
Parametric Reachability Synthesis
using the tool SCOTS

Bachelor Thesis

Scientific work to obtain the degree
B.Sc. Electrical Engineering and Information Technology

Department of Electrical and Computer Engineering
Technische Universität München

Supervised by Prof. Dr. Majid Zamani & Mr Mahmoud Khaled

Assistant Professorship of Hybrid Control Systems

TUM Department of Electrical and Computer Engineering

Submitted by Nur Hanis Bin Samad

213 Pasir Ris Street 21

#02-208 Singapore 510213

+65 97718770

Filed München, on 18 June 2018

Singapore Institute of Technology - Technische Universität München

Parametric Reachability Synthesis

using the tool SCOTS

Bachelor Thesis

scientific work for the degree

Bachelor of Science

in

Electrical Engineering and Information Technology

Nur Hanis Bin Samad

April 2nd 2018 to June 22nd 2018

Abstract

SCOTS is C++ tool developed by Dr. Matthias Rungger and Dr. Majid Zamani to perform the synthesis

of symbolic controllers [1]. A control or mechanical system can be defined via differential equations,

this then becomes the input for computation of a symbolic model. The software can be accessed via

this site https://www.hcs.ei.tum.de/en/software/scots/

SCOTS is built upon the concept of Binary Decision Diagrams, where transitional states

are created leading to atomic propositions [1]. The target controller in this case computes its path

and trajectory based on a set of obstacles drafted within the state space via polytopes and ellipsoids.

Similar to binary search trees, the target would navigate accordingly based on the objects placement.

With parametric reachability in mind, we are tasked to encode multiple obstacle configurations as

different states/possibilities within the model.

We would now access the capabilities of SCOTS to perform parametric reachability synthe-

sis, which refers to the formal verification of 2 things in particular namely the reachability computation

and parameter synthesis.[2] The objective is to store multiple configurations of obstacles into one Bi-

nary Decision Diagram where we would then synthesise a controller whose overall capability is to

navigate to specified target within the state space regardless of the obstacle configuration.

The implementation of this task is via C++ programming of which SCOTS was created and

we simulate various cases via MATLAB [1].

1

https://www.hcs.ei.tum.de/en/software/scots/

Acknowledgement

I would like to extend my love and gratitude to my Family back in Singapore. Attempting a Bachelor

Thesis in Germany for a period of 3 months, including performing a month fasting during Ramadhan

has been a trying and challenging experience, where it is also a period which led to some self-discovery

and independence. Thank you all for your love, support and prayers whilst I’m away. I promise to

return home safe.

My girlfriend, Hazelinda. Thank you for believing in me and being a constant motivation

for me to complete my studies. I am eternally grateful for all the support you have given me be it small

or big, I’m sure you know what they are. Life in Germany was certainly made a lot easier with all the

provisions you and your family prepared for me before the trip. May you and your family always be

in good health.

Mr Mahmoud Khaled, thank you for your counsel and supervision in explaining and aid-

ing my comprehension on the aforementioned topic. The task at hand has certainly challenged me

technically and would like to seek your apology for any slowness in comprehension and execution of

tasks. Thank you for your patience in guiding me through the entirety of the project. Eid Mubarak to

you and your family back in Egypt and that you are rewarded with the PhD you thoroughly deserve.

2

List of Figures

2.1 Left: Binary Decision Diagram [3] . 12

2.2 Right: Binary tree with a Truth Table [4] . 12

2.3 Before and after compression [3] . 13

2.4 Block Diagram for the Controller Synthesis [1] . 16

2.5 Visualisation of Synthesised Controller for robot example [1] 23

2.6 Flow Chart for SCOTS, Author: Matthias Rungger. [5] 25

2.7 Cartesian product section, Author: Matthias Rungger. [5] 27

2.8 Unicycle Example from unicycle.cc, Author: Matthias Rungger. [1] 29

2.9 Target defined in unicycle.cc, Author: Matthias Rungger. [1] 31

2.10 remPolytope function [5] . 32

2.11 printInfo() function from robot.cc [1] . 33

2.12 TicToc.hh function from vehicle.cc [1] . 33

2.13 Vehicle 1 projectionvehicle.cc [1] . 34

3.1 MATLAB projection of above specification vehicle.cc [1] 39

3.2 Random obstacle generated vehicle.cc . 43

3.3 2nd obstacle generated vehicle.cc . 44

3.4 More obstacles generated vehicle.cc . 45

3

List of Equations

2.1 Boolean Function . 14

2.2 Hamming Cube Domain . 14

2.3 Non-Linear Control Systems [5] . 22

2.4 ODE for Robot Example . 23

2.5 Parameterisation of variables [1, 5] . 25

2.6 State Space of Linear Systems [6] . 26

2.7 ODE for unicycle example . 30

2.8 Mathematical relations for addPolytope and addEllipsoid functions [5] 32

2.9 ODE for vehicle1 example . 34

4

List of Tables

2.1 Abstract Domain Elements . 19

2.2 Computation Time . 35

3.1 Values Generated . 42

3.2 2nd set of values generated . 44

3.3 Values generated in increasing order . 45

3.4 0 to 7 in binary . 46

3.5 0 to 15 in binary . 47

3.6 24 Combinations of Obstacles with Synthesized Controllers 48

3.7 Algorithm adjusted . 52

4.1 Proposed improvement . 54

5

Contents

Abstract 1

Acknowledgement 2

List of Figures 3

List of Equations 4

List of Tables 5

Listings 8

1 Introduction 9

1.1 Background . 9

1.2 Objectives . 10

2 Literature Review 11

2.1 Binary Decision Diagrams . 11

2.1.1 Application of Binary Decision Diagrams . 13

2.1.2 Boolean Functions Explained . 14

2.2 Symbolic Model Theory . 15

2.2.1 Definition . 15

2.2.2 Symbolic Controller Synthesis . 16

2.3 Discrete Abstractions in Symbolic Models . 16

2.3.1 Definition . 17

6

SECTION 0.0 Parametric Reachability Synthesis using the tool SCOTS

2.3.2 Discrete Abstraction-based solutions . 17

2.4 Parametric, Program Reachability and Synthesis . 20

2.5 Recursive Functions . 21

2.6 SCOTS . 22

2.6.1 Background - Workflow . 22

2.6.2 The Symbolic Set Class . 24

2.7 SCOTS Simulation . 28

2.7.1 Examples of SCOTS Controller Synthesis . 29

2.7.1.1 Unicycle Example . 30

2.7.1.2 Vehicle1 Example . 32

3 Implementation 36

3.1 Beginning . 37

3.2 Algorithm - Learning Phase . 40

3.2.1 Evaluation from Supervisor . 46

3.3 Post-Review Implementation Phase . 47

3.3.1 Evaluation of Post Review Implementation 51

3.4 2nd Post-Review Implementation Phase . 52

4 Reflections 53

5 Conclusion 55

Bibliography 59

Chapter 0 7 Nur Hanis Bin Samad

Listings

2.1 C++ Factorial . 21

2.2 Header Files in unicycle example . 30

2.3 (Source: unicycle.cc) State Space creation . 31

3.1 Creating Symbolic Sets / BDDs . 37

3.2 Space Definition . 37

3.3 Obstacle creation . 38

3.4 Reachability Controller . 39

3.5 Library for random number generator [7] . 41

3.6 Create Obstacle Function . 41

3.7 State Space Definition author: Dr Matthias Rungger 42

3.8 addPolytope source: SymbolicSet.hh . 43

3.9 Edition to random number generator . 45

3.10 Function to create obstacle configuration 1111 . 49

3.11 for-loop to create obstacle configuration 1100 . 49

8

Chapter 1

Introduction

1.1 Background

The synthesis of controllers for any system has become a necessary undertaking for anyone in the

control field [8]. Its importance allows an engineer to comprehend the dynamism of a systems response

to changing inputs or other random interference both internally and externally. Feedback control

systems theory allows the engineer to develop solutions to rectify any design deficiencies.

Control synthesis has also extended towards symbolic model theory [1]. The need to assess

reactive systems is crucial to the design of many modern day mechanical and electronic systems. With

the concept of Binary Decision Diagrams [3], SCOTS was created to alleviate the difficulties of per-

forming symbolic controller synthesis by instrinscally providing the required algorithms to synthesise

the controller by looking at its reachability parametrisations.

9

SECTION 1.2 Parametric Reachability Synthesis using the tool SCOTS

1.2 Objectives

• Familiarity with SCOTS as a tool to aid in the synthesis of symbolic controllers with respect to

various vehicular examples.

• Analyse the Symbolic Set Class [1] within the SCOTS framework and use the defined con-

structors and functions in parameterising various configurations of obstacles for the vehicle to

navigate through to reach its target.

• Define these obstacles as a Symbolic Set / Binary Decision Diagram, an obstacle space is cre-

ated in tandem with 2 other BDDs namely the state-space (the grid or the play area where the

synthesis takes place) and the target space (the ”goal” or targetted end point for the vehicle as it

navigates through the various obstacles.

• As the the number of obstacles drafted into the space becomes greater, there is a need for pro-

gramming optimization to reduce computation time and complexity.

Chapter 1 10 Nur Hanis Bin Samad

Chapter 2

Literature Review

2.1 Binary Decision Diagrams

A binary decision diagram (BDD) created by R.Bryant in 1986 is an example of a data structure

which is used in computer science to depict Boolean functions [4]. These functions takes input vari-

ables of the Boolean type and produces a corresponding output. Boolean functions takes in 2 values,

either 1(true) or 0 (false). The data structure is inherently binary in nature making them useful in the

design of logic circuits and in our case the formal verification of a created algorithm and access its

capabilities.

When there are infinitely many boolean arguments in a function, we assume this value to be

’n’, we therefore have 2n inputs [3]. Given the above notion, this enables us to choose either ’0’ or ’1’

for the output for any given input, leading to 2n number of functions. This idea would be used in the

development of the different obstacle configurations which would be elaborated more in detail later

on.

11

SECTION 2.1 Parametric Reachability Synthesis using the tool SCOTS

Figure 2.1: Left: Binary Decision Diagram [3]

Figure 2.2: Right: Binary tree with a Truth Table [4]

A BDD for a given variable request is an a-cyclic coordinated diagram fulfilling the accom-

panying properties. [9]

1. There exist only 1 unique root.

2. There exist either 1 or 2 nodes with no successor defined by 0 or 1, if there are 2 then there are

defined differently.

3. Remaining nodes have a variable name and can have a maximum of 2 descendants depicted as

0-child or a 1-child. The leaves connected are also named 0 and 1 respectively.

4. A descendant of a node are also labeled either 0 or 1, or by a larger value then its parent based

on the variable order.

5. All descendant-closed subgraphs of the graph are non-isomorphic.

Given the following properties, BDDs evidently are derived from binary decision trees via

multiple processes of compression namely [4],

1. identical subtrees are shared

2. the removal of redundant nodes, based on the flow of the diagram.

Chapter 2 12 Nur Hanis Bin Samad

SECTION 2.1 Parametric Reachability Synthesis using the tool SCOTS

Figure 2.3: Before and after compression [3]

These properties assist in defining and lead to the creation of SCOTS [1]. Its purpose and

functionality would be discussed later on.

SCOTS presents itself as an implementation of BDDs. A workflow is defined within the

manual which can be found on https://www.hcs.ei.tum.de/en/software/scots/.

2.1.1 Application of Binary Decision Diagrams

Up till recently, Binary Decision Diagrams have been applied in the design of digital circuits, the

formal verification of models and proving of model specifications [4]. SCOTS embodies this philos-

ophy as it sets to allow for the synthesis of symbolic controllers by defining specifications such as [1]

reachability, avoids and safety for example.

As Binary Decision Diagrams are a data structures which hold a number of boolean func-

tions, they therefore can also perform operations similar regular boolean algebra [4] Such boolean

operations which are well documented in many research and digital design include the OR, AND,

XOR, XNOR operations. These may extend to the concept of Ordered Binary Decision Diagrams,[4]

which in brief refers to the decision diagrams that are reduced as much as possible by following a

specific order, this is done via patterns or manual manipulation based on the number of variables or

inputs. This or other OBBDs can be used for formal verification of symbolic systems via sequential

Chapter 2 13 Nur Hanis Bin Samad

https://www.hcs.ei.tum.de/en/software/scots/

SECTION 2.1 Parametric Reachability Synthesis using the tool SCOTS

analysis.

2.1.2 Boolean Functions Explained

f : {0,1}n→{0,1}[10] (2.1)

Boolean functions is amongst the prioritised learning subjects for discrete mathematics,

which extends to the concept of mathematical logic [11]. They assist in the development of algebraic

propositions. It was later realised that boolean functions became useful in providing representations

for control systems, as we see in SCOTS, via the application Symbolic Sets / BDDs.

Ryan O’Donnell quotes the domain of a boolean function for the definition of a hyper-

cube/n-cube/Boolean Cube or Discrete Cube based on equation 2.2 which is known as a Hamming

Cube [10] Hamming is a well known name amongst the field of information/coding theory as well as

cryptography.

f : {−1,1}n→{−1,1}[10] (2.2)

Boolean functions may be described using truth-tables, a formulae or via graphical/circuit

based diagrams [12]. With respect to SCOTS, a graphical or flow diagram representation is used in the

form of a directed acyclic graph, with vertices and nodes labeled either ’0’ or ’1’, which spured the

idea of Binary Decision Diagrams [4].

Chapter 2 14 Nur Hanis Bin Samad

SECTION 2.2 Parametric Reachability Synthesis using the tool SCOTS

2.2 Symbolic Model Theory

2.2.1 Definition

Symbolic models represents system in terms of the way they function, often through time and over a

state space, these models are invariably mathematical [13]. Finite state models of developing systems

expand exponentially when more components are introduced, making the formal verification more

strenuous. Symbolic model checking [14] was introduced to deviate from building state graphs by

utilising BDDs which constitute Boolean functions to describe sets and relations. It is necessary to

recognise the model in some way forecast possible outcomes and results, which allows us to filter

them as plausible or invalid based on the model’s specification. A technique is needed to prove the

validity of the outcomes.

An implementation similar to symbolic model checking is the use of Ordered Binary De-

cision Diagrams [14]. BDDs in this case can be utilised to solve equivalence problems arising from

Boolean algebra/equations. The SCOTS tool employs these concepts to allow for quick controller

synthesis based on the BDDs implemented within the system.

The existence of symbolic models has led to the research of various model checking methods,

such as the temporal logic [1, 14]. Temporal logic is a concept of accounting for any changes in

time. Within a system populated with atomic propositions or different transitional states, temporal

logic proposes the rules and symbols for those states or propositions that are time dependent. SCOTS

has the ability to synthesise controllers for differential equation based systems, by defining elaborate

specifications for the linear temporal logic model. [1].

Linear Temporal Logic is model dependent on future time, it specifies a system as being

dynamic, which is the case with SCOTS when we want to synthesis a controller where the obstacles

that are created are randomly being added and remove with respect to time.

Chapter 2 15 Nur Hanis Bin Samad

SECTION 2.3 Parametric Reachability Synthesis using the tool SCOTS

2.2.2 Symbolic Controller Synthesis

In the SCOTS environment, a system is depicted as a triple S = (X ,U,F), X defines the state alphabet,

while U defines the input alphabet, which valued sets and the transition function F : X ×U . The

procedure for the symbolic synthesis are listed below [1].

1. We let (S1,Σ1) be a control problem, defining S2 a finite state system to replace S1, along with

an abstract specification Σ1 is tabulated. S1 and S2 are defined as plant and symbolic model

respectively.

2. C2, a feedback composable controller with S2, this provides a solution for the (S2,Σ2) control

issue.

3. We assume that the controller C2 is synthesised successfully, C2 is then refined to C1 to therefore

solve (S1,Σ1).

The belief in this technique is theoretically valid where we relate the plant S1 = (X1,U1,F1)

and the symbolic set S2 = (X2,U2,F2) using a feedback refinement relation Q⊆ X1×X2.

Figure 2.4: Block Diagram for the Controller Synthesis [1]

2.3 Discrete Abstractions in Symbolic Models

With the development of SCOTS, Dr. Rungger and Dr. Zamani aims to provide a solution to con-

troller synthesis for non-linear control systems, which are derived from symbolic models or discrete

Chapter 2 16 Nur Hanis Bin Samad

SECTION 2.3 Parametric Reachability Synthesis using the tool SCOTS

abstractions [1]. It is important to study abstractions in some detail as it is a topic amongst people in

the computer science field, which has now seen its application in hybrid control systems.

2.3.1 Definition

Abstraction within software engineering can be viewed as the thought process when trying to solve a

complicated stage of a described problem. At this roadblock, we would then return to the initial per-

ceptive thoughts of the subject matter, and disregard irrelevant information [15]. This in turn enables

the the developer to conjure concepts of how to solve the problem, rather then rely on the details at the

appearance of the problem. We would want to regard different things or objects as similar, this may

reduce the complexity of the problem analysis identifying common characteristics and differentiate

the rest. The concept of abstraction is presented to the learning mind as an ability that can help not

only in developing more in-depth/concise programming solutions, but to in solving problems of any

nature [15].

2.3.2 Discrete Abstraction-based solutions

Symbolic control solutions involve discretized synthesis methods based on symbolic abstractions [16]

i.e. States and input variables are symbolised as sets within the dynamical system. The existence

of symbolic abstractions has led to numerous research into ways of computing them efficiently and

accurately.

Jun Liu and Necmiye Ozay quoted that abstraction-based controller synthesis would natu-

rally converge towards hybrid feedback controllers [17]. These methods of synthesis have become

more apparent amongst those within the control field, and they are performed following this criteria,

Chapter 2 17 Nur Hanis Bin Samad

SECTION 2.3 Parametric Reachability Synthesis using the tool SCOTS

1. Define a finite number of abstractions that represent the control systems dynamics.

2. Using control methods, begin solving the discrete synthesis problem with respect to its abstrac-

tion specifications to acquire a discretised control methodology.

3. Perform refinement analysis on the proposed synthesised controller a hybrid controller, with the

hope of fulfilling the systems specifications.

SCOTS embodies these principles, where the synthesised controller is built upon feedback

refinement relation [1], however it is different as it utilised quantized state information as compared

to exact state information. Formal verifications are conducted to minimise the number of complexities

so as to meet the project specifications [18]. The refinement relation as quoted is by allowing ’more

’input variables and producing less output variables’.

SCOTS also aims to enforce reachability specifications [1]. There has been extensive work

using discrete abstractions with regards respect to reachability analysis, such as by Gieselmann et. al,

whom utilises Piece-wise affine ODEs to aid in their analysis of genetic regulatory networks, which

can hopes to solve reachability specifications within biological systems [19]. The computation can be

detailed into these steps

1. A defined state-space is broken into hyper-rectangles where the differential of solution with

respect to time produces the negative or positive sign.

2. By sectioning the state-space, it propels towards the creation of a discrete abstraction which

converges towards to transitional system, which can offer greater qualitative detail with regards

to the systems dynamics.

3. A set of regulations are given for the synthesis of the aforementioned discrete transitional system

referencing to the constraints [19].

Chapter 2 18 Nur Hanis Bin Samad

SECTION 2.3 Parametric Reachability Synthesis using the tool SCOTS

When SCOTS performs the controller synthesis, and Abstract Domain is drafted from the combina-

tion of key elements;

Table 2.1: Abstract Domain Elements

Domain Grid Parameter BDD Variable IDs with and instance of Symbolic Set

Chapter 2 19 Nur Hanis Bin Samad

SECTION 2.4 Parametric Reachability Synthesis using the tool SCOTS

2.4 Parametric, Program Reachability and Synthesis

Parametric reachability by design is to deduce all path constraints within the system. As the name

implies, along with the the symbolic synthesis, we are required to parameterise or gauge the the number

of possible ways for a system to reach its target. In the case of SCOTS, we would want to synthesise

a controller where the vehicle can reach its intended target despite the configuration/layout/or number

of the obstacles in the state space. In turn, we also would also parameterise the obstacles into a

BDD/Symbolic Set titled the Obstacle Space.

Program synthesis and program reachability may be generalised as verification problems

[20]. The synthesis of controllers in SCOTS can be seen as a form of formal verification, by looking at

a systems invariance and reachability specifications [1]. Another way of assessing reachability within

a system is also by observing the order of functions when they terminate. [20].

Reachability synthesis seeks to find values for a set of program variables in the event the dur-

ing execution, the program reaches a defined point or coordinate. With larger programs, synthesis can

be more complicated as it require to perform more testing; every new measurement or test conducted

will make it more difficult to acquire consistent results [21].

SCOTS allows the synthesis of a controller which implements reachability can be computed

from fixed point computations [1]. There exist a pair of algorithms to perform the synthesis. A reacha-

bility problem is used to explain the methodology, in point 2.3: Synthesis via fixed point computations.

Chapter 2 20 Nur Hanis Bin Samad

SECTION 2.5 Parametric Reachability Synthesis using the tool SCOTS

2.5 Recursive Functions

For computations which are iterative in nature, it is good habit and practice to utilise recursive functions

[28]. Recursive functions is described as process where functions would call themselves again in

a sequence until a prescribed condition is met. Each definition of a recursive function has what is

defined as a base case for which the iteration begins.

An example of applying recursion is when performing the factorial (!) tabulation.

Listing 2.1: C++ Factorial

1 # i n c l u d e <i o s t r e a m>

2 u s i n g namespace s t d ;

3 / / F a c t o r i a l f u n c t i o n

4 i n t f (i n t n){

5 i f (n <= 1)

6 r e t u r n 1 ;

7 e l s e

8 r e t u r n n∗ f (n−1);

9 }

10 i n t main () {

11 i n t num ;

12 cout<<” E n t e r a number : ” ;

13 c in>>num ;

14 cout<<” F a c t o r i a l o f e n t e r e d number : ”<<f (num) ;

15 r e t u r n 0 ;

16 }

Referencing to the title of this thesis and its objectives, we are to develop obstacles within

our vehicle arena, learning and applying the appropriate methods. We may use recursion to call the

addPolytope() function to produce the desired number via the the 2n formula as each obstacle in itself

is boolean in nature, where it is either ’1’ or ’0’.

Chapter 2 21 Nur Hanis Bin Samad

SECTION 2.6 Parametric Reachability Synthesis using the tool SCOTS

2.6 SCOTS

2.6.1 Background - Workflow

Written by Dr. Matthias Rungger and Dr. Majid Zamani, SCOTS is an open source software tool

developed to facilitate the synthesis of controllers for symbolic models [1]. The tool was contrived

from C++ and has a MATLAB general user interface to aid in the visualisation of the controller in

action [5]. Being an open source application, the tool encourages researchers to add more functionality

to the tool to suit their needs respectively.

The tools within SCOTS utilise the CUDD Libary [22]. This library assist in the building

various types of decision diagrams, one of which is BDDs, which are the data structures for SCOTS.

[1]

Amongst the literature review, there is an inherent relation between control and program

synthesis. The SCOTS tool is to allow for the formal verification of software based control systems [5]

in the most elementary form possible. This eases the understanding of symbolic controller synthesis

for users.

A controller synthesis begins with deciphering control problems, and SCOTS computes con-

trollers based on the following mathematical relation.

ξ̇ (t) ∈ f (ξ (t),u)+ [[−w,w]][5] (2.3)

The aforementioned equation specifies system of non-linear nature. These control systems

has a number of variables namely time t. This futher supplements the idea of temporal logic [21],

where in practice, the robots final path of navigation is dependent on future time, where the obstacles

Chapter 2 22 Nur Hanis Bin Samad

SECTION 2.6 Parametric Reachability Synthesis using the tool SCOTS

are parameterised via 2n, giving the obstacle space configuration various possibilities, thus adjusting

robot trajectory accordingly. With a constant value input u, these become parameters for the continuous

function ξ . [[−w,w]] indicates the hyper-rectangle, a generalisation of rectangles for larger dimensions,

defined by the cartesian product of intervals (source: SymbolicSet.hh). This is one of the constructors

within the Symbolic Set Class, which would be further discussed in the respective section.

Quoting from the robot example written by Mahmoud Khaled, the vehicle is represented

with the following Ordinary Differential Equation. State space variable X and an input variable U is

used here. (Source: robot.cc)

x0 = x0

x0 = x0−1

ẋ0 = u0

ẋ1 = u1

(2.4)

Figure 2.5: Visualisation of Synthesised Controller for robot example [1]

Referencing image 2.5 above, a grid parameter of 15x15 is defined as the working area or

the state space for the controller synthesis. The red box represent the ’goal’ of the vehicle and the blue

box is an area as non-accessible, and the lines that branch out from the origin (0,0) details the path

Chapter 2 23 Nur Hanis Bin Samad

SECTION 2.6 Parametric Reachability Synthesis using the tool SCOTS

of the robot which it can take, these grid points are classified as reachable. These functions would be

further elaborated within the Symbolic Set section of this report.

2.6.2 The Symbolic Set Class

With the assignment of performing parametric reachability synthesis, a further study of the Symbolic

Set Class is required as it is the program that facilitates the construction of the various Binary Decision

Diagrams for the controller synthesis. The program written by Dr. Matthias Rungger can be found in

the appendix.

BDDs are data structures within the SCOTS framework [3]. With this in mind, SCOTS is

inherently Objective Oriented, this is clearly reflected in a number of constructors within the Symbolic

Set Class in SymbolicSet.hh which would now be detailed below. These aid in the definition of new

BDD within the framework.

Chapter 2 24 Nur Hanis Bin Samad

SECTION 2.6 Parametric Reachability Synthesis using the tool SCOTS

Figure 2.6: Flow Chart for SCOTS, Author: Matthias Rungger. [5]

1. Constructor 1: Uniform domains for the hyper interval and the grid parameter - When

using SCOTS, it is important to define the dimensions of the working area or known mathemati-

cally, the state space[1], they are represented using the following mathematical statements. They

refer to definition of input, output, and relevant state variables that is referenced to ordinary dif-

ferential equations to define the system. The SymbolicSet.hh created by Dr. Matthias Rungger

details the subsequent constructors in exhaustive detail [23].

η ∈ Rn
>0

[[a,b]]⊆ Rn

µ ∈ Rn
>0

[[c,d]]⊆ Rn

(2.5)

Chapter 2 25 Nur Hanis Bin Samad

SECTION 2.6 Parametric Reachability Synthesis using the tool SCOTS

A state within a control system points towards defined state variables which characterise the

system and describes its reaction to input variables. [24]. With reference to figure 2.4, we

have a feedback control system. Common dynamical systems can be categorised with these

mathematical equations [6]. The SCOTS tool requests the user to define the necessary input

variables for synthesis of the controller.

ẋ(t) = Ax(t)+Bu(t)

y(t) =Cx(t)+Du(t)
(2.6)

A and B are categorised as the dynamics and input matrix respectively. C and D are defined as

output/sensor matrix and the feedthrough matrix [6]. However, SCOTS is a tool to synthesise

controllers of nonlinear systems, therefore the above equations are non-applicable.

2. Constructor 2: Read symbolic set from file - An algorithm performs the comparsion of BDD

variable IDs. When new variable IDs are created, the program would update the variable IDs to

match the newly created IDs and would then load the file for example file.bdd.

3. Constructor 3: Providing IDs to newly generated BBDs, retaining IDs if BDDs were drafted

from other sources.

4. Constructor 4: The symbolic set is now displayed based on the dimension and grid param-

eters defined at the earlier stage [1].

5. Constructor 5: The cartesian product of 2 grids from 2 seperate Symbolic Sets - At this

stage of the compilation, a controller.bdd is created, which represents the synthesised controller

to be visually depicted via the MATLAB interface [1].

Chapter 2 26 Nur Hanis Bin Samad

SECTION 2.6 Parametric Reachability Synthesis using the tool SCOTS

Figure 2.7: Cartesian product section, Author: Matthias Rungger. [5]

Chapter 2 27 Nur Hanis Bin Samad

SECTION 2.7 Parametric Reachability Synthesis using the tool SCOTS

2.7 SCOTS Simulation

Within the SCOTS folder, there are various number of examples prepared by Dr. Matthias Rungger,

which greatly facilitates the ease of comprehending the tool as a whole. A manual is drafted to allow

the user to adopt the necessary files and libraries to run the software tool smoothly. We would now

demonstrate the procedure of running SCOTS tool using 2 key examples namely the unicycle and

vehicle1 example. These files may be obtained from the following URL https://www.hcs.ei.tum.

de/en/software/scots/ A general workflow could be summarised as follows.

1. Develop program in C++.

2. Open a terminal within your operating system where the C++ file lies, and compile using a

makefile, which dictates the necessary file paths for where the CUDD Library [4] and MATLAB

is installed.

3. Based on the program developed, there would be a number of bdd files created which would be

then used to draft the (.m) file for MATLAB, which would then be used to visualise the controller

in graphical format.

The tool welcomes expansion and manipulation, allowing the user to tweak to the needs of

their project, or to spur on further development for future uses.

Chapter 2 28 Nur Hanis Bin Samad

https://www.hcs.ei.tum.de/en/software/scots/
https://www.hcs.ei.tum.de/en/software/scots/

SECTION 2.7 Parametric Reachability Synthesis using the tool SCOTS

2.7.1 Examples of SCOTS Controller Synthesis

Figure 2.8: Unicycle Example from unicycle.cc, Author: Matthias Rungger. [1]

Dr. Matthias Rungger wrote a control synthesis problem for a unicycle vehicle. The program in C++

dictates a set of ordinary differential equations to represent the system (Source: unicycle.cc). At the

beginning of each program, it is important to include the necessary file libraries. There are a number of

header files which are unique to SCOTS, and they can be seen in the following C++ snippet extracted

from the unicycle.cc,

Chapter 2 29 Nur Hanis Bin Samad

SECTION 2.7 Parametric Reachability Synthesis using the tool SCOTS

2.7.1.1 Unicycle Example

Listing 2.2: Header Files in unicycle example

1 /∗ u n i c y c l e . cc c r e a t e d on : 2 1 . 0 1 . 2 0 1 6 a u t h o r : r u n g g e r ∗ /

2 /∗ i n f o r m a t i o n a b o u t t h i s example i s g i v e n i n t h e readme f i l e ∗ /

3 # i n c l u d e <a r r a y>

4 # i n c l u d e <i o s t r e a m>

5 # i n c l u d e ” cuddObj . hh ”

6 # i n c l u d e ” Symbo l i cSe t . hh ”

7 # i n c l u d e ” SymbolicModelGrowthBound . hh ”

8 # i n c l u d e ” TicToc . hh ”

9 # i n c l u d e ” RungeKut ta4 . hh ”

10 # i n c l u d e ” F i x e d P o i n t . hh ”

ẋ0 = u0 cos(x2)

ẋ1 = u0 sin(x2)

ẋ0 = u1

(2.7)

Using the Symbolic Set Class written by Dr. Rungger, it is imperative to define a number of

BDDs to aid in the visualisaton of the close loop within MATLAB, they predominantly are (Source:

unicycle.cc). A makefile is created to perform the compilation of the program, which produces a num-

ber of BDDs which are listed below. A readme file is prepared to assist new users of its functionality.

1. State Space - with reference to SymbolicSet.hh and the manual, it is imperative for the user to

define the state space dimensions (state space variables), in particular the grid parameters and

the hyper-interval for the synthesis problem, this defines the working area for the vehicle, the

target, and as a whole, the area the synthesised controller is based on. A BDD is created and

written to a file named unicycle ss.bdd

Chapter 2 30 Nur Hanis Bin Samad

SECTION 2.7 Parametric Reachability Synthesis using the tool SCOTS

Listing 2.3: (Source: unicycle.cc) State Space creation

1 /∗ c o n s t r u c t Symbo l i cSe t f o r t h e s t a t e s p a c e ∗ /

2 s c o t s : : Symbo l i cSe t s s = u n i c y c l e C r e a t e S t a t e S p a c e (mgr) ;

3 s s . w r i t e T o F i l e (” u n i c y c l e s s . bdd ”) ;

4

5 s c o t s : : Symbo l i cSe t u n i c y c l e C r e a t e S t a t e S p a c e (Cudd &mgr) {

6 d ou b l e l b [sDIM]={0 ,0 ,−M PI−0 .4} ;

7 d ou b l e ub [sDIM] ={10 ,10 , M PI + 0 . 4} ;

8 d ou b l e e t a [sDIM] = { . 2 , . 2 , . 1 } ;

2. Target Space/Set - this refers to the ’goal’ of the vehicle, this reflected in Figure 2.8 by the red-

coloured oval-shaped polygon. In similar fashion a BDD is written named unicycle target.bdd

Figure 2.9: Target defined in unicycle.cc, Author: Matthias Rungger. [1]

The configuration of state space is mimicked for the the target space, as we want to retain the

same working area. Within SymbolicSet.hh, there 2 functions responsible for adding or remov-

ing grid-points in the form of polygons within the state space and they are addPolytope/rem-

Polytope and addEllipsoid/remEllipsoid [5]. These functions are based on the following math-

ematical relations.

P := {x ∈ Rn|Hx≤ h}

E := {x ∈ Rn||L(x− y)|2 ≤ 1}
(2.8)

Chapter 2 31 Nur Hanis Bin Samad

SECTION 2.7 Parametric Reachability Synthesis using the tool SCOTS

Referencing to the program above, the addEllipsoid function is employed to indicate in the state

space where the ’goal’ of the vehicle is. The blue maze is constructed using the remPolytope

function, a figure below would demonstrate its use case.

Figure 2.10: remPolytope function [5]

Remaining in the idea of the Symbolic Controller Synthesis, we would want to classify a con-

trollers specifications based on it reachability. By removing the grid-points via the remEllipsoid

function, the controller synthesis is made aware that those areas are unreachable, in abstract al-

most like creating an obstacle for the controller to avoid to finally reach its ’goal’.

In this project, we are to create the obstacles via using the addPolytope function, therefore grid-

points are added to the symbolic set but make these grid points unreachable, more be discussed

in the the implementation section.

2.7.1.2 Vehicle1 Example

Within the SCOTS tool, there are a functions that assist model checking and formal verification. Dur-

ing the compilation stage, the terminal can detail out the project description by using the printInfo()

Chapter 2 32 Nur Hanis Bin Samad

SECTION 2.7 Parametric Reachability Synthesis using the tool SCOTS

function [5]. This function displays the control systems specifications/information, the figure below

showcases a terminal output using the aforementioned method.

Figure 2.11: printInfo() function from robot.cc [1]

The program terminal can also display the overall time taken for program to synthesize

the controller, this is achieved using the TicToc.hh program written by Dr Matthias Rungger. In

formal verification of models, it is necessary to achieve a balance between speed and accuracy or

computations, which ties in to the concept of programming optimization [25].

Figure 2.12: TicToc.hh function from vehicle.cc [1]

Amongst the objectives of this paper is to introduce obstacles within the space of the con-

troller, but ultimately, we are required to derive ways to reduce the computation complexities as the

number of obstacles within the space grows, this could reduce controller synthesis times and increase

output efficiency.

Chapter 2 33 Nur Hanis Bin Samad

SECTION 2.7 Parametric Reachability Synthesis using the tool SCOTS

In similar fashion, the vehicle1 example begins by detailing Ordinary Differential Equations

to describe the system, authored by Dr. Mathhias Rungger in vehicle.cc

ẋ0 = u0
cos(α + x2)

cos(α)

ẋ1 = u0
sin(α + x2)

cos(α)

ẋ2 = u0tan(u1)

(2.9)

These equations are written into a C++ program, which is then computed using function

named ode solver. The makefile is drafted to allow compilation via a terminal, which then produces a

number of BDD files namely vehicle ss.bdd, vehicle target.bdd, vehicle obst.bdd and the synthe-

sized controller vehicle controller.bdd (Source: vehicle1 folder after running make and ./vehicle

in terminal) We then proceed to MATLAB to run vehicle.m file to visualise the controller in graphical

format.

Figure 2.13: Vehicle 1 projectionvehicle.cc [1]

Chapter 2 34 Nur Hanis Bin Samad

SECTION 2.7 Parametric Reachability Synthesis using the tool SCOTS

Via visual comparison between unicycle and vehicle1, the obstacles placements are identical

however, the difference is vehicle.cc uses addPolytope whilst unicycle.cc uses remPolytope. Using

the remPolytope essentially removes Grid-Points from the state space making those areas formed

by the Polytopes as unreachable. The movement of the vehicles are different due to definitions of

their respective ODEs. The computation times are also different, the table below illustrates them.

Table 2.2: Computation Time

Example Vehicle1 Unicycle

Initial Stage Elapsed-Time (seconds) 155.979 523.166

Transition-Relation Elapsed-Time (seconds) 586.952 529.995

It is important for software engineers to balance between speed and accuracy when creating

algorithms for computers [26]. These are in direct reference on the capabilities of the computers

with respect to their processing power etc. We are encouraged to control the number/values of input

variables within a system as to minimise as much errors at outputs, usually surfacing from quick

computation.

Chapter 2 35 Nur Hanis Bin Samad

Chapter 3

Implementation

Based on what we have learnt thus far, we now assess the capabilities of SCOTS as per the thesis

statement, which says ”Parametric Reachability Synthesis using the tool SCOTS”. We first begin

by exploring SCOTS and its functionality. We then work on modifying SCOTS to allow for parametric

obstacles in the arena (i.e., encoding the obstacles as a parameter in the synthesis). Then, SCOTS

will be modified to show existence of a parameter valuation, such that there is a strategy for the

controller to reach the ”goal”. Since, the dimension of the problem grows due to the parameterization

of obstacles, we might need to employ the techniques that benefit from the sparsity of the system to

reduce computation complexity.

In this implementation, we perform programming additions to a number of created example au-

thored by the Dr. Matthias Rungger, Mr Mahmoud Khaled. The process encapsulates a ’learning on

the job’ phase where we analyse the programs written and understand the functions/class/constructors

used to aid in the development process. The end objective is to access the SCOTS tool’s capability in

synthesizing a controller that can work regardless of the number/position/dimension of parameterized

obstacles within the synthesis work area. The vehicle or robot in question would still be able to reach

its ’goal’ or the target space. An analogy to describe the work is ’1 to govern all possibilities’.

36

SECTION 3.1 Parametric Reachability Synthesis using the tool SCOTS

3.1 Beginning

We work with 3 distinct spaces, namely the State Space (ss), Target Space (ts) and Obstacle Space

(obst). These spaces are also Binary Decision Diagrams or defined as Symbolic Sets. They are ini-

tialised using the following commands;

Listing 3.1: Creating Symbolic Sets / BDDs

1 s c o t s : : Symbo l i cSe t v e h i c l e C r e a t e S t a t e S p a c e (Cudd &mgr) ;

2 s c o t s : : Symbo l i cSe t s s = v e h i c l e C r e a t e S t a t e S p a c e (mgr) ;

3 s s . w r i t e T o F i l e (” v e h i c l e s s . bdd ”) ;

4 s c o t s : : Symbo l i cSe t o b s t (s s) ;

5 o b s t . w r i t e T o F i l e (” v e h i c l e o b s t . bdd ”) ;

6 s c o t s : : Symbo l i cSe t t s (s s) ;

7 t s . w r i t e T o F i l e (” v e h i c l e t a r g e t . bdd ”) ;

Both target and obstacle spaces created is based of the state space definition, we would want to

retain the the configurations as it would help in performing the synthesis more uniformly. They are all

saved as bdd files, which would then be projected via MATLAB visually. The original program had a

square grid of size 10units. For the initial phase, we begin by reducing the grid dimensions to allow

for quicker synthesis of controllers. Based on this, the tool synthesis time has a linear relationship with

a number of variables such as the state dimension, the space between each grid-point, the number of

parameterise obstacles among others. We begin to decrease the grid size in the effort to understand the

tool better.

Listing 3.2: Space Definition

1 s c o t s : : Symbo l i cSe t v e h i c l e C r e a t e S t a t e S p a c e (Cudd &mgr) {

2 d ou b l e l b [sDIM]={0 ,0 ,−M PI−0 .4} ;

3 d ou b l e ub [sDIM] ={5 , 5 , M PI + 0 . 4} ;

4 d ou b l e e t a [sDIM] = { . 2 , . 2 , . 2 } ;

5 s c o t s : : Symbo l i cSe t s s (mgr , sDIM , lb , ub , e t a) ;

6 s s . a d d G r i d P o i n t s () ;

Chapter 3 37 Nur Hanis Bin Samad

SECTION 3.1 Parametric Reachability Synthesis using the tool SCOTS

7 r e t u r n s s ;

8 }

The grid area are defined by boundaries, upper(ub) and lower(lb), the distance between each grid

point is stored in the variable eta. The Cudd refers to a package developed in C to assist in computing

decision diagrams. Information can be attained via the following url https://github.com/ivmai/

cudd.

As mentioned in the literature review, we now begin by using the addPolytope function to build

the arena up with obstacles; we also define the ’goal’ with the same function. The initial stages, we

define a small number of obstacles and an end point to ensure the tool is functioning. The array h1[4]

holds 4 values which represent minimum and maximum values of x-coordinates and y-coordinates.

Together with h2 and h3, they form the 3 obstacles in this instance.

Listing 3.3: Obstacle creation

1 s c o t s : : Symbo l i cSe t t s (s s) ;

2 d ou b l e h [4] = {−4 ,5 ,−4 ,5} ;

3 t s . a d d P o l y t o p e (4 ,H, h , s c o t s : : OUTER) ;

4 t s . w r i t e T o F i l e (” v e h i c l e t a r g e t . bdd ”) ;

5 vo id v e h i c l e C r e a t e O b s t a c l e s (s c o t s : : Symbo l i cSe t &o b s t) {

6 d ou b l e H[4∗ sDIM]={−1 , 0 , 0 ,

7 1 , 0 , 0 ,

8 0 ,−1 , 0 ,

9 0 , 1 , 0} ;

10 d ou b l e h1 [4] = {−0 ,1 ,−1 , 2} ;

11 o b s t . a d d P o l y t o p e (4 ,H, h1 , s c o t s : : OUTER) ;

12 d ou b l e h2 [4] = {−2 ,3 ,−0 ,2} ;

13 o b s t . a d d P o l y t o p e (4 ,H, h2 , s c o t s : : OUTER) ;

14 d ou b l e h3 [4] = {−2 ,3 ,−4 ,5} ;

15 o b s t . a d d P o l y t o p e (4 ,H, h3 , s c o t s : : OUTER) ;

16 }

Chapter 3 38 Nur Hanis Bin Samad

https://github.com/ivmai/cudd
https://github.com/ivmai/cudd

SECTION 3.1 Parametric Reachability Synthesis using the tool SCOTS

Figure 3.1: MATLAB projection of above specification vehicle.cc [1]

SCOTS performs controller synthesis by fixed-point computation [1].The SCOTS tool has a de-

fined class named FixedPoint, which allows for controller synthesis based on reachability specifica-

tions [5]. This class is based on the FixedPoint.hh file written by Dr Matthias Rungger. With this

class, the tool is able to distinguish which Polytopes are obstacles and which is the target. There is

function named reachAvoid which takes both the Target Space and Obstacle BDDs as parameters,

which goes into the development of the the vehicle controller.bdd file. The reachAvoid function

is defined within FixedPoint.hh, is to administer reachability via their invariance specifications [1].

From this, we can attempt at describing an algorithm which encodes obstacles as a parameter within

the synthesis, where the number, position, and layout of obstacles are random, and assess SCOTS

ability to synthesise a controller based on those parameterized obstacles.

Listing 3.4: Reachability Controller

1 s c o t s : : F i x e d P o i n t fp (& a b s t r a c t i o n) ;

2 BDD T = t s . g e t S y m b o l i c S e t () ;

3 BDD O = o b s t . g e t S y m b o l i c S e t () ;

4 t t . t i c () ;

5 BDD C= fp . r eachAvo id (T , O , 1) ;

6 t t . t o c () ;

Chapter 3 39 Nur Hanis Bin Samad

SECTION 3.2 Parametric Reachability Synthesis using the tool SCOTS

3.2 Algorithm - Learning Phase

A pseudocode is drafted in the beginning to aid in explaining the idea and methodology of this

process. As stated above, the addPolytope function is used in the development of obstacles. In order

for the obstacles to be produced at a random locations, random numbers, we could opt to encapsulate

the function within a loop. The loop exits if the parameterization of obstacles exceeds the known

defined state space.

Result: Parameterise the obstacles as part of the Synthesis

intial definition;

while Still within Upper/Lower bounds of Synthesis State space do

obstacle generation;

if Obstacles fully populate state space then

Vehicle Movement stops/Controller Stops;

else

produce obstacles at random as parameter within synthesis;

end

using reachAvoid to synthesize controller;

end
Algorithm 1: Pseudocode for Methodology

As discussed within the introduction, SCOTS employs binary decision diagrams, which in turn

describes the tool as a whole as a set of boolean-type variables and functions, hence the combination

of obstacles within the state space may be in the form of 2n [3]. Each grid point has extending vertices

which could reflect the a boolean function relation with either ’0’ or ’1’. With an increase of the hyper-

rectangles dimensions, the resultant number of obstacles would therefore be greater. A discussion of

boolean combinatorics is required here, to aid in deriving an algorithm that can hopefully allow for a

more dynamic obstacle parameterization in the controller synthesis.

Chapter 3 40 Nur Hanis Bin Samad

SECTION 3.2 Parametric Reachability Synthesis using the tool SCOTS

In order to allow for randomness, we may start by including a pair of libraries that allow for

random number generation, and a function that calls for random numbers to be produced.

Listing 3.5: Library for random number generator [7]

1 # i n c l u d e <c t ime>

2 # i n c l u d e <c s t d l i b >

3 s r a n d (t ime (0)) ;

We can encase the addPolytope function within a loop, and indicate how many such obstacles we

would want to create via indicating the number of iterations via the variable i. It is important to begin

working with the obstacles parameters with respect to their x-and-y values/coordinates, hence we label

the variables for ease of comprehension. We may make the following program alterations/additions on

the vehicle.cc example, and assess its feasibility.

Listing 3.6: Create Obstacle Function

1 vo id v e h i c l e C r e a t e O b s t a c l e s (s c o t s : : Symbo l i cSe t &o b s t) [

2 d ou b l e H[4∗ sDIM]={−1 , 0 , 0 , 1 , 0 , 0 ,0 ,−1 , 0 , 0 , 1 , 0} ;

3 s r a n d (t ime (0)) ;

4 f o r (i n t i =0 ; i <10; i ++)

5 {

6 i n t minX = (rand () % 7) ;

7 i n t maxX = (rand () % 7) ;

8 i n t minY = (rand () % 7) ;

9 i n t maxY = (rand () % 7) ;

10

11 cout<<minX<<maxX<<minY<<maxY<<e n d l ;

12

13 d ou b l e hTemp[4]={−minX , maxX,−minY , maxY} ;

14 o b s t . a d d P o l y t o p e (4 ,H, hTemp , s c o t s : : OUTER) ;

15 }

16 }

Chapter 3 41 Nur Hanis Bin Samad

SECTION 3.2 Parametric Reachability Synthesis using the tool SCOTS

Listing 3.7: State Space Definition author: Dr Matthias Rungger

1 s c o t s : : Symbo l i cSe t v e h i c l e C r e a t e S t a t e S p a c e (Cudd &mgr) {

2 d ou b l e l b [sDIM]={0 ,0 ,−M PI−0 .4} ;

3 d ou b l e ub [sDIM] ={7 , 7 , M PI + 0 . 4} ;

4 d ou b l e e t a [sDIM] = { . 2 , . 2 , . 2 } ;

5 s c o t s : : Symbo l i cSe t s s (mgr , sDIM , lb , ub , e t a) ;

6 s s . a d d G r i d P o i n t s () ;

7 r e t u r n s s ;

8 }

We may make adjustments to the upper and lower bounds of the state space, were we set a

lower-bound of 0 and an upper-bound of 7, hence the numbers within each rand() function can output

numbers between 0 and 6, which would still remain within the limits of the state space bounds. the

cout is to allow us to print to console and ensure each stream of numbers produced are random. We

can now run a few examples with these configurations and analyse the tool at computing the path for

vehicle. In the first run, we iterated 10 times, and produced the following set of x-and-y values. This

would then be the coordinates for the addPolytope function to create the shapes within the arena.

Table 3.1: Values Generated

6541 5015 2054 3420 5366

4616 2525 6632 5162 2124

When we look upon the entries 2525 and 4616 in this case, they would be traditionally defined

via the addPolytope function. Based on the definition of the addPolytope, the 1st and 3rd entries

represent Minimum x-and-y values, so the values have a negative sign attached to it, so in the graph,

the x-component of the shape is from 2 to 5 etc.

Chapter 3 42 Nur Hanis Bin Samad

SECTION 3.2 Parametric Reachability Synthesis using the tool SCOTS

Listing 3.8: addPolytope source: SymbolicSet.hh

1 d ou b l e h1 [4]={ −2 ,5 ,−2 ,5} ;

2 o b s t . a d d P o l y t o p e (4 ,H, h1 , s c o t s : : OUTER) ;

3 d ou b l e h2 [4]={ −4 ,6 ,−1 ,6} ;

4 o b s t . a d d P o l y t o p e (4 ,H, h2 , s c o t s : : OUTER) ;

The MATLAB visualization of the synthesised controller is as follows;

Figure 3.2: Random obstacle generated vehicle.cc

Only these 2 obstacles are valid as they concur to how the hn[4] array is defined for the addPoly-

tope function. The remaining x-and-y coordinates generated are of reverse order, therefore unable to

parameterise the obstacles properly. The 2 obstacles produced are also over-lapping therefore creating

1 large obstacle in this case. With the TicToc.hh, it is possible to measure how long the tool takes to

synthesis the controller based on the specifications given. The console quoted that the synthesis took

157.701 seconds. With different formulas attached to the rand() function, we may be able to develop

more obstacles within the space at smaller intervals, as the eta[sDIM], which indicate the distance

Chapter 3 43 Nur Hanis Bin Samad

SECTION 3.2 Parametric Reachability Synthesis using the tool SCOTS

between each grid point is 0.2.

With every execution, different combinations of values would be produced, we can run 2nd sim-

ulation and analyse the output.

Table 3.2: 2nd set of values generated

5043 0033 6215 6542 2534

5202 4106 0633 5224 2126

Figure 3.3: 2nd obstacle generated vehicle.cc

With the following parameterization of obstacles, SCOTS is still able to synthesize controller by

using the reachAvoid function, but we are still limited to only 2 obstacles as they are the only valid

options.

Below we propose a possible improvement where we ensure that the minX and min Y values

would always be smaller or atleast equal to their max values, ensuring a well defined rectangle can be

Chapter 3 44 Nur Hanis Bin Samad

SECTION 3.2 Parametric Reachability Synthesis using the tool SCOTS

established. We code the following below.

Listing 3.9: Edition to random number generator

1 i n t minX = (rand () % 5) ;

2 i n t maxX = minX+(rand () % 5) ;

3 i n t minY = (rand () % 5) ;

4 i n t maxY = minY+(rand () % 5) ;

With alteration, we can generate a greater number of obstacles as they fit within the definition of

the addPolytope function, below is an example of the randomly generated values.

Table 3.3: Values generated in increasing order

0123 3711 0300 1411 3304

Figure 3.4: More obstacles generated vehicle.cc

Chapter 3 45 Nur Hanis Bin Samad

SECTION 3.2 Parametric Reachability Synthesis using the tool SCOTS

3.2.1 Evaluation from Supervisor

Upon consultation, it is realised that the randomness factor is a 2nd phase component after we have

constructed a set of Obstacles, and the paramaterization of these obstacles are generated using the 2n

relation, making them boolean functions as either they exist or not, therefore we are now tasked at

creating 2n combination of obstacles and save each configuration as their own seperate BDD file i.e.

vehicle obst1.bdd. vehicle obst2.bdd, etc. A revised algorithm is required to carry out the process

and it can be detailed below. When n is large, thus the combinations grow larger. Below details an

algorithm for the aformentioned problem.

Result: Produce Obstacles files using 2n

intial definition;

while n do

create obstacle BDDs, save to file;

synthesize a controller for each obstacle BDD;

save each controller file;

end

Each obstacle in this case becomes a binary variable, where it is either present ’1’ or absent ’0’.

The value n represent the number of of obstacles, so when n is large, we then have 2n possible number

of obstacle combinations. If we take n to be 3, we will then have 8 possible combinations, increasing

like binary numbers.

Table 3.4: 0 to 7 in binary

000 001 010 011 100 101 110 111

We will now use these concept for re-implementation phase. We would do our best to program as

close as the specification requires and hopefully meet the project objectives.

Chapter 3 46 Nur Hanis Bin Samad

SECTION 3.3 Parametric Reachability Synthesis using the tool SCOTS

3.3 Post-Review Implementation Phase

We will approach this implementation using the reviews from the supervisor and make improvements.

Below details the workflow of this procedure, where we paramaterize the obstacles as boolean vari-

ables and meet closer to the problem specifiactions.

1. Work within the same arena dimensions i.e.Upper and Lower bounds specified in the initial

learning phase.

2. Encode obstacles as binary variables more appropriately

3. Efficiently encode obstacles using the appropriate programming techniques.

4. Generate a controller for each obstacle parameterization, which would then be used at the next

phase where all controllers would be consolidated as one global controller

We let n = 4 for this instance, which would result in 24 = 16 possible combinations. We have 4

bits which we use to represent each obstacle where ’0’ indicates off and ’1’ indicates as on.

Table 3.5: 0 to 15 in binary

0000 0001 0010 0011 0100 0101 0110 0111

1000 1001 1010 1011 1100 1101 1110 1111

With the following binary table as a guide, we would now visually represent the different obstacle

configurations within the MATLAB interface to dictate more clearly. Each obstacle blocks are squares

of dimensions 2× 2 grid-points. We keep to this size and shape for simplicity before moving along

to more complex polygons. We also visually display the controller created for each use case. These

controllers are unique as each are synthesized based on the configuration of obstacles within the state

space. The target is defined as a small polytope in the upper-right hand corner of the graph. Making

the target small ensures the vehicle would only apprehend its movement only at the defined target.

Chapter 3 47 Nur Hanis Bin Samad

SECTION 3.3 Parametric Reachability Synthesis using the tool SCOTS

Table 3.6: 24 Combinations of Obstacles with Synthesized Controllers

Chapter 3 48 Nur Hanis Bin Samad

SECTION 3.3 Parametric Reachability Synthesis using the tool SCOTS

The generation of the obstacles can be done via calling the following function and defining the

polytopes that make up the combinations as per binary increments. The 4 bit sequence begins from

the bottom left block, and ends at the top right, which means, for 1111, the Bit 4 is the bottom left, Bit

3 bottom right, Bit 2 is Top left, and Bit 1 being top right, making an easier explanation of the binary

sequencing.

Listing 3.10: Function to create obstacle configuration 1111

1 vo id v e h i c l e C r e a t e O b s t a c l e s 1 5 (s c o t s : : Symbo l i cSe t &o b s t 1 5) {

2 d ou b l e H[4∗ sDIM]={−1 , 0 , 0 ,

3 1 , 0 , 0 ,

4 0 ,−1 , 0 ,

5 0 , 1 , 0} ;

6

7 dou b l e h1 [4] = {−1 ,3 ,−1 ,3} ; / / 4 t h BIT

8 o b s t 1 5 . a d d P o l y t o p e (4 ,H, h1 , s c o t s : : OUTER) ;

9 dou b l e h2 [4] = {−4 ,6 ,−1 ,3} ; / / 3 rd BIT

10 o b s t 1 5 . a d d P o l y t o p e (4 ,H, h2 , s c o t s : : OUTER) ;

11 dou b l e h3 [4] = {−1 ,3 ,−4 ,6} ; / / 2nd BIT

12 o b s t 1 5 . a d d P o l y t o p e (4 ,H, h3 , s c o t s : : OUTER) ;

13 dou b l e h4 [4] = {−4 ,6 ,−4 ,6} ; / / 1 s t BIT

14 o b s t 1 5 . a d d P o l y t o p e (4 ,H, h4 , s c o t s : : OUTER) ;

15 }

However, if n increases, the number of times we call the function void vehicleCreateObstacles()

would be 2n times, increasing the number of lines of code, which may not be a good practice for

programming. We can employ a for loop which to iterate over the function where the variable int i

refers to the value of 2n, so for 24 we will have and i < 16. As the value of i increases, they represent

the decimal value of the binary sequence, so when i = 12, it would employ the necessary number

addPolytope functions to produce the 1100 pattern. A program snippet is detailed below explaining

this methodology.

Chapter 3 49 Nur Hanis Bin Samad

SECTION 3.3 Parametric Reachability Synthesis using the tool SCOTS

Listing 3.11: for-loop to create obstacle configuration 1100

1 vo id v e h i c l e C r e a t e O b s t a c l e s (s c o t s : : Symbo l i cSe t &o b s t)

2 {

3 dou b l e H[4∗ sDIM]={−1 , 0 , 0 ,

4 1 , 0 , 0 ,

5 0 ,−1 , 0 ,

6 0 , 1 , 0} ;

7

8 f o r (i n t i = 0 ; i < 1 6 ; i ++) {

9

10 . . . / / c a s e s 0 t o 11

11

12 e l s e i f (i == 12)

13 {

14 dou b l e h4 [4] = {−1 ,3 ,−1 ,3} ; / / 4 t h BIT

15 o b s t . a d d P o l y t o p e (4 ,H, h4 , s c o t s : : OUTER) ;

16 dou b l e h3 [4] = {−4 ,6 ,−1 ,3} ; / / 3 rd BIT

17 o b s t . a d d P o l y t o p e (4 ,H, h3 , s c o t s : : OUTER) ;

18 o b s t . w r i t e T o F i l e (” v e h i c l e o b s t 1 2 . bdd ”) ;

19 b r e a k ;

20 }

21

22 . . . / / c a s e s 13 t o 16

With this in place, we would be able to generate the obstacle configurations and store them as their

own BDDs i.e. vehicle obst0.bdd to vehicle obst15.bdd. We would then proceed to interface with

the reachAvoid() function to synthesise a controller for each obstacle configuration, which would then

produce the follow files named vehicle controller0.bdd to vehicle controller15.bdd. The projection

of both the obstacles and the controller is done via MATLAB which you may refer to Figure 3.6 as

a guide. We are currently working within a small state space dimension, of a grid size 7× 7, an a

obstacle size of 2×2.

Chapter 3 50 Nur Hanis Bin Samad

SECTION 3.3 Parametric Reachability Synthesis using the tool SCOTS

3.3.1 Evaluation of Post Review Implementation

With a larger state space and smaller obstacle sizes, the aforementioned implementation therefore only

reflects a small scenario, and may not scale as well at higher dimensions. The parameterization of ob-

stacles is also done via characterising them as predefined blocks, with fixed sizes. A more appropriate

way is to represent them more numerically via their x-and-y coordinates. The development of the

obstacle and controller files are also not created effectively. The above implementation is static in this

case, may not scale well when n→ ∞. Using feedback from Mr Mahmoud Khaled, we progress onto

the following specification for the obstacles, and assess ways on how to produce the necessary outputs

in the best possible way, following this list;

1. Within the vehicle.m file, include in all the obstacle BDDs and controller BDDs generated for

the previous case and perform the simulation. The goal of this section is to make the obstacle

space dynamic, where they appear randomly, and the controller/vehicle adapts and avoids the

obstacles and reach its target.

2. The initial definition of the obstacles was 2×2. It is known that the distance of each grid point

or the eta is defined as 0.2, referencing to the code here in Listing 3.2. We were instructed to

now create a 3×3 grid-point obstacle, which in turn refers to obstacle squares of size 0.6×0.6.

The distance between each obstacle is also to be set to 0.6 points. With these specifications, The

obstacle combination of 2n may be much larger.

3. Following the pointers above, we aim to employ a better application of for-loops for the BDD

generation of both obstacles and their synthesized controllers.

An alteration to the algorithm may be necessary, ensuring we can encode the parameterized ob-

stacles within the controller synthesis more appropriately and accurately.

Chapter 3 51 Nur Hanis Bin Samad

SECTION 3.4 Parametric Reachability Synthesis using the tool SCOTS

3.4 2nd Post-Review Implementation Phase

We make adjustments to the algorithm to incorporate the positional calculation of x-and-y values for

the obstacles.

1: for i = 0 to 2n do

2: for x = 0 to x≤U pperBound AND y = 0 to y≤U pperBound do

3: CreateObstacle() function call

4: Obstacle BDD , Squares of 0.6×0.6 grid-points, via addPolytope function

5: x++ and y++

6: end for

7: Get SymbolicSet of Obstacle

8: Get SymbolicSet of Target Set

9: reachAvoid() function call

10: Produce Controller

11: i++

12: end for

Table 3.7: Algorithm adjusted

The algorithm detailed above is allow us to comprehend the concept of nested for-loops [27]. It is

important that we can perform correct numerical iterations to aid in generating the obstacles and their

respective controller files. It is important to indicate the upper bounds as the limit, and keep the

obstacles generated only within the specified state space definition referenced from Listing 3.2, which

indicate a space of 7× 7. Having obstacle of size 0.6× 0.6, the number of obstacle combinations is

definitely larger, leading to an increased computation time to synthesize controllers. It is also possible

that the number of obstacles would fill up the entire state-space, which if we refer to algorithm 1, the

vehicle would then stop moving. This algorithmic approach an application of recursive functions [28].

Chapter 3 52 Nur Hanis Bin Samad

Chapter 4

Reflections

SCOTS is a versatile tool that encourages extension of functionality with respect to learning such as

performing analysis; The user is allowed to create their own control problem and synthesis controllers

according to their defined ODEs and State Space settings. The unicycle and vehicle examples demon-

strate the use of the remPolytope and addPolytope functions defined in SymbolicSet.hh respectively.

Each offers their own sets of merits in an attempt to increase efficiency and reduce computational time.

With regards to the project, we managed in some capacity to paramaterize obstacles via a boolean

characterisation of 2n. With smaller obstacle sizes whilst maintaining the same grid-parameters and

dimensions, 2n can be infinitely large. Difficulties arose at this juncture, where developing obstacles

has to be done via an algorithm which would generate them systematically and they are positioned

equidistant from each other, ensuring a uniform grid-like pattern, giving SCOTS more time to perform

computation via fixed abstractions [1] using the reachAvoid function.

The development phase of this implementation involved a study and appreciation of for-loops

and nested for loops, which would aid in the understanding and application of recursive functions

[28]. It is key to comprehend programming techniques such as recursion, which would allow us to

create the obstacles more efficiently. The method we have employed in developing the obstacles is

53

SECTION 4.0 Parametric Reachability Synthesis using the tool SCOTS

predetermined via inputing exact coordinates via x-and-y. As the obstacles are to be equidistant each

coordinate value is offset on all sides accordingly. If recursion is employed, we may be able to create

the obstacles more simply. Each x-and-y coordinate can be stored in an array as the iteration is running

they are updated and a value of 0.6 grid-points is added in the positive x-and-y directions, ensuring

equidistant obstacles.

1: for i=0 to i=2n do

2: for x=0 to x=max, and y=0 to y=max do

3: xArray[i]=x+0.6;

4: yArray[i]=y+0.6;

5: x++ and y++

6: end for

7: i++

8: end for

Table 4.1: Proposed improvement

The above algorithm could be seen as abstract and non-conclusive, it is more of an illustration of

an idea to incorporated recursion in the computation. It is amongst the aims of the project to always

optimize programs and reduce computation complexity to increase performance in synthesizing the

controllers for each Obstacle BDD created in the process. Due to inexperience at applying recursive

functions, the implementation came to a halt at this juncture within the project.

Chapter 4 54 Nur Hanis Bin Samad

Chapter 5

Conclusion

The aim of this project was to encode obstacle BDDs/SymbolicSets configurations as a parameter

within the synthesis of the Symbolic Controller. As it is specified that the obstacles themselves are

of the boolean nature, they are either to be set to the ON or OF. Quoting from the earlier section, we

defined obstacles in increasing decimal value numerically, aligning the position the obstacles in a 4-bit

binary sequence, to produce up to 16 obstacle configurations, which you refer to table 3.6.

We learn boolean functions are the primary data structures for Binary Decision Diagrams founded

R.Bryant in 1986 [4], which in turn went into the creation of SCOTS [1]. The Symbolic Set class

created by Dr Rungger and Dr Majid allows for a systematic way of generation of BDDs which help

in symbolic controller synthesis. Users of SCOTS can characterise their own controller problem and

input the necessary domains and differential equations to solve them.

With the concept of parametric reachability in mind, we managed in some capacity to produce

the various obstacle BDDs via the 2n relation. However the generation of this obstacles may not be

able to alter dynamically as n→ ∞. Each obstacle has a pre-determined position and size which limits

its flexibility. On a comprehension level it is a straight-forward approach but it may not be feasible

when generating smaller and greater number of obstacles, hence improvements need to be made, where

55

SECTION 5.0 Parametric Reachability Synthesis using the tool SCOTS

recursion should be used.

As an evaluation of the proposed implementations above, it is of great importance to be adopt

better programming theory and techniques so as to create more efficient and reliable solutions for larger

scale obstacle parameterisations. This would go a long way in minimising computation complexity

and execution times. The overall performance of the controller synthesis is dependant on the structure

and flow of the program.

Finally from the point of view as a learner, there is greater understanding of how a number of

aspect of engineering tie in to the thesis such as

1. Computer Science - Programming in C++; classes and objects, constructor(overloaded), recur-

sive functions, memory allocation etc.

2. Control Engineering - SCOTS employs a feedback control loop, where the output takes part in

the next iteration.

3. Symbolic Theory - Comprehend the synthesis of discrete/real-time controllers.

The thesis has enabled me to learn new things, which for me is certainly a positive point, with

that i would like to express gratitude for the opportunity given.

Chapter 5 56 Nur Hanis Bin Samad

Bibliography

[1] M. Rungger and M. Zamani, “Scots: A tool for the synthesis of symbolic controllers,” April

2016.

[2] T. Dreossi, “Sapo: Reachability computation and parameter synthesis of polynomial dynamical

systems,” July 2016.

[3] F. Pfenning, “Lecture notes on binary decision diagrams,” p. 15, October 2010.

[4] R. E.Bryant, “Symbolic boolean manipulation with ordered binary decision diagrams symbolic

boolean manipulation with ordered binary decision diagrams,” p. 35, July 1992.

[5] M. Rungger, “Scots - user manual,” pp. 1–22.

[6] M. I. of Technology, “Topic 5 : Feedback control systems,” Lecture Notes, p. 3, 2010.

[7] (2011, April). [Online]. Available: https://youtu.be/naXUIEAIt4U

[8] P. Antsaklis and Z. Gao, “Control system design,” The Electronics Engineers’ Handbook, 5th

Edition McGraw-Hill, Section 19, pp. 19.1-19.30, 2005., vol. 5th, July 2005.

[9] B. Bollig, M. Sauerhoff, D. Sieling, and I. Wegener, “Binary decision diagrams,” June 1996.

[10] R. O’Donnell, Analysis of Boolean Functions, 1st ed. Cambridge University Press, 4 October

2014.

57

https://youtu.be/naXUIEAIt4U

SECTION 5.0 Parametric Reachability Synthesis using the tool SCOTS

[11] (2014, Semptember). [Online]. Available: https://www.encyclopediaofmath.org/index.php/

Boolean function

[12] T. B. Sørensen, “Representations of boolean functions,” Slides.

[13] G. Pola, A. Firrard, and P. Tabuada, “Approximately bisimilar symbolic models for nonlinear

control systems,” p. 16, 14 Jan 2008.

[14] K. McMillan, “Symbolic model checking: An approach to the state explosion problem,” April

30 1992.

[15] O. Hazzan and J. Kramer, “Abstraction in computer science and software engineering.”

[16] P.-J. Meyer, A. Girard, and E. Witrant, “Compositional abstraction and safety synthesis using

overlapping symbolic models,” vol. 2, pp. 1–8, 19 July 2017.

[17] J. Liu and N. Ozay, “Abstraction, discretization, and robustness in temporal logic control of

dynamical systems,” Conference Paper, pp. 293–302, April 2014.

[18] G. Reissig, A. Weber, and M. Rungger, “Feedback refinement relations for the synthesis of sym-

bolic controllers,” vol. 3, pp. 1–27, 2 Jan 2017.

[19] G. Batt, H. de Jong, M. Page, and J. Geiselmann, “Symbolic reachability analysis of genetic

regulatory networks using discrete abstractions.”

[20] S. Srivastava, S. Gulwani, and J. S. Foster, “From program verification to program synthesis,”

17-23 January 2010.

[21] Program Synthesis ”is” Program Reachability.

[22] F. Somenzi, “Cudd: Cu decision diagram package”. in: University of colorado at boulder,” 1998.

[23] M. Rungger, “Symbolicset.hh,” SCOTS header file, September 2015.

[24] D. Rowell, “State-space representation of lti systems,” Analysis and Design of Feedback Control

Systems, October 2002.

Chapter 5 58 Nur Hanis Bin Samad

https://www.encyclopediaofmath.org/index.php/Boolean_function
https://www.encyclopediaofmath.org/index.php/Boolean_function

SECTION 5.0 Parametric Reachability Synthesis using the tool SCOTS

[25] S. Prajna, P. A. Parrilo, and A. Rantzer, “Nonlinear control synthesis by convex optimization,”

IEEE Transactions on Automatic Control, vol. 49, no. 2, pp. 310–314, February 2004.

[26] [Online]. Available: http://www-personal.umich.edu/∼mejn/cp/chapters/errors.pdf

[27] [Online]. Available: https://www.tutorialspoint.com/cplusplus/cpp nested loops.htm

[28] [Online]. Available: https://www.programiz.com/cpp-programming/recursion

Chapter 5 59 Nur Hanis Bin Samad

http://www-personal.umich.edu/~mejn/cp/chapters/errors.pdf
https://www.tutorialspoint.com/cplusplus/cpp_nested_loops.htm
https://www.programiz.com/cpp-programming/recursion

	Abstract
	Acknowledgement
	List of Figures
	List of Equations
	List of Tables
	Listings
	Introduction
	Background
	Objectives

	Literature Review
	Binary Decision Diagrams
	Application of Binary Decision Diagrams
	Boolean Functions Explained

	Symbolic Model Theory
	Definition
	Symbolic Controller Synthesis

	Discrete Abstractions in Symbolic Models
	Definition
	Discrete Abstraction-based solutions

	Parametric, Program Reachability and Synthesis
	Recursive Functions
	SCOTS
	Background - Workflow
	The Symbolic Set Class

	SCOTS Simulation
	Examples of SCOTS Controller Synthesis
	Unicycle Example
	Vehicle1 Example

	Implementation
	Beginning
	Algorithm - Learning Phase
	Evaluation from Supervisor

	Post-Review Implementation Phase
	Evaluation of Post Review Implementation

	2nd Post-Review Implementation Phase

	Reflections
	Conclusion
	Bibliography

