util .h”

#include ”"dddmp.h”

void print_-dd (DdManager #gbm, DdNode *dd, int n, int pr)

{

printf (”DdManager nodes: %ld | ”, Cudd-ReadNodeCount(gbm)); /+*Reports the number of
live mnodes in BDDs and ADDsx/

printf (”DdManager vars: %d | 7, Cudd_-ReadSize(gbm)); /*Returns the number of BDD
variables in existencex/

printf (”DdManager reorderings: %d | ”, Cudd-ReadReorderings(gbm)); /*Returns the

number of times reordering has occurred+/

printf(”DdManager memory: %ld \n”, Cudd_-ReadMemoryInUse(gbm)); /*Returns the
memory in use by the manager measured in bytesx/

Cudd_PrintDebug(gbm, dd, n, pr); // Prints to the standard output a DD and its
statistics : number of nodes, mumber of leaves, number of minterms.

}
VAT

* Writes a dot file representing the argument DDs
#* @param the node object
*/
void write_.dd (DdManager #gbm, DdNode *dd, char* filename)
{
FILE xoutfile; // output file pointer for .dot file
outfile = fopen(filename ,”w”);
DdNode #xddnodearray = (DdNodex*)malloc(sizeof(DdNodex)); // initialize the
function array
ddnodearray [0] = dd;
Cudd-DumpDot (ghm, 1, ddnodearray, NULL, NULL, outfile); // dump the function to
dot file
free (ddnodearray) ;
fclose (outfile); // close the file =/

int main() { //z1 zor z2 * x3 zor z4 * x5 zor z6
char filename [30];
DdManager *gbm; /* Global BDD manager. x/
gbm = Cudd_Init (0,0,CUDD_UNIQUE_SLOTS,CUDD_CACHESLOTS,0); /#* Initialize a new BDD
manager. */
DdNode xbdd, =*x1, *x2, xbdd2, *x3, *x4 ,xbdd3,*x5,+*x6, *xT7, xresult ;
x1 = Cudd-bddNewVar(ghm); /*Create a new BDD variable z1x%/
x2 = Cudd.bddNewVar(ghbm); /*Create a mew BDD wvariable z2x/
x3 = Cudd_bddNewVar (gbm /*Create a new BDD variable zlx/
x4 Cudd-bddNewVar (gbm
x5 Cudd-bddNewVar (ghm
x6 = Cudd-bddNewVar (ghm

; /*Create a new BDD wvariable z1x/

)

—

bdd = Cudd_bddXor(ghbm, x1, x2); /«*Perform OR Boolean operations/
bdd2=Cudd_bddXor (gbm, x3, x4);

bdd3= Cudd_bddXor(gbm, x5, x6);

x7=Cudd_bddAnd (ghm, bdd , bdd2) ;

result=Cudd_bddAnd (gbm, x7,bdd3) ;

Cudd_Ref(result); /*Update the reference count for the node just created.
*/
result = Cudd_-BddToAdd(gbm, result); /*Convert BDD to ADD for display purposex/

54
55

57
58
59

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
T
78
79
80
81

49

FILE *file = fopen (”./bdd/graph.bdd” ,”w”);

int storeReturnValue = Dddmp_cuddAddStore (
ghm,
NULL,
result ,
//(charx*)varnameschar, // char #%* varnames, IN: array of wvariable mames (or NULL

NULL, // char xx wvarnames, IN: array of variable names (or NULL)
NULL,

DDDMP_MODE.TEXT,

// DDDMP.VARNAMES,

DDDMP_VARIDS,

NULL,

file

)3

print_dd (gbhm, result, 2,4); /*Print the dd to standard outputs+/
sprintf(filename, ”./bdd/graph.dot”); /*Write .dot filename to a stringx/
write_dd (gbhm, result, filename); /xWrite the resulting cascade dd to a filex/

//fclose(file);

© 00 N O U s W N

=
o

-
[

12

13

14

15
16
17
18
19
20
21
22
23
24
25

26
27

28
29
30
31
32
33
34

35

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

20

4. Complex Function 2

#include <array>
#include <iostream>

#include ”cuddObj.hh”
#include ”util .h”
#include ”dddmp.h”

void print_-dd (DdManager #gbm, DdNode *dd, int n, int pr)

{
printf (”DdManager nodes: %ld | ”, Cudd-ReadNodeCount(gbm)); /+*Reports the number of
live mnodes in BDDs and ADDsx/
printf (”DdManager vars: %d | 7, Cudd_-ReadSize(gbm)); /*Returns the number of BDD
variables in existencex/
printf (”DdManager reorderings: %d | ”, Cudd-ReadReorderings(gbm)); /*Returns the
number of times reordering has occurred+/
printf(”DdManager memory: %ld \n”, Cudd_-ReadMemoryInUse(gbm)); /*Returns the
memory in use by the manager measured in bytesx/
Cudd_PrintDebug(gbm, dd, n, pr); // Prints to the standard output a DD and its
statistics : number of nodes, mumber of leaves, number of minterms.
}
VAT

* Writes a dot file representing the argument DDs
#* @param the node object
*/
void write_.dd (DdManager #gbm, DdNode *dd, char* filename)
{
FILE xoutfile; // output file pointer for .dot file
outfile = fopen(filename ,”w”);
DdNode #xddnodearray = (DdNodex*)malloc(sizeof(DdNodex)); // initialize the
function array
ddnodearray [0] = dd;
Cudd-DumpDot (ghm, 1, ddnodearray, NULL, NULL, outfile); // dump the function to
dot file
free (ddnodearray) ;
fclose (outfile); // close the file =/

int main() { // X1.X2.X8.X4 + X5.X6.X7.X8 + X9.X10.X11.X12

char filename [30];

DdManager *gbm; /* Global BDD manager. x/

gbm = Cudd_Init (0,0,CUDD_UNIQUE_SLOTS,CUDD_CACHESLOTS,0); /#* Initialize a new BDD
manager. */

DdNode xbdd,*bdd2,*bdd3,*xbdd4, xx1, *x2,*xx3, xx4,%x5, *x6,%*x7, *x8,%xx9, *x10,*xx11,
x12 ;% Andl, And2,* And3,+* And4, *And5,*And6,+*And7, *And8,xAnd9, *Orl,+*Or2,*0r3, *
result ;

x1 = Cudd_bddNewVar(gbm); /*Create a new BDD wvariable zlx/

x2 Cudd-bddNewVar (gbm); /+*Create a new BDD wvariable z2x/

x3 Cudd_-bddNewVar (gbm); /+*Create a new BDD variable xl1x/

x4 = Cudd-bddNewVar (ghm) ;

And1=Cudd_bddAnd (ghm, x1, x2);

And2=Cudd-bddAnd (gbm, x3, x4);

And3=Cudd-bddAnd(gbm, Andl, And2); // XI1.X2.X3.X4

x5 = Cudd_bddNewVar(gbm); /*Create a new BDD wvariable zlx/
x6 = Cudd-bddNewVar (ghm) ;

x7 = Cudd_bddNewVar (ghbm); /+*Create a mew BDD wvariable z1x/
x8 = Cudd-bddNewVar (ghm) ;

And4=Cudd_bddAnd (ghm, x5, x6);

And5=Cudd-bddAnd (gbm, x7, x8);

And6=Cudd_-bddAnd (gbm, And4, And5); //X5.X6.X7.X8

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

ol

x9 = Cudd-bddNewVar (ghm) ;
x10 = Cudd_bddNewVar (ghm) ;
x11 = Cudd_bddNewVar(gbm); /*Create a new BDD wvariable zlx/
x12 = Cudd-bddNewVar (ghm) ;

And7=Cudd_bddAnd (ghm, x9, x10);

And8=Cudd-bddAnd (gbm, x11, x12);

And9=Cudd-bddAnd (gbm, And7, And8); //X9.X10.X11.X12

/*Create a new BDD variable zl1%/

Or1=Cudd-bddOr (gbm, And3, And6);

result=Cudd-bddOr(gbm, Orl, And9);

Cudd_Ref(result);

FILE *file = fopen (”./bdd/graph.bdd” ,”w”);

result = Cudd_-BddToAdd(gbm, result); /*Convert BDD to ADD for display purposex/
int storeReturnValue = Dddmp_cuddAddStore(

gbm,

NULL,

result ,
//(charxx)varnameschar, // char #* varnames, IN: array of wvariable mames (or NULL

NULL, // char x* wvarnames, IN: array of variable names (or NULL)
NULL,

DDDMP_MODE TEXT,

// DDDMP.VARNAMES,

DDDMP _VARIDS,

NULL,

file

)

fclose (file);
if (storeReturnValue!=DDDMP_SUCCESS)

throw ”Error: Unable to write BDD to file.”;
else
std :: cout << ”Symbolic set saved to file: ”<< filename << std::endl;

/*Update the reference count for the node just created.x/
print_dd (gbm, result, 2,4); /*Print the dd to standard outputx/

sprintf (filename , ”./bdd/graph.dot”); /*Write .dot filename to a stringx/
write_dd (ghm, result, filename); /xWrite the resulting cascade dd to a filex/

Cudd_Quit (gbm) ;

© 00 N O U s W N

e e e
DU Re W N = O

17
18
19
20
21
22
23
24

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

5. OR Operation on two BDDs

#include<stdio .h>
#include<stdlib .h>

//struct node* mnode;

struct node

{

int data;//data
struct node xdashedline;//links
struct node *xsolidline;

s

o2

/* newNode () allocates a new node with the given data and NULL left and
right pointers. #*/
struct nodex newNode(int data)

{

struct nodex node = (struct nodex)malloc(sizeof(struct node));// Allocate memory
for new mnode
node—>data = data;// Assign data to this node

node—>dashedline = NULL; // Initialize

node—>solidline = NULL;
return (node) ;

left and right children as NULL

void inorder (struct node * node) // method to help output the result in inorder
traversal

{

if (!node)
return;

/* first recur on left child x/
inorder (node—>dashedline);

/* then print the data of mnode x*/
printf(”%d 7, node—>data);

/* mow recur on right child */
inorder (node—>solidline);

struct nodex OR(struct node *rootl, struct node *root2
and g are pointers

int wval;

struct
struct
struct
struct

node
node
node
node

xnewdashedF; //new pointers to be used
snewsolidF ;
*newdashedG ;
xnewsolidG ;

if (!rootl && !root2) { // if they are both null
return NULL;

}

else if (!lroot2) { // ig roo0t2 is NULL
val=rootl—>data;
return rootl;

) { //temps are integers while f

based on mode choices

60
61
62
63
64
65
66
67

68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86

87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105

106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122

23

else if (l!rootl) { //if rootl is null
val=root2—>data;
return root2;

else if ((rootl—>data ==0 || rootl—>data==1) && (root2—>data ==0 || root2—>data==1)
Yy { // if both of them are terminal nodes then we apply or function
val=rootl—>data | root2—>data;
newdashedF=rootl—>dashedline;
newdashedG=root2—>dashedline;
newsolidF=rootl—>solidline;
newsolidG=root2—>solidline;

else if (rootl—>data==root2—>data) {// if they are equal
val=rootl—>data;
newdashedF=rootl—>dashedline;
newdashedG=root2—>dashedline;
newsolidF=rootl—>solidline;
newsolidG=root2—>solidline;

else if(rootl—>data < root2—>data) { // if rootl is smaller that Too0t2
if (rootl—>data==0 || rootl—>data ==1) { // if there is a terminal node and

normal one, get the mormal one

val=root2—>data;

newdashedF=root1 ;

newdashedG=root2—>dashedline;

newsolidF=rootl;

newsolidG=root2—>solidline ;

else {
val=rootl—>data;
newdashedF=rootl—>dashedline;
newdashedG=root2;
newsolidF=rootl—>solidline;
newsolidG=root2;

else if(rootl—>data > root2—>data) {
if (root2—>data==0 || root2—>data ==1) { // if there is a terminal node and
normal one, get the mnormal one
val=rootl—>data;
newdashedF=rootl—>dashedline;
newdashedG=root2 ;
newsolidF=rootl—>solidline;
newsolidG=root2;

else {
val=root2—>data;
newdashedF=root1;
newdashedG=root2—>dashedline;
newsolidF=root1;
newsolidG=root2—>solidline;

}

struct node *root3=newNode(val);

123
124
125
126
127
128
129

131
132
133
134
135

137
138
139
140
141
142
143
144
145
146
147
148
149

151

152

153

154

155
156
157
158
159

161
162
163
164
165
166

167

168
169
170
171
172
173
174
175
176
177
178

int

/7

o4

root3—>solidline=OR(newsolidF , newsolidG);
root3—>dashedline=OR(newdashedF , newdashedG);
return root3;

main ()

/% Let us construct below tree

2
/\
3
\
|4
/
5
I
0 1
*/
struct node *rootl = newNode(2);
rootl—>dashedline = newNode(3) ;
rootl—>solidline = rootl—>dashedline—>solidline=newNode
(4);
rootl—>dashedline—>dashedline = rootl—>solidline —>dashedline=
rootl—>dashedline—>solidline —>dashedline =newNode(5) ;
rootl—>dashedline—>dashedline—>dashedline = rootl—>solidline =>dashedline —>
dashedline= rootl—>dashedline—>solidline —>dashedline—>dashedline= newNode(0) ;
rootl—>solidline —>solidline = rootl—>dashedline—>dashedline—>
solidline= rootl—>dashedline—>solidline —>solidline= newNode (1) ;
/* Let us construct below tree
2
/N
5— 4
LA\
0 1
*/
struct node *root2 = newNode(2);
root2—>solidline = newNode(4);
root2—>dashedline = root2—>solidline —>dashedline= newNode(5) ;
root2—>dashedline—>dashedline = root2—>solidline —>dashedline —>dashedline=
newNode (0) ;
root2—>solidline —>solidline = root2—>dashedline—>solidline=

root2—>solidline —>dashedline—>solidline=newNode (1) ;
struct node *root3= OR(rootl, root2);
//int z=NULL;
V/printf(P%d 7, ©);

printf (”The Result Tree is :\n”);
// printf(”%d 7, root3);

inorder (root3);
return 0;

© 0 N O U s W N

e e e e e e
© 0 N O U ks W N = O

20
21

22
23
24

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

49
50
51
52
53
54
55
56
57
58

6. Algorithm to generate hex memory of the BDD

#include <iostream>
#include <stdio.h>
#include <stdlib .h>

#include ”cuddObj.hh”
#include ”CuddMintermIterator.hh”
#include ”"dddmp.h”

J/#include <util.h>

#include <sstream>
#include <vector>
#include <cstdlib>
#include <fstream>
#include <string>
#include <algorithm>
#include <iterator>
#include <bits/stdc++.h>
/*BDD_INPUT_BITS represent number of bits
states [2]x/
#define BDD_INPUT_BITS 0

/*BDD_output_BITS represent number of bits of the input that this algorithm generates
which is the path for terminal 1x/

#define BDD_OUTPUTBITS 24

#define arraySize 200000 // so i hve actionBIts={1010,1111,...... } since I dont know

all the path possibility
using namespace std;
Cudd* ddmgr_;
size_t dim_;
/* war: eta_

that I have |,

the user enter for the

i made an array of size

1000

* dim_—dimensional vector containing the grid node distances %/

doublex eta_;
/* wvar: z_

* dim_—dimensional vector containing the measurement error bound */

doublex z_;
/* wvar: firstGridPoint_
* dim_—dimensinal vector containing the
doublex firstGridPoint_;
/* var: firstGridPoint._

real values

* dim_—dimensinal vector containing the real values
doublex lastGridPoint_;
/* var: nofGridPoints_

* integer array[dim_] containing the grid points in
size_t* nofGridPoints_;
/* read the SymbolicSet information
/% wvar: nofBddVars_

* 4nteger array/[dim_] containing
size_t* nofBddVars_;
/* var: indBddVars_

from filex/

of the first grid point */
of the last grid point x/

each dimension x/

the number of bdd wvariables in each dimension x/

* 2D integer array[dim_][nofBddVars.] containing the indices (=IDs) of the bdd

variables +*/

size_t** indBddVars_;
/* wvar:

¥ total number of bdd wvariables
size_t nvars._;
/* war: symbolicSet_

* the bdd representing the set of points */
BDD symbolicSet_;

nvars._

representing the support of the set x/

/* war: iterator_
* class to iterate over all elements in the symbolic setx*/
CuddMintermlIterator* iterator_;

states , if it is

95

=2 ,

s

59

61
62

63

64

65

66

67

69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108

110
111
112
113
114
115
116
117
118
119

void print_dd (DdManagerx gbm, DdNodex dd, int n, int pr)

{

o6

printf (”DdManager nodes: %ld | ”, Cudd-ReadNodeCount(gbm)); /+*Reports the number of

live mnodes in BDDs and ADDsx*/

printf (”DdManager vars: %d | 7, Cudd_-ReadSize(gbm)); /*Returns the number of BDD

variables in existencex/

printf (?”DdManager reorderings: %d | 7, Cudd_-ReadReorderings(gbm)); /*Returns the

number of times reordering has occurred+/

printf (”DdManager memory: %ld \n”, Cudd_-ReadMemoryInUse(gbm)); /*Returns the memory

in use by the manager measured in bytesx*/

Cudd_PrintDebug(gbm, dd, n, pr); // Prints to the standard output a DD and its

statistics : number of nodes, mumber of leaves, number of minterms.

void readMembersFromFile(const charx filename)
{
/* open file x/
std :: ifstream bddfile(filename);
if (!bddfile.good()) {
std:: ostringstream os;
os << "Error: Unable to open file:” << filename << 7 '.”;
throw std::runtime_error(os.str().c-str());
}
/* read dimension from file x/
std::string line;
while (!bddfile.eof()) {
std :: getline (bddfile, line);
if (line.substr(0, 6) = "#scots”) {
if (line.find (”dimension”) != std::string::npos) {
std ::istringstream sline(line.substr(line.find(”:”) + 1));
sline >> dim_;

}

if (dim. = 0) {
std:: ostringstream os;

0os << " Error: Could not read dimension from file: ” << filename << 7.
os << "Was ” << filename << ” created with scots:: SymbolicSet:: writeToFile?”;

throw std::runtime_error(os.str().c_str());

}

z_. = new double[dim_];

eta. = new double[dim_];
lastGridPoint- = new double[dim.];
firstGridPoint. = new double[dim._];
nofGridPoints. = new size_t [dim_];
nofBddVars. = new size_t [dim_];

/* read eta/first/last/no of grid points/no of bdd vars */
bddfile.clear () ;
bddfile .seekg (0, std::ios::beg);
int check = 0;
while (!bddfile.eof()) {
std :: getline (bddfile, line);

if (line.substr(0, 6) = "#scots”) {
/* read eta */
if (line.find(”eta”) != std::string::npos) {
check++;

std ::istringstream sline(line.substr(line.find(”:”) + 1));
for (size_t i = 0; i < dim_; i++)
sline >> eta_[i];

}
/* read z */
if (line.find (”measurement”) != std::string::npos) {
check++;
std ::istringstream sline(line.substr(line.find(”:”) + 1));
for (size_t i = 0; 1 < dim_; i++)
sline >> z_[i];

” .
3

120
121
122
123
124
125
126

128
129
130
131
132

134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167

169
170
171
172
173
174

176
177
178
179
180
181
182
183
184
185

/* read first grid pointx/
if (line.find (”first”) != std::string::npos) {
check++;
std ::istringstream sline(line.substr(line.find(”:”) + 1));
for (size_-t i = 0; i < dim_; i++4)
sline >> firstGridPoint_[i];

/* read last grid pointx/
if (line.find(”last”) != std::string::npos) {
check++;
std ::istringstream sline(line.substr(line.find(”:”) + 1));
for (size_-t i = 0; i < dim_; i++)
sline >> lastGridPoint_[i];

}
/* read no of grid points */
if (line.find ("number”) != std::string::npos) {
check++;
std ::istringstream sline(line.substr(line.find(”:”) + 1));
for (size_-t i = 0; i < dim_; i++) {
sline >> nofGridPoints_[i];
if (nofGridPoints_[i] = 1)
nofBddVars_[i] = 1;
else
nofBddVars_[i] = (size_t)std::ceil (log2(nofGridPoints_[i]));
}
}
if (check = 5)
break;

}

if (check < 5) {
std:: ostringstream os;
os << "Error: Could not read all parameters from file: ” << filename << 7. 7;
os << "Was ” << filename << ” created with scots:: SymbolicSet:: writeToFile?”;
throw std::runtime_error(os.str().c-str());

}
/* read index of bdd wvars */
indBddVars. = new size_t x[dim_];

bddfile.clear () ;
bddfile.seekg (0, std::ios::beg);
check = 0;
while (!bddfile.eof()) {

std:: getline (bddfile , line);

if (line.substr (0, 6) = "#scots”) {
if (line.find (”index”) != std::string::npos) {
check++;

std ::istringstream sline(line.substr(line.find(”:”) + 1));
for (size_t i = 0; 1 < dim_; i++) {
indBddVars_[i] = new size_t [nofBddVars_[i]];
for (size-t j = 0; j < nofBddVars_[i]; j++)
sline >> indBddVars_[i][]];

}

}

if (check = 1) {
std:: ostringstream os;
os << "Error: Could not read bdd indices from file: ” << filename << 7.7 ;
os << "Was ” << filename << ” created with scots:: SymbolicSet:: writeToFile?”;
throw std::runtime_error(os.str().c-str());

} /% close file x/

bddfile. close () ;

/* number of total variables x/

nvars_. = 0;

for (size_-t i = 0; i < dim_; i++)

187
188
189
190
191
192

194

195
196
197

199
200
201
202
203
204

206
207

208
209

210
211

212
213
214
215
216

217

218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240

241
242
243

o8

for (size.t j = 0; j < nofBddVars_[i]; j++)
nvars_-+-+;

typedef struct node {

/*nodelD */

int data;

/*represent level of the nodex/

int levelnum;

/*the wvar internal indexr which is the 8rd column in the .bdd file .. for the
terminals usex/

int index;

/*Index in the root array of the dashed line node of a node mot valuesx/
int dashedline;
/*Index in the root array of the dashed line node of a node mnot valuesx/
int solidline;

} bddNode;

/*The binary tree constructed out of the BDDx/
bddNodex root ;

J*

int

In this main method the .bdd file name should be changed everytime you test a new

file

we read values mame.bdd files , count number of nodes , construct an array of nodes
inwhich every index contains the five specification of a node which are data,
levelnum ,

index ,solidline ,dashedline. After constructing a tree out of the .bdd file ,we save

the tree as a hex data in a new file "FPGA.txzt” which has the traversal algorithm
that

traverses the tree.

This method makes array of nodes root[],it gets the count variable from main

method ,count variable is the number of parent nodes,

for example if count =27 , makes 27 nodes and put them in the array of nodes,these
are the parent nodes—>ARRNodeld[],the first column of the file.

Afterwards it checks each line , checking solid line and dashed lines,connecting
the parent with the corresponding solid line and dashed lines from within the
node array

main ()

Cudd ddmgr;
int newlD = 0;
ddmgr. = &ddmgr;
const charx filename = ”vehicle_controller.bdd”;
iterator_ = NULL;
/* read the SymbolicSet members from file */
readMembersFromFile (filename) ;
intx composeids = NULL;
Dddmp_VarMatchType match = DDDMP_VAR MATCHIDS;
/* do we need to create new variables ? x/
if (newID) {
/% we have to create new variable id's and load the bdd with those new ids x/
match = DDDMP_VAR_.COMPOSEIDS;;
/% allocate memory for comopsids x/
size_t maxoldid = 0;
for (size_t i = 0; i < dim_; i++4)
for (size_t j = 0; j < nofBddVars_[i]; j++)
maxoldid = ((maxoldid < indBddVars_[i]|[j]) ? indBddVars_[i][j]
maxoldid)
composeids = new int[maxoldid + 1];
/* match old id's (read from file) with newly created ones %/
for (size_t i = 0; i < dim-; i++) {

)

244
245
246
247
248
249

251
252
253
254
255
256

258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277

279
280

281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297

299
300
301
302
303
304
305
306
307
308

for (size_t j = 0; j < nofBddVars_[i]; j++) {
BDD bdd = ddmgr.bddVar () ;
composeids [indBddVars_[i][j]] = bdd.NodeReadIndex() ;
indBddVars_[i][j] = bdd.NodeReadIndex () ;

}
}
/* number of total wvariables x/
}
/* load bdd */
FILEx filel = fopen(filename, "1r”);
if (filel = NULL) {
std:: ostringstream os;
os << ”"Error: Unable to open file
throw std::runtime_error(os.str ().

17 << filename << 7 '.7;

costr());

DdNode* bdd = Dddmp_cuddBddLoad (ddmgr. getManager () ,

match ,
NULL,
NULL,
composeids ,
DDDMP_MODE.TEXT,
NULL,
filel);
fclose (filel);

BDD tmp(ddmgr, bdd);

//symbolicSet_=tmp;// bdd object // segmentationfault

DdNodex result ;
//cudd mgr;
bdd = Cudd_-BddToAdd (ddmgr.getManager (), bdd);
FILEx file2 = fopen(”./bdd/graph.bdd”, "w”);
Dddmp_cuddAddStore (

ddmgr. getManager () ,

NULL,

bdd,

//(charx*)varnameschar, // char #+ varnames, IN:

NULL)

NULL, // char xx wvarnames, IN:

NULL,

DDDMP_MODE.TEXT,

// DDDMP_-VARNAMES,

DDDMP_VARIDS,

NULL,

file2);
print_dd (ddmgr. getManager () ,
delete [] composeids;

result , 2, 4);

int
int
int

rootindex ;

solidindex ;

levelindex;

int dashedindex;

int internalindex;

int i;

char actionBits[arraySize];
int stateBits [BDDINPUT.BITS];

int valRoot;
int valSolid;
int valDashed;
/* number of nodes in a BDDx/

int NumOfNodes = 0;

ifstream inFile;

/* Variable string used to loop on the header
string candidate;

/* The word ”.nodes” is

the last word in the

array of wvariable mames (or

array of wvariable names (or NULL)

of .bdd filex/

.bdd file before the BDD data starts

29

309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

324
325
326
327
328
329
330
331
332

333
334

335
336
337
338
339
340
341
342
343
344
345

346
347
348
349
350
351
352
353
354
355
356
357
358
359
360

361
362
363
364
365
366
367

*/
string item = ”.nodes”;
/xrepresent each column of the .bdd file x/
string nodelD, levellD , internallD , ifID, elselD;
/*Open the .bdd file just to count number of mnodes available in this bddx/
inFile.open(”./bdd/graph.bdd”);

”

/*if (inFile. fail()) {
cerr << ”Hard Luck ! error opening it ! :D 7 << endl;
b/
/*loop on the string which is mainly the header datax*/
while (inFile >> candidate) {
/* if the word ”.modes 7 is found %/
if (item = candidate) {
/*loop to count NumOfNodes available in a .bdd filex/
for (i = 0; inFile >> nodelD >> levellD >> internallD >> ifID >> elselD;
++) { // as this ts going on , go on
NumOfNodes++; //number of mnodes

}

inFile.close () ;
/*construct an array for each column data with size of NUmOfNodesx/

string ARRnodeIlD [NumOfNodes] , ARRlevellD [NumOfNodes], ARRInternallD [NumOfNodes],
ARRIfID [NumOfNodes| , ARRelseID [NumOfNodes] ;
bddNode temp;

/*Determine the size of our tree which is size should be only the number of nodes

*

/

root = (bddNodex)malloc(sizeof(bddNode) * NumOfNodes) ;

int rootArray [NumOfNodes];

/*These are number of nodes needed later for decrementingx/
int countl = NumOfNodes;

int count2 = NumOfNodes;

/*Open the .bdd file again to read the bdd valuesx/
inFile.open(”./bdd/graph.bdd”);
while (inFile >> candidate) {

60

i

if (item = candidate) {
for (int i = 0; inFile >> nodeIlD >> levellD >> internallD >> ifID >> elselD

g+ {
ARRnodeID[i] = nodelD;
ARRlevellD[i] = levellD;
ARRInternallD [i] = internallD;
ARRIfID[i] = ifID;
ARRelseID [i] = elselD;

stringstream mainRoot(ARRnodelD[i]); // construct root

stringstream level (ARRlevellID[i]);

stringstream level2 (ARRInternallD[i]);

stringstream solid (ARRIfID[i]); // construct solid line of root

stringstream dashed (ARRelseID[i]); //construct dashed line of root

mainRoot >> valRoot; //

level >> levelindex; //the level i am in

level2 >> internalindex; //internal index is the third row which is
mostly itmportant for the terminal wvalues

solid >> valSolid; // change string solid to int wvalsolid

dashed >> valDashed;

if (i = 0) {
/* Start inserting data in the root[] in reverse {11,12,,,,1}x/
for (int w = 0; countl > 0; wt++) {
/xrootArray[] is another array same as our main root[] , we
would use it to manipulate datax*/

368
369
370
371
372
373
374

375
376

377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392

393

394
395
396
397
398
399
400
401
402

404
405
406

407
408

410
411
412

413
414
415
416
417
418
419
420
421
422
423
424

61

rootArray [w] = countl;
root [w].data = countl;
countl ——;

}
}
/*Loop in rootArray[] to know the index of the solidline node of the
present nodex/
for (int q = 0; q < NumOfNodes; g++) {
/*If we found the solidline node , set the solidindexz to be the
index of the arrayx*/
if (rootArray[q] == valSolid) {
solidindex = q;
break;

}
for (int q = 0; q < NumOfNodes; g++) {

if (rootArray[q] = valDashed) {
dashedindex = q;
break;

}

/*start by reverse so root[]={14,18,12,11,10..... 1} */
if (count2 > 0) {
root [count2 — 1].solidline = solidindex; // did an array with all
the main nodes , them here connecting them with their
corresponding solid and dashed
root [count2 — 1].dashedline = dashedindex; //starting by reverse //
since it is flipped

root [count2 — 1].levelnum = levelindex;
root [count2 — 1].index = internalindex;
count2 ——;

}

/*get the mazimum level of the BDD which is the level of the last mnode before the
terminalx*/

int maxlevel = root [NumOfNodes — 3].levelnum;

/*make the teminal nodes belong to a level number , which is the mazlevel+1x/

int terminalLevel = maxlevel + 1;

root [NumOfNodes — 2].levelnum = terminalLevel; // these are terminal mnodes ,
setting their level number= maximum level +1

root [NumOfNodes — 1].levelnum = terminalLevel;

root [NumOfNodes — 2].solidline = NULL; // these are terminal nodes , setting their
level number= mazimum level +1
root [NumOfNodes — 2].dashedline = NULL;

root [NumOfNodes — 1].solidline = NULL; // these are terminal mnodes , setting their
level number= mazimum level +1
root [NumOfNodes — 1].dashedline = NULL;

size_t size = 0;
/xUser enters the StateBits with size of BDD_INPUT_BITSx/
while (size < BDD_INPUTBITS) {
cin >> stateBits[size |;
size++;
}
/*Start the traversalx/
//getControlAction (stateBits , actionBits, terminalLevel);

/*here we export root data which are the data,levelnum ,index, dashedline, solidline

425

426
427
428
429
430
431
432
433
434
435

437
438
439
440
441
442
443
444
445
446
447
448
449

451
452
453
454

455

457
458
459
460
461
462

464
465
466
467
468

470
471
472
473
474
475

477
478
479
480
481
482

484
485
486

62

as a byte array to a text file

xeach mnode has these 5 integers, where each integer is 4 bytes , so each node size
is 20 bytes

so the total number of bytes= total number of nodes * 20x%/

std :: fstream file;

file .open (”FPGA. txt” , std::fstream::in | std::fstream::out | std::fstream::app);

file << ”char* controllerData = {7;
char* bytePtr = (charx)&root [0];

unsigned int numBytes = NumOfNodes * sizeof(bddNode) ;
for (unsigned int i = 0; i < numBytes; i++) {
file << 70x”;

file << std::hex << std::uppercase << static_cast<unsigned int>(xbytePtr);

bytePtr+4++;
if (i !'= (numBytes — 1))
file << 7,7
}
file << 7 }57;

file.close () ;

¥In this section we copy the traversal code into the file that contains the BDD
Y
hexr data which is data. txt

*/
fstream files;

// Input stream class to
// operate on files.

/*This is to copy the traversal code from TraversalCode.tzt to the file that has
the BDD hex data which is FPGA. txt x*/
ifstream ifile (” TraversalCode.txt”, ios::in);

// Output stream class to
// operate on files.
ofstream ofile ("FPGA.txt”, ios::out | ios::app);

// check if file exzists
if (lifile.is_open()) {

// file mot found (i.e, not opened).
// Print an error message.
cout << ” file not found”;
}
else {
// then add more lines to
// the file if meed be
ofile << ifile.rdbuf();
}

string word;

// opening file
file .open (”FPGA. txt”) ;

488
489
490
491
492

// exztracting words form the file
while (file >> word) {

}

return O;

63

1

© 00 N OO Re W N

= e
= o

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

33
34

64

7. FPGA.txt , Algorithm to traverse the BDD to identify the controller inputs

charx controllerData = {0x20,0x21,0x22,0x23,0x24,0x25,0x26,0x27,0x28,0x29,0x2A,0x2B,0

x2C,0x2D,0x2E ,0x2F ,0x30,0x31,0x32,0x33,0x34,0x35,0x36,0x37,0x38,0x39,0x3A,0x3B,0x3C
,0x3D,0x3E,0x3F ,0x40,0x41,0x42,0x43,0x44 ,0x45,0x46 ,0x47 ,0x48 ,0x49 ,0x4A ,0x4B,0x4C,0
x4D ,0x4E ,0x4F ;0x50,0x51 ,0x52,0x53 ,0x54 ,0x55,0x56 ,0x57 ,0x58 ,0x59 ,0x5A ,0x5B,0x5C,0x5D
,0x5E,0x5F ,0x60,0x61,0x62,0x63,0x64 ,0x65,0x66,0x67,0x68,0x69,0x6A,0x6B,0x6C,0x6D,0
x6E,0x6F ,0x70,0x71,0x72,0x73,0x74,0x75,0x76,0x77,0x78,0x79,0x7A,0x7B,0x7C,0x7D,0x7E
,0x7F ,0xFFFFFF80,0xFFFFFF81,0xFFFFFF82,0xFFFFFF83,0xFFFFFF84 ,0xFFFFFF85,0xFFFFFF86
,0xFFFFFF87,0xFFFFFF88,0xFFFFFF89, 0xFFFFFF8A ,0xFFFFFF8B, 0xFFFFFF8C, 0xFFFFFF8D, 0
xFFFFFF8E , 0xFFFFFF8F ,0xFFFFFF90,0xFFFFFF91,0xFFFFFF92 , 0xFFFFFF93,0xFFFFFF94 ,0
xFFFFFF95,0xFFFFFF96 , 0xFFFFFFI7 OxFFFFFF98 , 0xFFFFFF99, 0xFFFFFFIA | OxFFFFFFIB, 0
xFFFFFFIC, 0xFFFFFF9ID, 0xFFFFFFIE, 0xFFFFFFIF , 0xFFFFFFAQ, 0xFFFFFFAL, 0xFFFFFFA2, 0
xFFFFFFA3, 0xFFFFFFA4, 0xFFFFFFA5, OXFFFFFFA6, 0xFFFFFFA7, 0xFFFFFFA8, OxFFFFFFA9, 0
xFFFFFFAA, OxFFFFFFAB, OxFFFFFFAC, OxFFFFFFAD, 0OxFFFFFFAE, OxFFFFFFAF, 0xFFFFFFBO, 0
xFFFFFFB1,0xFFFFFFB2,0xFFFFFFB3, 0xFFFFFFB4,0xFFFFFFB5 , OxFFFFFFB6, 0xFFFFFEFB7, 0
xFFFFFFBS, 0xFFFFFFB9, 0xFFFFFFBA , 0xFFFFFFBB, 0xFFFFFFBC, 0xFFFFFFBD, 0xFFFFFFBE, 0
xFFFFFFBF, 0OxFFFFFFCO,0xFFFFFFC1,0xFFFFFFC2,0xFFFFFFC3, 0xFFFFFFC4,0xFFFFFFC5, 0
xFFFFFFC6,0xFFFFFFC7,0xFFFFFFC8, 0xFFFFFFC9, 0xFFFFFFCA, 0xFFFFFFCB, OxFFFFFFCC, 0
xFFFFFFCD, 0xFFFFFFCE, OxFFFFFFCF, 0xFFFFFFDO, 0xFFFFFFD1, 0xFFFFFFD2, 0xFFFFFFD3, 0
xFFFFFFD4, 0xFFFFFFD5, 0xFFFFFFD6, 0xFFFFFFD7, 0xFFFFFFDS, 0xFFFFFFD9, OxFFFFFFDA | 0
xFFFFFFDB, OxFFFFFFDC, 0xFFFFFFDD, OxFFFFFFDE, OxFFFFFFDF OxFFFFFFEO, 0xFFFFFFEL, 0
xFFFFFFE2, OxFFFFFFE3, 0xFFFFFFE4, OxFFFFFFES , 0OxFFFFFFE6, 0xFFFFFFET, OxFFFFFFES, 0
xFFFFFFE9, 0xFFFFFFEA , 0xFFFFFFEB, OxFFFFFFEC, 0xFFFFFFED, OxFFFFFFEE, 0xFFFFFFEF, 0
xFFFFFFFO, 0xFFFFFFF1, 0xFFFFFFF2, 0xFFFFFFF3 | OxFFFFFFF4, 0xFFFFFFF5, OxFFFFFFF6 , 0
xFFFFFFF7, OxFFFFFFF8, 0xFFFFFFF9, OxFFFFFFFA | OxFFFFFFFB, 0xFFFFFFFC, OxFFFFFFFD, 0
xFFFFFFFE, OxFFFFFFFF,0x0,0x1,0x2,0x3,0x4 ,0x5,0x6 ,0x7,0x8,0x9,0xA,0xB,0xC,0xD,0xE,0
xF,0x10,0x11,0x12,0x13,0x14,0x15,0x16,0x17,0x18,0x19,0x1A,0x1B,0x1C,0x1D,0x1E,0x1F
,0x20,0%x21,0x22,0%x23,0x24,0%x25,0x26,0x27,0x28,0x29 ,0x2A,0x2B,0x2C,0x2D,0x2E,0x2F ,0
x30,0x31,0x32,0x33,0x34,0x35,0x36,0x37};

char* FinalMethod (char actionBits[], char output[]) {
static unsigned int call_count = 0;
actionBits [call_count] = *output;

call_count++;
return output;

}
/*This method is for the do mot care stuff , a don't care which is a "—7 is
represented by ”"97x/
void print(char str[], int index, char actionBits[])
{
/% Get size of str[] Using while loopx/
int 1 = 0;
while (str[l] != '\0")
+H;
}
if (index = 1)
char* returned_value = FinalMethod (actionBits , str);
return;
}
if (str[index] = '9")
// replace '?' by '0' and recurse
str [index] = '0';

print (str, index 4+ 1, actionBits);

// replace '?' by '1' and recurse
str[index] = '1';
print (str, index 4+ 1, actionBits);

// No need to backtrack as string is passed
// by walue to the function

}

else
print (str, index + 1, actionBits);

}

/*This method is for getting all the possible combinations when there
skipped levels.
—= 000,001,010,011,100,101,110,111
*/

65

is a don't care/

void print_binary (int ints[], int len, int n, int difference, int result, char

actionBits []) // this is for sudden jumps

{
int i = 0;
int output;

int number [BDD_.OUTPUT BITS];

char ss[len];
if (result =

1) A
int bit = 1 << difference — 1;
while (bit) { // if n=4 , 0110
number [i] = n & bit 7 1 : 0;
bit >= 1;
it
}
for (int i = 0; i < BDD.OUTPUTBITS; ++i) {
ss[i] = number[i] + '0';
}
charx returned_value = FinalMethod (actionBits, ss);

printf(”\n”);

else
return;

}
void printArray (int ints[], int len, charx actionBits)
{

int k = 0;

static unsigned int actionCounter = 0;

char s[len] = { '\0' };

int n = 0;

/*If the terminal node is 1%/

if (ints[len — 1] = 1) {

for (int i = k; i < BDD.OUTPUTBITS; ++i) {
= ints[i] + '0';

//cout << ”"\n CONTROLLER POSSIBLE INPUT 7 << s << endl;
print (s, 0, actionBits);

99
100
101
102

103
104

105
106
107
108
109

110
111
112

113
114
115
116
117
118
119
120

121
122
123
124
125

126

127
128
129
130
131
132

134
135
136
137
138
139
140
141
142
143

144
145
146
147
148
149
150
151
152

154
155
156

}

66

/* function: printPathsRecur

method for printing all the paths left, it just traverses all the tree till
terminal nodes

void printPathsRecur (int nodelndex, int path[], int pathLen, int num, int currentLevel,

{

int terminalLevel, int i, char actionBits[])

//node index is the index of the root array
/* Just an initial condition when we first jump into this METHODx/
if (num = 2) {
/* of after the last user imput , I got the output terminal , so all the way
till terminal would be do mot cares+/

if (i = terminalLevel) {
/xdiff between terminal level and the size input of the user ,because I
dont traverse when i dont carex/
int difference = terminalLevel — BDD_INPUT_BITS;
/* If i have 4 bits , n=16%/
int n = 1 << difference, j;

path [BDD_.OUTPUTBITS + 1] = root [nodelndex]. data;

for (j = 0; j < nj; j++)
print_binary (path, BDD.OUTPUTBITS + 2, j, difference, root[nodelndex].
index, actionBits);

}

else {

printPathsRecur (root [nodelndex |. dashedline , path, pathLen, 0, currentLevel,
terminalLevel , i, actionBits);
printPathsRecur (root [nodeIndex]. solidline , path, pathLen, 1, currentLevel,
terminalLevel , i, actionBits);

}

else {
if (currentLevel = terminalLevel) {
path[pathLen] = root[nodelndex]. index;
pathLen++;

printArray (path, pathLen, actionBits);

}

/* If ¢ did mot arrived to terminalx*/

else {
path [pathLen] = num;
pathLen++;
/* if the current level is just after the previous level , continue, which

means that if this node is in the immediate next level after the
previous mode,no don't cares */
if (root[nodelndex].levelnum == currentLevel + 1) { //

currentLevel++;

if (currentLevel = terminalLevel) {
path[pathLen] = root[nodelndex].index;
pathLen++;
printArray (path, pathLen, actionBits);
return;

}

else
printPathsRecur (root [nodelndex]. dashedline, path, pathLen, O,

157

158
159

161
162
163
164
165
166

168
169
170
171
172

174
175
176
177
178
179

180

181
182
183
184

185
186
187
188
189
190
191
192
193
194
195
196
197

199
200
201
202
203
204

206
207
208

210
211
212
213

currentLevel ;, terminalLev
printPathsRecur (root [nodelndex]. s
currentLevel , terminalLevel ,

}
/*1f there is a gap,level difference
previousLevel ,dont caresx*/

67

el, i, actionBits);
olidline , path, pathLen, 1,
i, actionBits);

between the currentlevel and the

else {
/* Difference between levels , if skipped 2 levels=2 dont caresx/
int leveldifference = root[nodelndex].levelnum — currentLevel — 1;

root [nodeIndex]. levelnum

for
currentLevel++;
path[pathLen] = 9;

pathLen++;
/* I want to have for example
not caresx/

}

currentLevel++;
/*If I did not reach the terminal
if (currentLevel < terminalLevel)

(int j = 0; j < leveldifference; j++) {

119999900000 so all '9'" would be do

level yetx*/

{

printPathsRecur (root [nodelndex]. dashedline, path, pathLen, O,
currentLevel , terminalLevel, i, actionBits);

printPathsRecur (root [nodelndex]. solidline , path, pathLen, 1,
currentLevel , terminalLevel, i, actionBits);

/*If I reached the terminal level
else {

printPathsRecur (nodelndex, pa

terminalLevel , i,

}

/*Function:traverse ()

*Traverses the tree upon the user input , for ex
*then this method goes to the dashed line node,
*and when it reaches this node , it simply calls
* traverse the whole tree to Terminal nodes.

/*

*nodelnder=

*1 represents level of the node I am currently
*currentLevel
xprevious level is the level I should be in
terminal level is the level of the terminal
*/

int traverse(int stateBits[], int nodelndex, int

, int leveldifference , char actionBits[])

/*if 4 finished traversing on mnodes upon the
on the modes that was givenx/

if (currentLevel >= BDD_INPUT.BITS) {

int path[1000];

printPathsRecur (nodelndex, path, 0, 2,

currentLevel ,

*/

th, pathLen, 0, currentLevel,

actionBits);

mple if stateBits[]=01
then to the solidline node,
function printPathRecur to

in

i, int currentLevel, int terminalLevel

user input, so here i finished going

terminalLevel , i,

214
215
216

217
218
219

220
221
222
223
224
225

226
227
228

229
230
231

232

234
235
236
237
238

240
241
242

243
244

245
246
247
248
249
250

251
252

253
254
255

256
257

258
259

261

262
263

actionBits);

}

68

/*If the stateBit entered is 0 which represent the dashed line node of the current

node */

else if (stateBits[currentLevel] = 0) {

/* if the current level

previous node,no don't care

if (root[nodelndex].levelnum = currentLevel + 1) {
i = root[root[nodelndex]. dashedline].levelnum;
currentLevel++;

traverse (stateBits ,
terminalLevel ,

}

is just after the previous
means that if this node is in the immediate next

s x/

root [nodelndex |. dashedline

leveldifference ,

level , continue, which

actionBits);

i

level after the

, currentLevel |

/*1f there is a gap,level difference between the currentlevel and the

previousLevel ,dont
else {

int leveldifference
currentLevel —
dont cares

caresx/

= root [root [nodelndex |. dashedline].levelnum —
between levels , if skipped 2 levels=2

1; // difference

i = root[root[nodelndex]. dashedline].levelnum; //jump as I don not care
is the level of the mode ¢ am in

here , so mow 1

currentLevel = currentLevel + leveldifference + 1;
if (currentLevel >= BDD_INPUT.BITS) {
currentLevel = BDD_INPUT_BITS;

}

traverse (stateBits ,
terminalLevel ,

}

/*FElse If the stateBit entered is 1 which represent solid

node */

root [nodeIndex]. dashedline ,

leveldifference ,

else if (stateBits[currentLevel] = 1) {

/% if the current level

is just after the previous
means that if this node is in the immediate next

previous mode,no don't cares x*/

if (root[nodelndex].levelnum = currentLevel + 1) {
i = root[root[nodelndex]. solidline |.levelnum;
currentLevel++;

traverse (stateBits ,
terminalLevel

/*1f there is a gap,level

previousLevel ,dont
else {

int leveldifference

root [nodelndex|.

leveldifference ,

caresx/

actionBits);

solidline ,

i

, currentLevel ,

line node of the current

level , continue, which

i

actionBits);

)

level after the

currentLevel ,

difference between the currentlevel and the

= root [root [nodelndex]. solidline |.levelnum —

currentLevel — 1;

i = root[root[nodelndex]. solidline].levelnum; //jump as I don not care here
, so now i is the level of the node i am in

currentLevel = currentLevel + leveldifference + 1;

if (currentLevel >= BDD.INPUT_BITS) {

currentLevel = BDD_INPUTBITS; // if the

have a node

}

traverse (stateBits ,

root [nodelndex|.

solidline ,

i

)

level i must end in does not

currentLevel |

264
265
266
267
268

270
271
272
273

}

int getControlAction (int stateBits][],

{

terminalLevel

int path[1000];
traverse (stateBits ,

0 7

0)

leveldifference ,

O 7

terminalLevel ,

actionBits) ;

O 7

char actionBits[], int terminalLevel)

actionBits); //wrong

69

