
Technische Universität München
Department of Electrical Engineering and Information Technology
Assistant Professorship of Hybrid Control Systems

Generation of Properties for Design Verification from
an Abstract FSM model

Master’s Thesis

Author: Valentin Hiltl

Technische Universität München
Department of Electrical Engineering and Information Technology
Assistant Professorship of Hybrid Control Systems

Generation of Properties for Design Verification from
an Abstract FSM model

Master’s Thesis

Author: Valentin Hiltl
Supervisor: M.Sc. Keerthikumara Devarajegowda
Advisor: Prof. Dr. Majid Zamani
Submission date: 12.04.2019

I confirm that this master’s thesis is my own work and I have documented all sources
and material used.

Munich, 12.04.2019 Valentin Hiltl

Acknowledgments

First of all I would like to thank my supervisor at Infineon Keerthikumara Devarajegowda
who is currently doing his PhD in the fields of formal verification at the Technische
Universität Kaiserslautern. Besides his PhD he is heaviliy involved in Infineon’s projects
but he has always had time for me when I had questions about my research or when I
needed encouragement which I appreciate a lot. I would like to mention that I always
felt as a valuable part of his research and I had the freedom to set my own priorities
with respect to this thesis which motivated me to start my own PhD as well. Many
thanks also to thank Prof. Dr. Majid Zamani and Mahmoud Khaled of the Assistant
Professorship of Hybrid Control Systems for giving me the chance to do my thesis in
industry at Infineon.
Finally I would like to mention that I feel honored because of my parents’ and friends’
ongoing support throughout all my years of study. They always provided guidance as well
as encouragement when I needed it and this achievement would not have been possible
without them.

Many thanks,
Valentin Hiltl

Abstract

Various approaches for increasing the design productivity have been proposed, e.g
hardware generators or High-Level Synthesis to cope with the ever increasing chip
complexity which is driven by consumer demands. This leads to the fact that the
verification gap widens although even today approximately 50% of the project time has
to be spent for pre-silicon verification. This thesis contributes a property automation
framework which aims at increasing the verification productivity to reduce the verification
gap. By providing a formal specification in a defined design entry language, the property
automation framework generates a complete set of properties to effectively verify the
RTL implementation. The design entry language is a system-level modeling language
precisely matching the abstraction level of Path Predicate Abstraction which defines a
sound relationship between RTL level implementations and their system-level models.
The flow follows the Model-Driven Architecture and is embedded in Infineon’s automation
environment which enables automation through the concept of metamodeling. In order
to demonstrate the effectiveness of the developed approach, a complete set of properties
is automated for a real life design, namely an I2C-bus protocol implementation. The
generated properties are formally proven by a commercial formal verification tool to
completely verify the RTL implementation.

iv

Contents

Acknowledgments iii

Abstract iv

1. Introduction 1

2. State of the Art 4
2.1. Hardware Verification . 4

2.1.1. Simulation-based Hardware Verification 4
2.1.2. Hardware Emulation . 7
2.1.3. Formal Hardware Verification . 8

2.2. Automation through Metamodeling . 13
2.2.1. Concept of Metamodeling . 13
2.2.2. Metamodel-based Automation Framework Metagen 15
2.2.3. Application of Metagen for Formal Hardware Verification 17
2.2.4. Automated Property Generation for Example Design 19

2.3. Abstraction Technique Path Predicate Abstraction 20

3. Specification of the Tasks 26

4. Extended Property Automation Framework 30
4.1. Modeling the Formal Specification in the Design Entry Language SystemC-

PPA . 30
4.1.1. Problems of Informal Specifications 31
4.1.2. Semantics of the SystemC-PPA subset 32

4.2. Metamodel-of-Things Design Entry Language 37
4.3. Extraction of Path Predicate Abstraction from Model-of-Things 41
4.4. Path Predicate Abstraction as Finite State Machine 45

5. Application of the Methodology to a Real-World Design 51
5.1. I2C as Real-World Design . 51
5.2. I2C-Bus Protocol Specification as SystemC-PPA model 53

5.2.1. SystemC-PPA model for Slave Behaviour 53
5.2.2. SystemC-PPA model for Master behvaviour 58

5.3. Evaluation of the Results . 63

v

Contents

6. Future Work 67

A. Metamodels 69
A.1. Metaprop Metamodel . 70

B. Generated Properties for Example Design 71
B.1. SVA Syntax . 71
B.2. ITL Syntax . 74

C. I2C-Bus Features 78
C.1. START and STOP Symbol . 78
C.2. Acknowledge . 78
C.3. Clock Stretching . 79

D. SystemC-PPA models 81
D.1. I2C-Bus Protocol Slave Model . 81
D.2. I2C-Bus Protocol Master Model . 83

List of Figures 87

List of Tables 89

Bibliography 90

vi

1. Introduction

The complexity of hardware designs has grown due to consumer demands during the
last decades which include rich functionality, security, high performance and robustness.
This is particularly true for System On Chip (SoC) designs where the used number of
cores and Intellectual Properties (IPs) continues to grow [27]. In addition the complexity
of IPs used in SoC designs itself increases at a rapid pace. This is because, on the one
hand an IP needs to support complex protocols like AMBA or PCI Express but on the
other also has to be configurable such that it can be reused for multiple applications
[28]. Increased hardware design complexity means higher integration of transistors and
shrinking paths which is known as Moore’s Law. A side effect of decreasing transistor
sizes is that older technologies like 65 nm or 130 nm become cheaper which leads to the
fact that semiconductor solutions can be applied for new areas at a reasonable price. This
development is known as More-than-Moore trend which especially drives the terminal
nodes of the Internet-of-Things (IoT).
Keeping time-to-market of a certain product as short as possible plays a key role as it
describes the period of time where a product creates costs but no income for a company.
Time-to-market can be divided into two parts, namely development time needed for
designing a specific hardware implementation and time which needs to be spent for
pre-silicon verification which consumes about 50% of the overall development time[27].
Short time-to-market and ever increasing chip complexity are intrinsically contradictory
and the trend of billions of IoT devices further intensifies the problem.
Companies tackle the loss of design productivity by constantly increasing their head count
as well as their research and development expenditures [7]. Another promising approach
to increase design productivity is using hardware generation languages (HGLs) like Chisel
[2] or MetaRTL [9] which raise the level of abstraction from Register Transfer Level (RTL)
description to hardware generation. High-level languages like Python or Scala are utilized
to describe the generation intent. Widely used in the field of signal processing algorithms
is a methodology called High-Level-Synthesis (HLS) which uses the same concept of
raising the abstraction level. The hardware design is modeled on Electronic System Level
(ESL) for design exploration and optimization at an early design stage and by gradually
refining the model a hardware implementation is generated in an automated manner. As
a consequence, even complex hardware systems are designed in short devolopment cycles
due to the increased design productivity of the former methodologies. The time needed
for pre-silicon verification increases due to increased complexity such that the verification
gap, the difference between verification productivity and design productivity, widens.

1

1. Introduction

To reduce the verification gap an effective methodology for increasing verification pro-
ductivity is introduced. We propose an extension of the property automation framework
presented in [8] which adopts the concept of raising the abstraction level for verification.
The structure of the framework is inspired by Object Management Group’s (OMG)
Model-Driven-Architecture (MDA) principle for code generation [34]. MDA specifies
three different viewpoints on a system: computation independent, platform independent
and platform specific. Each viewpoint is represented as one or more models at a specific
abstraction layer where the computation independent model operates on the highest level
of abstraction followed by the platform independent model and the platform specific
model. Following the MDA approach model-to-model transformations are used to cast
between the models of different abstraction levels. The computation independent model
represents a formal model of the informal specification which specifies the desired be-
haviour of the hardware system as it focuses on how the system is expected to behave but
hides all technology related information. In the extended property automation framework
proposed in this thesis the computation independent model is written in a system-level
modeling language which operates at an abstraction level called Path Predicate Abstrac-
tion (PPA) [36]. PPA means a well-defined formal relationship between the abstract
system-level model and its concrete RTL implementation. In other words, assuming the
computation independent model represented as PPA is correct and complete with respect
to the informal specification it can be trusted to be a sound abstraction of the RTL design
model in the same way the RTL design model is trusted to be a sound abstraction of the
underlaying gate level model. The system-level modeling language is simulation capable
such that correctness and completeness with regards to the informal specification can be
evaluated easily by the Verification Engineer. The platform independent model as well as
the platform specific model are reused from the original property automation framework
presented in [8]. A model-to-model transformation is used to convert the computational
independent model into the platform independent models. Each platform independent
model represents a specific abstract temporal Boolean expression specifying how the RTL
implementation is intended to behave. By applying a further model-to-model transfor-
mation these abstract temporal Boolean expressions are translated into the platform
specific models, namely interval properties specified in an arbitrary target language.
The extended property automation framework supports multiple target languages like
SystemVerilog Assertions (SVA) or Interval Language (ITL). Using the extended property
automation framework speeds up property generation and therefore increases verification
productivity because properties can automatically be derived from a formal specification.
The thesis is structured as follows. Chapter 2 presents an overview over state-of-the-art
concepts which are relevant for the contribution of this thesis. We present different
available hardware verification techniques, the concept of metamodeling and how it
can be used for automation as well as the abstraction technique PPA. Furthermore
we explain the property automation framework proposed in [8] which combines both
the concept of metamodeling with formal verification. Chapter 3 provides an overview

2

1. Introduction

over the contribution of this thesis, namely an extension of the property automation
framework shown in [8]. In Chapter 4 we introduce the former in detail and explain
every intermediate step of the methodology based on a working example. In order to
demonstrate the effectiveness of the developed approach, we apply the extended property
automation framework for an existing I2C-bus implementation in chapter 5. Chapter
6 provides an outlook over further improvements of the concept of PPA as well as the
extended property automation methodology.

3

2. State of the Art

2.1. Hardware Verification

Each hardware design has to be verified with respect to a given specification. Hardware
verification describes the process of gaining confidence that the design’s behaviour
matches the given specification. The specification expresses the desired behaviour of the
design in a natural language, e.g. describes all desired features wanted from a customer.
There are mainly three different techniques to perform hardware verification for a given
specification and design, namely Simulation-based Verification, Hardware Emulation and
Formal Verification which are explained in detail in the following chapters. In general to
perform a full verification of a system, or in other words to gain full confidence in the
system, all possible behaviours of the specific system have to be taken into consideration.
However today’s hardware designs are too complex to perform a complete verification
as the former is not feasible in terms of consumed time. Using coverage metrics is a
technique to remove redundant design behaviours without reducing the level of confidence.
Two types of coverage metrics are widely used:

• Code Coverage is a technique to measure the implementation’s executed lines of
source code using one of the verification methods mentioned above.

• Functional Coverage is an approach track which functionalities specified in the
specification are covered using one of the verification methods mentioned above.

2.1.1. Simulation-based Hardware Verification

To be able to perform simulation the design has to be expressible in a simulation capable
description as a precondition. Hardware Description Languages (HDL) like Verilog
[14] or VHDL [15] are widely used. In the context of simulation the specific system
can be understood as a function mapping from the product of input space and state
space, in the following called input-state space, to the output space. An input sequence
produces an output sequence when fed to the system at a specific state as a stimulus.
Note that, if the system is purely combinatorial the state space is empty which implies
that output sequences do not depend on the current state but on input stimuli only.
Simulation means the process of providing the input sequence to the system and to
decide whether the produced output sequence violates the specification. To completely
verify a given system using simulation all combinations of inputs and states have to be
evaluated and the corresponding output sequences need to be validated with respect to

4

2. State of the Art

the specification. As the number of combinations grows exponentially with the number
of states and possible inputs, this approach is not practical for circuits of even only
moderate size. As a consequence the input-state space needs to be reduced to a subset of
reasonable size to cope with the complexity of today’s designs. This reduction leads to
the fact that design errors remain potentially undetected because it may happen that
the input-state combination triggering the erroneous output sequence is removed from
the reduced input-state space.
A widely used methodology for simulation-based verification in industry is called Universal
Verification Methodology (UVM) [13]. The UVM provides a base class library written in
SystemVerilog [12], an object oriented Hardware Description and Verification Language
(HDVL) which is an extension of the original Verilog HDL. A classical UVM testbench
consists of reusable verification components (VCs). Each of those VCs has a defined
architecture containing the following elements:

• A Sequencer is an advanced input stimulus generator responsible to generate
input sequences.

• The Driver adds control signals to the input stimuli provided by the Sequencer.

• The Monitor samples the output sequences transmitted from the Device Under
Test (DUT) to perform validation with regards to the specification. The monitor
also collects coverage information.

Sequencer, Driver as well as Monitor are in-built classes of the UVM library.

5

2. State of the Art

Monitor

Sequencer

Verification
Component

Figure 2.1.: Example for UVM testbench composed of three verification components [16]

Figure 2.1 shows an example of a UVM testbench composed of three different VCs each of
them with the intent to verify the component they are associated with (vc 1, vc 2, bus vc).
UVM is used to reduce effort and time caused by creating test cases manually through
automatic test generation: The Sequencer automatically generates Constraint Random
Tests (CRTs) which are random input sequences associated with constraints to make
these stimuli valid inputs [37]. These input sequences are fed to the Driver which adds
control signals needed for the system’s interface protocol and passes the input sequence
updated with this information to the device under test (DUT). The Monitor collects
coverage information and performs validation whether the output sequence violates the
specification. Although CRTs are generated automatically there is still a need for writing
directed tests by hand to cover specific corner cases of the given design. Note that, the
virtual sequencer shown in figure 2.1 is used to synchronize the different Sequencers of
the VCs.
UVM is a coverage-driven simulation-based verification framework which means it eval-
uates the status of the verification process with respect to a coverage model [4]. A
Coverage model consists of a set of metrics like functional coverage or code coverage,
each of them associated with a coverage goal which has to be met during the verification
process. To verify a design using UVM the same verification component is executed
repeatedly using different random seeds for the Sequencers until the coverage goals are
met. To reduce the time needed to meet the coverage goals the purpose of constraints is

6

2. State of the Art

expanded: By gradually tightening them the coverage metrics is forced to converge faster
to the intended coverage goal.

2.1.2. Hardware Emulation

In times of System-on-Chips (SoCs) verification becomes even a greater challenge due to
the chip’s complexity. Classical software-based simulators are not capable of verifying
these designs as they lack performance to execute testbenches in suitable time when
running on general purpose computers, in the following called workstation. Hardware
emulation is a technique which is used to deal with the increased complexity and there
exist various different approaches for applying the former [23] [11] [19].
The classic methodology is to generate a bitstream from the DUT’s RTL description
which is then transferred to a target device, most likely a Field Programmable Gate
Array (FPGA), to mimic the design behaviour in hardware. The workstation itself has
to run the simulation environment or testbench only but does not simulate the complete
design which heavily reduce the computational effort for the workstation. The bottleneck
of this methodology however is mostly due to the communication overhead between DUT
running in hardware and testbench running in software on the workstation [20] [26]. There
exist mainly two approaches to circumvent this bottleneck: First, data transmission is
abstracted to a transaction-level transmission where information of several clock cycles is
compressed into a message to reduce channel frequency as well as quantity of transmitted
data [23]. Problematic is the need of building such a transaction-level message generator
which is time consuming and application specific. The second technique is to move the
testbench still running in software into hardware which is called synthesizable testbench
[11] [19]. To apply this technique the simulation environment is separated into two parts:
Frequently used parts are transformed into synthesizable constructs as far as possible
which are then moved together with the DUT to the target device. The parts of the
testbenches which are not synthesizable, e.g. components of the UVM class library, are
still executed in software on the workstation or on an embedded processor which is also
transferred to the target device. This approach can lead to high requirements in terms of
hardware resources of the target device as well as long compilation times.
Alternatively to the classic hardware emulation methodology another approach was
introduced in 1997 by Quickturn Design Systems, namely processor-based emulation [32].
The concept of processor-based emulation means a certain number (~1000 to 100000)
of arithmetic logic units (ALUs) that are correctly scheduled emulating all the Boolean
equations of the DUT. Currently the two leading platforms are Palladium (Cadence)
and Veloce (Mentor Graphics) which are considered to provide low compilation time,
performance gain, and can fit even highly complex SoC designs but both systems are
also very expensive in terms of costs [21].

7

2. State of the Art

2.1.3. Formal Hardware Verification

Formal verification is a notion for a collection of different approaches and techniques
which mathematically analyzes the space of possible behaviours of a design by the means
of a formal verification tool, rather than computing output sequences for particular input
stimuli [22]. The formal verification tool uses intelligent mathematical techniques to
take the design’s complete space of possible behaviours into consideration or in other
words, formal verification tools are exhaustive by nature. In comparison simulation-based
verification methods look at individual points in the space of possible tests. To perform
any kind of formal verification a formal description or model of the design needs to be
provided as an input to the formal verification tool. Implementations written in HDLs
like Verilog or VHDL are examples for valid formal descriptions accepted by formal
verification tools. In the following the formal verification techniques Equivalence Checking
as well as Property Checking are presented. Special interest is paid on Interval Property
Checking because this technique is used within the scope of this thesis.

Equivalence Checking

As the name already implies the intention of equivalence checking is to show whether
two designs are equivalent. We call two designs equivalent if for all input combinations
the output is exactly the same. Equivalence checking is needed in mostly all synthesis
design flows when moving vertically down in terms of abstraction layers, in particular to
show whether the implementation is equivalent on RTL and gate level. But it is also
needed for proving that horizontal transformations, namely optimization steps, are valid
transformations and did not alter the system’s behaviour.

Property Checking

The intention of property checking, also known as model checking, is to prove a model’s
compliance with given temporal logic expressions using fully automated methods. For
the sake of complete automation of the prove the expressive power of temporal logic
expressions is restricted to decidable formalisms. There exist mainly two decidable
formalisms to characterize temporal logic expressions, namely Computational Tree Logic
(CTL) [5] and Linear Temporal Logic (LTL) [31]. In CTL the classic Boolean operators
are extended with two path quantifiers, A (’along all paths’) and E (’along at least one
path’), which need to be followed by one of the following temporal operators: X (’next’),
G (’globally’), F (’finally’), U (’until’) or W (’weak until’). LTL however provides
the usual Boolean operators as well as the same temporal operators extended with the
operator R (’release’) but no path quantifiers.
In addition to providing automation the use of decidable formalism has another advantage:
Assume the model conflicts with a temporal logic expression specified in a decidable
formalism, the formal verification tool is able to provide a counterexample violating the
temporal Boolean expression which eases tracing the source of the conflict. A temporal

8

2. State of the Art

logic expression is referred to as property and the set of all properties is called formal
specification.
Generally speaking a model checking algorithm implemented in a formal verification tool
performs a search over all possible future states starting from an initial or reset state
of a specific design. For each state the algorithm determines whether it violates any
of the given temporal logic expressions which represent the design’s desired behaviour.
As the number of state variables in the system increases, the size of the state space
to be searched grows exponentially which is called state explosion problem and leads
to computationally infeasible problems. In the following an approach to make model
checking applicable for systems of reasonable size called Bounded Model Checking (BMC)
[6] is examined in detail.

Bounded Model Checking

In bounded model checking the state search problem is mapped to a Boolean Satisfiability
(SAT) problem to cope with the state explosion problem. SAT solvers require less memory
usage and show increased performance such that bounded model checking can handle
systems with a higher number of state variables. Additionally bounded model checking
performs checks on the fly which can reveal counterexamples earlier, namely before state
explosion becomes a problem.
To explain the concept of bounded model checking in detail we take a look at a general
model of an arbitrary sequential circuit illustrated in Figure 2.2.

combinatorial circuit
(σ(s, x), λ(s, x))

registers

x y

s′s

clk

Figure 2.2.: General model of a sequential circuit

The top box contains the circuit’s complete combinatorial logic which is basically the
output function y = λ(s, x) and the transition function s′ = σ(s, x) where x denotes the
current input, y denotes the current output and s denotes the current state. After a
discrete time interval t, at the clock event, the next state s′ is stored in the register
and used as current state for the next time interval t+ 1. In bounded model checking
properties do have a fixed time interval, in the following refered to as bound n as well as
a defined starting state (often the initial state). This means that the property triggers in
a certain state and expands for n number of clock periods where n is a finite number. In

9

2. State of the Art

classical model checking the algorithm starts to search the full state space starting from
the specific state. To map this state search to a SAT problem the model gets unrolled
iteratively n times, moving exactly one time step ahead with each iteration. Figure 2.3
shows an example where the general sequential circuit of figure 2.2 is unrolled for a bound
of n = 3.

combinatorial circuit
(σ(s, x), λ(s, x))

combinatorial circuit
(σ(s, x), λ(s, x))

combinatorial circuit
(σ(s, x), λ(s, x))s0

x0 y0

s1

x1 y1

s2

x2 y2

s3

Figure 2.3.: Bounded circuit model unrolled for n = 3 clock cycles

Unrolling means copying the combinatorial logic of the circuit shown in figure 2.2 for n
times where n denotes the bound of the specific property. Each copied circuit represents
the combinatorial circuit at the corresponding timepoint. The next state output of the
current circuit is connected to the current state input of the circuit corresponding to the
following timepoint. In this way the entire time interval is represented as combinational
circuit in which the state at a particular cycle is represented as a Boolean vector,
st = [s0,t, s1,t, s2,t, s3,t]. Based on the unrolled model the property can be mapped to
a Boolean satisfiability problem where the inputs at each timepoint are taken as free
variables restricted only by the assumption of the property itself. The proof succeeds if
the negated property cannot be satisfied.
Bounded model checking produces bounded proofs which can be useful in some situations,
e.g. to find counterexamples. Verification however requires unbounded proofs which are
globally valid and not restricted to a certain time interval. Bounded model checking is
able to produce such globally valid proofs if it is guaranteed that the unrolled model covers
the entire reachable behaviour of the design. This can be ensured if the combinatorial
circuit from figure 2.2 is unrolled at least k times where k denotes the sequential depth
of the original sequential circuit. For larger designs this approach leads to infeasible
computational complexity due to the resulting SAT problem.

Interval Property Checking

Interval Property Checking (IPC) [29] is a variant of BMC which produces globally valid
unbounded proofs for a specific type of properties. To apply IPC we restrict the temporal
logic expressions describing the design’s intended behaviour to a subset called interval
properties. An interval property is a temporal logic expression in LTL syntax of the form
G(A→ C), where A is called assumption and C is referred to as commitment. The only
temporal operator of the LTL syntax which is allowed to be used for the sub-formulas A
and C is the next operator X. This implies that an interval property describes behaviour

10

2. State of the Art

over a finite time interval.
IPC is a SAT-based model checking technique such that the procedure is almost equivalent
to BMC. The only difference to BMC is that in IPC properties do not start from an
initial state but any state which does not conflict with the assumption A. In other
words the starting state is left as an free input in the SAT problem restricted only by
the sub-formula A. This implies that IPC provides globally valid unbounded proofs for
properties which specify behaviour over a finite time period.

combinatorial circuit
(σ(s, x), λ(s, x))

combinatorial circuit
(σ(s, x), λ(s, x))

combinatorial circuit
(σ(s, x), λ(s, x))si

xi yi

si+1

xi+1 yi+1

si+2

xi+2 yi+2

si+3

Assumption A

counterexample
Negated Commitment C

Figure 2.4.: Proof computation for interval property encompassing a time interval of
n = 3

Figure 2.4 illustrates the proof computation for the arbitrary sequential circuit of figure
2.2 and an interval property which encompasses a time interval of three clock cycles. In
other words the next operator X is stacked at most three times in the interval property
which implies that the bounded circuit model has to be unrolled for n = 3 times. The
formal verification tool executing the proof is free to choose any arbitrary value for the
starting state si, as well as for the inputs xi, xi+1 and xi+2 which does not conflict with
the assumption A of the property under consideration. Equivalent to BMC, the proof
of the interval property succeeds if the negated property cannot be satisfied. Applying
that for an arbitrary interval property leads to: G(A→ C) = G(A∨C) = G(A∧C) =
counterexample. As a consequence the interval property holds if counterexample never
evaluates to true.
The extended property automation framework which is proposed in this thesis generates
a complete set of interval properties from a formal specification such that IPC is the
formal verification technique which is used in the scope of this thesis. In the following we
introduce the completeness criterion which defines under what circumstances we call a
property suite complete.

11

2. State of the Art

Completeness Criterion

Completeness can be understood as an absolute functional coverage metric which is met if
and only if the formal criterion for completeness is proven for a property suite consisting
of operation properties [3]. An operation property is an interval property with additional
semantics. The whole design behaviour is considered as consecutive execution of different
operations which are operating over a finite number of cycles. Each operation property
describes the intended behaviour of such an operation which implies: Assume each
operation has an operational property associated, by proving all operational properties on
a given implementation the complete design behaviour is covered. In detail the operation
properties are required to specify the output sequences with respect to determination
requirements which state which visible registers and outputs in the design have to be
determined under what circumstances. The completeness criterion is a technique which
can be used to automatically prove that the operation properties in sum completely
describe the output behaviour.
The formal verification tool OneSpin 360 [30] which is used in the scope of this thesis
provides a collection of tests, namely Case Split Test, Successor Test, Determination
Test and Reset Test to automatically prove or disprove the completeness criterion for a
given set of properties. We say a given property suite is complete if and only if all tests
mentioned above do hold for that given set of properties. Note the important fact that
these tests reason on the behaviour specified in the properties only but do not consider
the implementation of the design. To be able to run these tests the user needs to provide
a property graph as a precondition which specifies the sequence of operations. In other
words the property graph defines the succeeding operations for each property.
The mentioned test are briefly introduced in the following. For more information and
examples, please refer to [30].

• Case Split Test: The case split test checks whether, given some operation property
(AP ,CP), there exists a succeeding operation (AS ,CS) for all possible scenarios.
To do so the successors (AS,i,CS,i) of the given operation are extracted from the
property graph and it is checked for all possible input traces if any of the former is
able to trigger. In other words it is examined if any of the successors’ assumption
parts AS,i can be satisfied for any of the input traces assuming that the commitment
part of the predecessor CP holds. If this is the case the case split tests holds for
that given operation property otherwise a gap in the verification has been identified.
The above needs to be repeated for each operation property of a certain property
suite such that the case split test succeeds for the full set of properties.

• Successor Test: The successor test checks for every pair of predecessors and
successors operations ((AP ,CP), (AS ,CS)) defined in the property graph whether
the successor’s assumption part AS only depends on inputs and visible registers
determined by the commitment part of the predecessor CP . To verify the former
the verification tool examines two arbitrary traces which satisfy AP such that

12

2. State of the Art

the predecessor operation triggers and therefore both traces share common values
determined by the predecessor’s commitment part CP . The test checks then whether
it is possible to fulfil the assume part of the successor operation property AS for one
trace but violate AS for the other. This implies that AS does depend on more than
inputs and visible registers determined by CP which leads to a failing successor
test.

• Determination Test: The determination test checks whether each operation
determines all outputs and visible registers with respect to the defined determination
requirements. A holding determination test implies that both the visible registers
as well as the outputs are proven to always have a value which is determined by
the commitment part of a certain operation property.

• Reset Test: The reset test refers to the reset property which is a special property
specifying the design’s behaviour after reset. The reset test is constructed similarly
to the tests mentioned above but applied for the reset property and without any
predecessor property.

2.2. Automation through Metamodeling

2.2.1. Concept of Metamodeling

The term meta originates from Greek and means above or beyond. In the context of
models this means a metamodel is a model of a model and metamodeling is the notion for
the process of generating such a metamodel. In the scope of this thesis metamodels are
used to define the structure of models, namely the model’s components, their attributes
as well as the relations between each other.

MetaExpression

ExpressionOption

Variable Not

Expression

Name : string [1]

And Or XorConstant

Value : int [1]

Not, And, Or, Xor, Constant, Variable
1

* **1

Figure 2.5.: Metamodel MetaExpression for bitwise expressions

13

2. State of the Art

Figure 2.5 shows an example metamodel called MetaExpression defining the structure
of models for bitwise expressions specified graphically as an UML class diagram. To be
consistent with the concept of object oriented programming we call the metamodel’s
components classes which are shown as yellow boxes in figure 2.5. Instances of these
classes are referred to as objects. Relations between classes are illustrated as arrows
(except the primitive relation) and in the scope of this thesis four different types of
relations are supported:

• Primitive Relation: A class can have certain properties called attributes which
we refer to as primitive relation. Note that each attribute has a datatype associated.
For example the class Constant has a primitive relation to Value of datatype int.

• Composition Relation: The composition relation models a parent-child relation
which means the parent object is composed of its child objects. For example an object
of the class And can have an arbitrary number of child objects which themselves
are instances of the classes Not, And, Or, Xor, Constant or Variable.

• Generalisation Relation: The generalisation relation is equivalent to concept of
inheritance in object oriented programming. For example the classes Constant,
Variable, Not, And, Or and Xor are all inheriting from the Expression class which
means they inherit the primitive relation (attribute) Name.

• Association Relation: The association relation models a classic reference or
pointer to another object of a certain class. Note that this relation is not illustrated
figure 2.5.

The rootnode MetaExpression consists of exactly one ExpressionOption which is a
placeholder for all possible expressions Not, And, Or, Xor, Constant and Variable. This
is shown as a compositional relation starting from the class MetaExpression and ending
in ExpressionOption. The fact that it consists of exactly one of the options mentioned
above is indicated by the Multiplicity, the symbol corresponding to the arrow of the
composition relation. Valid multiplicities are: 0..1 (zero or one), (1 exactly one), *
(arbitrary), 1..* (arbitrary but minimum one). The classes And, Or, Xor can have an
arbitrary number of expressions as arguments (*) where Not can only have one (1) and
Constant or Variable are not allowed to have any.
Note: And, Or or Xor expressions with only one or zero arguments are not reasonable
such that further consistency checks have to be included to prevent that from happening.

14

2. State of the Art

Xor1:Xor

Name = Xor

Constant1:Constant

Name = Constant1

Value = 1

Not1:Not

Name = Not

Or1:Or

Name = Or

Variable1:Variable

Name = a

Variable2:Variable

Name = b

And1:And

Name = And

Variable3:Variable

Name = c

Figure 2.6.: Sample instance of the metamodel MetaExpression

Figure 2.6 shows an object diagram which represents a model defined by MetaExpression.
The model represents the bitwise expression ¬(a∧ (b∨ (c⊕ 1))). Any other expression
containing the operators specified in the metamodel MetaExpression can be expressed
as an instance of the former.

2.2.2. Metamodel-based Automation Framework Metagen

Infineon uses Metagen, a metamodeling and code generation framework implemented in
Python, successfully in the fields hardware and firmware generation as well as verification
for the last eight years [9]. The structure of the Metagen framework is shown in Figure
2.7.

15

2. State of the Art

Figure 2.7.: Structure of the Metagen framework [9]

To make use of the Metagen framework one has to start off by specifying a metamodel.
Assume a certain metamodel is given, shown in figure 2.7 as graphically specified.
The UML diagram of the metamodel is parsed by the Metagen framework which then
automatically generates an Application Programming Interface (API) for this specific
metamodel. The intention of the API is simplifying the access to models by providing
a set of clearly defined methods, e.g. getter and setter methods. To enter data or in
other words to populate the model Metagen provides two procedures: First, the Engineer
implements a reader which parses information given in the specification and fills the
model automatically. Or second, the Engineer enters data directly over a Graphical User
Interface (GUI) which is also automatically provided by Metagen for the underlaying
metamodel. The writer accesses the model through the API and generates target code,
a so-called view. The view can be of any arbitrary target language, e.g. RTL Code,
SVA, ITL or XML but also a documentation. To do so the writer uses the template
engine Mako which uses pythonic control structures (loops and conditionals) and other
high-level generation pragmas to generate target code in a fast and compressed way. We
call reader and writer semi-automatic as their implementation is largely assisted by the
automatically generated API but still need to be written manually by the Engineer.
Using theMetagen framework for code generation provides advantages which are explained
in the following:

• Once the reader is implemented for a specification it can be reused for altered
specifications with the same syntax. This becomes clear if we reconsider the
metamodel MetaExpression which is used to defined models representing bitwise
expressions. Assume a reader is given capable of reading in specifications written in

16

2. State of the Art

a mathematical syntax like ¬(a∧ (b∨ (c⊕1))). The same reader is able to parse any
arbitrary bitwise expression in the same syntax, e.g. a∧ b or ¬a, without further
effort. As noted above the implementation of the reader can be achieved in short
development time as it is largely assisted by the APIs.

• It is possible to implement multiple writers, each of them generating views in differ-
ent target languages. Assume a writer for VHDL RTL code is given, the view for the
specification mentioned above ¬(a∧(b∨(c⊕1))) looks like not(a and (b or (c xor 1))).
By adding a further writer which is for example used to generate Python code, the
Python target code can be generated without further changes in the framework.

• As already explained the Engineer has to provide his own metamodel, reader as
well as writer which leads to the fact that Metagen can be integrated smoothly into
design flows.

So far the Metagen framework has been applied for synthesizing digital hardware as well
as in the areas of analogue hardware and firmware, also covering the interfaces between
these areas. Verification and documentation views have already been addressed as well.
Savings of up to 95% in a single design step and up to 70% in the overall implementation
of a chip has been measured [9].

2.2.3. Application of Metagen for Formal Hardware Verification

This section explains the property automation framework proposed in [8], in the following
called Metaprop, in detail because the thesis’ contribution is to extend the former. The
intention of the Metaprop flow is to increase verification productivity such that the
verification gap is reduced. To do so the concept of hardware generation languages which
has already shown promising results is adopted for verification, namely by raising the
abstraction level from property description to property generation. The other benefit
besides verification productivity gains is that Metaprop is able to generate properties in
multiple target languages, e.g. SystemVerilog Assertions (SVA), Property Specification
Language (PSL) or Interval Language (ITL).
The Metaprop flow combines the OMG’s MDA principle for code generation with the
Metagen framework. The key concept of MDA are model-to-model transformations
between the computational independent model, the platform independent model and the
platform dependent model which denote the different viewpoints of abstraction. The
structure of each of these models is defined by a metamodel in the Metagen environment
to benefit from the advantages provided by the Metagen framework.

17

2. State of the Art

MoT1

Specification1

MMoT1

MoTn

Specificationn

MMoTn

Model-of-Things Layer

Model-of-Properties Layer

Metaprop
Metamodel

MoP2

MoP1 MoPk-1

MoPk

View Layer

Property1Property2

Propertyk-1Propertyk

Transformation

Transformation

Figure 2.8.: Metaprop: A model-driven property automation framework [8]

Figure 2.8 provides an overview of the proposed flow. The Metaprop flow consists of the
three viewpoints of abstraction layers defined by MDA from top (high) to down (low)
and two model-to-model transformations illustrated as yellow boxes.
The upmost layer is called Model-of-Things (MoT) layer and corresponds to the computa-
tional independent model in terms of abstraction. In this layer the informal specifications
(Specification1, . . . ,Specificationn) written in natural languages are captured formally as
a model in the Metagen environment which are in the scope of this thesis referred to as
MoTs. The structure of the MoT is defined by the underlaying Meta-Model-of-Things
(MMoT). The MMoT captures high-level attributes and acts as close as possible to
the informal specification. Different MMoTs are needed to capture different types of
specifications. For example specifications for bitwise expressions can be captured with
the MMoT from figure 2.5 but for capturing specifications describing hardware designs
the former cannot be used but different MMoTs have to be generated. The Verification
Engineer analyzes the informal specification written in a natural language like German
or English and generates a suitable MMoT for this specification. Afterwards an instance
of this MMoT is generated and gets populated with data from the informal specification
which then results in the MoT.
By applying the first model-to-model transformation the MoT is converted to the Model-
of-Properties (MoPs) which correspond to the platform independent models with respect
to the MDA approach. The transformation can be understood as refinement as further
information about the hardware, e.g. time intervals or signals names, are added which
lead to a lower abstraction level. The MoPs are the core of the flow and act as an

18

2. State of the Art

abstract and platform independent way of describing temporal logic expressions. Each
MoP is a model for one temporal logic expression where the MoP’s strucutre is defined by
the Metamodel-of-Properties (MMoP). Please refer to appendix A.1 for a full graphical
represenation of the MMoP.
By invoking the second model-to-model transformation the MoPs are refined to the
corresponding views or properties in the desired target language. Each temporal logic
expression represented as MoP is mapped to exactly one interval property. The Metaprop
flow is complete as interval properties written in a specific target language which cor-
respond to the platform dependent models with respect to the MDA principle are
generated.

2.2.4. Automated Property Generation for Example Design

As the contribution of this thesis is to extend the existing Metaprop flow this section
applies the Metaprop framework to an example design called ’Cascaded Counters’ to
provide an in-detail understanding of the former. The informal specification of the design
is given in the following:

The design consists of four counters which are connected as shown in figure
2.9. Each counter has a maximum value ’max_value’ which is an input
but constant. Every time the input ’rst_cnt’ is HIGH the output ’cnt_out’
is increased by the input ’add_in’ in the next clock cycle. If the counter
reaches the maximum value ’max_val’ the output ’Counter_X_OUT’ should
be resetted to ’0’ the next time input ’ovf_out’ is HIGH. As the first counter
does not have a previous counter driving it the output ’Counter_A_OUT’
should increment with every clock cycle. If the reset signal ’rst’ is HIGH all
counters should be resetted and outputs should be zero.

add in

rst cnt

cnt out

ovf out

max val

add in

rst cnt

cnt out

ovf out

max val

add in

rst cnt

cnt out

ovf out

max val

add in

rst cnt

cnt out

ovf out

max val

5

rst clk

’1’

’1’

Counter A OUT 3

rst clk

Counter B OUT 2

rst clk

Counter C OUT 7

rst clk

ovf OUT

Counter D OUT

Figure 2.9.: Block diagram of design ’Cascaded Counters’

As a first step the informal specification has to be captured formally as a MoT. To do so
the MMoT shown in Figure 2.10a is created. The root node CascadedCounters can have
an arbitrary number of Counter objects but at least one indicated by the composition
relation with multiplicity 1..*. Each Counter itself has a Name and a Max_value as

19

2. State of the Art

attributes. The MoT is generated by entering the needed parameters from the informal
specification into the GUI provided by Metagen. Note that we rather use the GUI in this
situation than implementing a reader due to lower effort. The resulting MoT for the given
informal specification can be seen in figure 2.10b. As a next step the model-to-model
transformation from the MoT to the MoPs has to be implemented. As discussed, the
transformation adds further information from the informal specification because the
MMoT captures only structural high-level attributes of the counters, e.g. their maximum
value. The MMoT however does not provide any information about how these counters
are connected with each other. This additional information needs to be provided during
the model-to-model transformation. As soon as the transformation is implemented the
Metaprop flow is complete in the sense that interval properties can be generated from a
given MoT. Metaprop currently provides writers for ITL as well as SVA syntax. The
generated properties are appended in appendix B in both target languages

CascadedCounters

Name : string [1]

Counter

Name : string [1]

Max_value : int [1]

1..*

(a) MMoT ’Cascaded
Counters’

Example:CascadedCounters

Name = Example

Counter_A:Counter

Max_value = 5

Name = Counter_A

Counter_B:Counter

Max_value = 3

Name = Counter_B

Counter_D:Counter

Max_value = 7

Name = Counter_D

Counter_C:Counter

Max_value = 2

Name = Counter_C

(b) MoT for given informal specification

Note: Assume parameters of the informal specification are changing, e.g. the counters’
maximum value or the number of counters in general, the only thing which needs to be
adjusted to generate a new set of properties for the altered specification is to recreate
the MoT. This task is of low effort because the process is assisted by the GUI provided
by the Metagen framework.

2.3. Abstraction Technique Path Predicate Abstraction

In a general design flow there exists a trusted chain of sound transformations between
the involved abstraction layers, namely from transistor level to gate level and from gate
level to the Register Transfer Level (RTL). A transformation being sound means in this
context that the model at one abstraction layer produces output sequences for all possible
input sequences identical to the output sequences produced by the model at the next
lower abstraction level. The former can be verified for example by formal equivalence

20

2. State of the Art

checking, e.g. applied for the RTL representation and gate level representation of a
certain implementation. Such a notion of soundness does not exist between design models
at ESL and RTL. At the ESL, communication between modules is modeled abstractly
using untimed messages whereas communication at the RTL is specified in a bit as well as
clock-cycle accurate manner. The concept of Path Predicate Abstraction (PPA) describes
a well-defined formal relationship between abstract system-level models and their concrete
RTL implementations which changes the role of a system-level model fundamentally. By
defining system-level models as PPAs of RTL implementations they may be trusted as
sound abstractions of the former in the same way RTL implementations are trusted to
be sound abstractions of the underlaying gate level.
The idea of the PPA is introduced by defining such a PPA for directed graphs. The
generation of a PPA for a directed graph is based on operational graph coloring which
means finding a coloring function to assign specific colors to a set of nodes of the directed
graph. These colored nodes are considered to be the important states of the PPA whereas
the uncolored nodes get abstracted. To aid the definition of operational graph coloring
we also define operational path segments.

Definition 1 (Operational Graph Coloring [36]) Consider a directed graph G =
(V,E), a subset W ⊆ V of the graph vertices called colored nodes, a set of colors Ŵ =
{ŵ1, ŵ2, . . . } and a surjective coloring function fc : W 7→ Ŵ .

• A path segment (v0, v1, . . . , vn) such that v0, vn ∈ W and v1, . . . , vn−1 ∈ V \ W is
called operational path segment in G.

• The set W must be chosen and colored such that:
1. every cyclic path in G contains at least one node from W (no cycles with

uncolored nodes in the graph),
2. for every operational path segment (v0, v1, . . . , vn) and u0 ∈ W such that

fc(u0) = fc(v0) there must exist an operational path segment (u0, u1, . . . , un)
in G with fc(un) = fc(vn).

We call fc operational coloring function and G operationally colored graph.

Figure 2.11 shows an example of an operationally colored graph according to definition 1.

21

2. State of the Art

b

g

b g b

y y

Figure 2.11.: Operationally colored graph

The nodes colored in ’blue’ (b), ’green’ (g) and ’yellow’ (y) are elements of the set W ⊆ V ,
whereas the uncolored nodes displayed as white do belong to V \W . To verify that the
directed graph is correctly operational colored we need to check if the two conditions
of definition 1 are fulfilled. The first condition is satisfied as there are no cyclic paths
containing only uncolored nodes. The second condition can be checked easily as well.
Consider all nodes of a specific color vi ∈ W as well as all operational path segments
(vi, vi,1, . . . , vi,n) starting from the node vi. For each of these nodes vi the set of reachable
colors Ŵvi = {wj | wj = fc(vi,n)} needs to be equivalent Ŵvi = Ŵ to satisfy condition
2. To make it more clear the above is applied for the color ’blue’. The operationally
colored graph in figure 2.11 contains three nodes which are colored in ’blue’. Each of
these three nodes vi with fc(vi) = ’blue’ has operational path segments to nodes colored
in ’green’ as well as ’yellow’. This means that the set of reachable colors is equivalent
for all nodes of color ’blue’ vi, Ŵvi = Ŵ = {’green’, ’yellow’}, such that condition 2 holds
for all operational path segments starting from a ’blue’ node. Repeating the above for
nodes colored in ’green’ and ’yellow’ leads to a satisfaction of condition 2 and therefore
the graph is correctly operationally colored according to definition 1.
Note: The operationally colored graph from figure 2.11 is not unique due to the fact
that the operational coloring function is not unique itself. There exist two parameters
which can be altered: k = |W | the number of colored nodes and l = |Ŵ | the number of
used colors. For the parameter k any value in the range kmin ≤ k ≤ |V | can be provided
where kmin is the minimum number of nodes to be colored such that the first condition
holds. By inspection of figure 2.11 kmin can be determined as kmin = 2, namely coloring
the nodes shown in ’green’ only. The parameter l needs to be in the range 1 ≤ l ≤ k

which does not mean that an operational coloring function fc does exists for each specific
l. Figure 2.11 shows an operational graph coloring for the parameters k = 7 and l = 3.
Figure 2.12 shows two trivial cases of valid operational graph colorings where in (a) all
colored nodes are of same color and in (b) each node has its unique one. For both cases
definition 1 can be checked easily in the same procedure as explained above.

22

2. State of the Art

(a) k = 7, l = lmin = 1 (b) k = 7, l = lmax = k = 7

Figure 2.12.: Operational graph colorings for different l = |Ŵ |

For the operational colored graphs from figure 2.11 and 2.12 more abstract graphs can be
drawn considering the colored nodes only. To do so a single node for each color and an
edge for each operational path segment is added to the respective abstract graph. Hence,
every operation, such as blue 7→ green, represented by several edges in the original graph
is represented by a single edge in the abstract graph. These abstract graphs are called
path predicate abstractions and can be seen in figure 2.14.

Definition 2 (Path Predicate Abstraction [36]) We consider a graph G = (V,E)
with a set of colored nodes W ⊆ V , a set of colors Ŵ , an operational coloring function
fc : W 7→ Ŵ . A directed graph Ĝ = (Ŵ , Ê), such that for any two nodes u,w ∈W , it is
(fc(u), fc(w)) ∈ Ê if and only if there is an operational path segment (u, . . . ,w) in G, is
called a graph path predicate abstraction of G.

23

2. State of the Art

(a) For figure 2.11
(b) For figure 2.12a

For figure 2.12b

Figure 2.14.: Graph predicate abstractions for operational graph colorings.

The following soundness theorem states the preservation of color sequences which means
connecting the paths in the concrete graph with the paths of the abstract graph. First
we defined the term color sequence:

Definition 3 (Color Sequence [36]) Consider a graph G = (V,E) with a set of col-
ored nodes W ⊆ V , a set of colors Ŵ and an operational coloring function fc : W 7→ Ŵ .
A color sequence produced on a path (s0, s1, s2, . . .) in G is the sequence of colors
(ŵ0, ŵ1, ŵ2, . . .) on the path where the i-th color in the sequence ŵi = fc(sj) if and
only if sj ∈W is the i-th colored node on the path. Note that i ≤ j since uncolored nodes
s /∈W on the path do not contribute to the color sequence.

Theorem 1 (Soundness with regards to color sequences [36]) Let G = (V,E) be
a graph and Ĝ be the path predicate abstraction induced by an operation graph coloring
fc : W 7→ Ŵ with a set of colored nodes W ⊆ V .

1. Given an arbitrary finite (infinite) concrete path (v0, v1, v2, . . .) in G with v0 ∈W .
There exists a finite (infinite) abstract path (ŵ0, ŵ1, ŵ2, . . .) in Ĝ that represents
the color sequence produced on the concrete path.

2. Given an arbitrary finite (infinite) abstract path (ŵ0, ŵ1, ŵ2, . . .) in Ĝ. For every
node v0 ∈ V in G such that fc(v0) = ŵ0 there exists a finite (infinite) concrete path
(v0, v1, v2, . . .) such that the color sequence produced on that path is (ŵ0, ŵ1, ŵ2, . . .).

24

2. State of the Art

Proof: The first part of theorem 1 is satisfied by construction. By applying the
operational coloring function fc to the nodes of the conrete path (v0, v1, v2, . . .) every
colored node v ∈ W is mapped to its color ŵ = fc(v) whereas all uncolored nodes get
abstracted. This leads to the abstract path (ŵ0, ŵ1, ŵ2, . . .) in Ĝ that represents the
color sequence produced on the concrete path.
To prove the second part of the theorem we consider a single edge (ŵi, ˆwi+1) of an arbitrary
abstract path (ŵ0, ŵ1, ŵ2, . . .). According to requirement 2 of definition 1 there exists an
operation path segment (vi, vi,1, vi,2, . . . , vi,l−2, vj) in the concrete graph for all colored
nodes vi of the same color fc(vi) = ŵi to a node of some color vj = ˆwi+1. Note that the
nodes along the operational path segment vi,1, vi,2, . . . , vi,l−2 are of no color. Any arbitrary
abstract path (ŵ0, ŵ1, ŵ2, . . .) is composed of its single edges (ŵ0, ŵ1), (ŵ1, ŵ2), By
concatenating the corresponding operational path segments of the former a concrete path
(v0, v1, v2, . . .) which produces the color sequence (ŵ0, ŵ1, ŵ2, . . .) is generated.
The theory of PPA can be extended to make it applicable for FSMs which means that
a PPA can be generated for an arbitrary FSM. As the behaviour of any sequential
circuit can be represented as FSM it follows that any arbitrary sequential circuit can be
abstracted to a PPA. Note that we do not explain the full formalism shown in [36] but
rather give a short overview how the PPA can be constructed from an arbitrary FSM.
The approach of constructing a PPA for FSMs is equivalent to the one shown for directed
graphs. As a first step the concept of operational coloring is adopted to FSM theory namely
by defining operational coloring for FSMs. This operational coloring consists of three
seperate individual coloring functions, namely a State Coloring function which assigns
a state color ŝ ∈ Ŝ to a subset of the FSM states, an Input Coloring function mapping
input sequences to input colors X̂ and an Output Coloring function mapping output
sequences to output colors Ŷ . Abstract transitions are defined according to a transition
function δ̂ : Ŝ x X̂ 7→ Ŝ where each transition relates to an abstract operation. Abstract
operations are triggered by a concrete input sequences which correspond to the according
input color of the set X̂ and produce a concrete output sequence represented as an output
color of set the Ŷ which is defined in the output function λ̂ : Ŝ x X̂ 7→ Ŷ . Combining the
elements described above as a tuple results in the abstract FSM M̂ = (Ŝ, ˆsreset, X̂, Ŷ , δ̂, λ̂)
which is also referred to as PPA for FSMs.
In the same way as done for directed graphs it can be shown that the abstract PPA
is a sound abstraction from the concrete FSM with respect to color sequences. The
preservation of color sequences can be extended to a preservation of LTL formulas,
please refer to [36] for the complete formalism and proofs. Note that in theory this
enables performing formal verification techniques directly on the abstracted PPA which
makes complex proofs become computationally feasible due to the fact that they are
performed on an easier and more abstract model. In practice however there exists no
formal verification tool which accepts PPAs as design input. To circumvent that we
produce a complete set of operation properties describing the full behaviour of the PPA
which is shown in chapter 4 in detail.

25

3. Specification of the Tasks

The goal of hardware verification is to prove that a given implementation of a design
conforms with its specification. The formal verification technique IPC uses interval
properties to capture the informal verification in a formal way. The formal verification
tool takes these properties and the implementation itself as an input and proofs whether
the properties hold for that certain implementation. Metaprop as a novel property
automation framework presented in chapter 2.2.3 shows verification productivity gains
through property automation to reduce the verification gap. But there exist drawbacks
which we explain in the following. After showing these drawbacks we introduce the
contribution of this thesis, namely an extended version of the Metaprop framework which
solves the problems mentioned in the following.

• Multiple MMoTs for different specification classes: As a first step to make
use of the Metaprop flow the Verification Engineer needs to analyze the informal
specification, extract its necessary properties and cast them to a MMoT. The MMot
’Cascaded Counters’ shown in chapter 2.2.4 is suitable for specifications describing
inter-connected counters with altering number of counters but cannot be used to
capture properties of a CPU for example. Creating the MMoT is a manual process
needed to be done for every specification class which can be time consuming.

• Incomplete set of properties: As described in the previous point the MMoT is
specific for a class of specifications. This leads to the fact that the model-to-model
transformation from MoT to MoP layer of the Metaprop framework needs to be
specific for this class of specifications as well as it takes the MoT as an input.
This transformation takes data stored as MoT as well as further information from
the informal specification needed for refinement as inputs and generates abstract
temporal Boolean expressions which we refer to as MoPs. This transformation
has to be manually implemented for each MMoT which can be a challenging task
to extract all necessary information from the informal specification such that no
functionality is missed during this process. If necessary information is missed
during the transformation step it leads to incomplete abstract temporal Boolean
expressions which then lead themselves to an incomplete set of properties with
respect to the specification. In other words, desired functionality may not be
covered in the generated set of properties and therefore cannot be proven on the
design’s implementation.

• MoTs are not simulation capable: As already mentioned, the first step to

26

3. Specification of the Tasks

make use of the Metaprop framework is to create a MMoT to capture the informal
specification formally as MoT. Simulation of the formal specification is used to gain
confidence whether the formal specification as executable model exactly represents
the informal specification. As the MoT is a data structure only defined by the
MMoT it is not simulation capable.

We propose an extended version of the property automation framework Metaprop which
circumvents the drawbacks explained above. An overview over the former is shown in
figure 3.1.

Model-of-Things Layer

Transformation

Model-of-Properties Layer

View Layer

Metamodel
FSM PPA

Metamodel
Design Entry

Language
MoT1

Specification1 Specificationn

PPA Extraction

Transformation

MoTn

Figure 3.1.: Extended version of the property automation framework Metaprop

Equivalent to the original Metaprop flow there exist the same three layers of abstraction
derived from Model-Driven-Architecture. The Model-of-Properties layer as well as the
View layer stay untouched with respect to the original framework. The Model-of-Things
layer however is represented by two different metamodels, namely Metamodel Design
Entry Language (MDEL) and Metamodel FSM (MFSM). The verification engineer reads
the informal specification (Specification1, . . . ,Specificationn) and converts it to formal
specification written in a simulation capable language which is refered to as design entry
language. This step may take several iterations as the Verification Engineer needs to
verify by simulation that the informal specification conforms the executable model. The
executable models which represent the formal specifications are captured as instances
of MDEL as MoT1, . . . ,MoTn. MDEL is a EBNF like description of the design entry

27

3. Specification of the Tasks

language which defines the syntax of the former. Note that any formal specification written
in the syntax defined by the MDEL can be mapped to a MoT of this metamodel which
implies that only one single metamodel is needed to capture all informal specifications.
The MDEL matches precisely the abstraction level of Path Predicate Abstraction which
means that the executable model is an implicit representation of the PPA. To extract
the explicit PPA description corresponding to definition 2 from the executable model
we interpret this model as Control-Flow-Graph (CFG) of successive statements defined
in the syntax of the design entry language. As a CFG is a directed graph, we define an
operational graph coloring function for CFGs which matches definition 1. By applying
the operational graph coloring function to the CFG, the states and transitions of the PPA
are identified (shown as green box) which means the PPA can be understood as abstract
FSM. Therfore we capture the PPA as an instance of a general metamodel for FSMs
(MFSM). The model-to-model transformation from MFSM to Metamodel-of-Properties
(MMoP) becomes simple as every transition of the PPA is mapped to exactly one abstract
temporal Boolean expression in the Model-of-Properties layer, in other words every
transition maps exactly to one MoP. By selecting a view the following model-to-model
transformation refines the MoPs to operation properties in the specified target language.
The extended version of the Metaprop flow solves the drawbacks mentioned before. First,
there exist one unique metamodel, namely MDEL, to capture all types of informal
specifications formally. The Verification Engineer describes the behaviour of the system
in the syntax of the design entry language which implies that the executable model is an
instance of the MDEL. Second, a subset of SystemC called SystemC-PPA is chosen as
design entry language which is simulation capable. In other words, occuring mismatches
between informal and formal specification or missing functionalities can be spotted early
in the verification process by simulating the executable formal specification. Third,
the generated set of properties is complete by design. As explained above the formal
specification written in SystemC-PPA syntax implicitly defines the PPA. We assume
the executable model representing the formal specification to be bug-free as well as
complete as it can be verified by simulation with regards to the informal specification.
The PPA is extracted and contains all possible paths of the executable model and is
therefore complete as well as bug-free by design as well. As noted in chapter 2.3 the
PPA can be understood as an abstract FSM which is a sound abstraction of the concrete
FSM capturing the behaviour of any arbitrary sequential circuit. This implies that this
specific PPA which is assumed to be complete and bug-free is a sound abstraction of
the concrete FSM describing the sequential behaviour of the complete and bug-free RTL
implementation. The set of operation properties derived from this PPA is therefore
complete by design.
To measure the quality and check the completeness of the generated set of properties
we apply the extended property automation framework for the I2C-bus protocol. As a
first step we analyze the informal specification of the I2C-bus protocol and converted it
into an executable formal specification written in SystemC-PPA syntax. The executable

28

3. Specification of the Tasks

formal specification is fed into the extended Metaprop framework to generate a set of
operation properties. Afterwards we use the set of generated properties and an exisiting
I2C-bus protocol implementation which is used within Infineon as inputs for the formal
verification tool OneSpin [30] to perform IPC. To measure the quality of the generated
properties we inspect the structural metric code coverage. To prove completeness of the
property suite we use the proposed completeness criterion which can be automatically be
proven by performing successor test, case split test, determination test and reset test.

29

4. Extended Property Automation
Framework

With this chapter we give an in detail explanation of the extended property automation
framework with special interest on the updated Model-of-Things layer because the
Model-of-Properties layer as well as the View layer stay unchanged with respect to the
original Metaprop flow from chapter 2.2.3. To run the extended Metaprop flow a formal
specification which is parsable by the Metagen environment is needed. Chapter 4.1.1
demonstrates the problems of informal specifications and why these cannot be used for
automated property generation. To solve the demonstrated problems we introduce a
system-level modeling language in chapter 4.1.2 called SystemC-PPA which is used as
design entry language for modeling the informal specification formally as executable
model. SystemC-PPA is a subset of SystemC associated with special semantics which we
refer to in detail in this chapter. In chapter 4.2 we present a metamodel for the design
entry language called MDEL which defines the available syntax of the SystemC-PPA
language to model the formal specification. In chapter 4.3 we explain how the Path
Predicate Abstraction can be extracted from the MoT which is the formal specification
represented as an instance of the MMoT MDEL. Finally we present in chapter 4.4 a
second MMoT MFSM, a general model for FSMs which is used to store the previously
extracted PPA. By applying the model-to-model transformation from MFSM to the
Model-of-Properies layer the extended Metaprop framework is complete in the sense that
a set of operation properties can be generated. This is possible due to the fact that we
reuse the MoP layer as well as the View layer from the original Metaprop framework
without any changes.

4.1. Modeling the Formal Specification in the Design
Entry Language SystemC-PPA

In this chapter we describe the first step to run the proposed extended property automa-
tion framework, namely getting from the informal specification to a formal specification
which is parsable by the Metaprop framework. In general, a specification describes
the desired behaviour of a system. The most important goal besides being correct in
terms of the described functionalities is to be complete with regards to the system’s
intended behaviour. Missing some functionalities in the specification means that these
functionalities cannot be proven on the system’s implementation.

30

4. Extended Property Automation Framework

4.1.1. Problems of Informal Specifications

Generally the informal design specification is provided in any natural language, e.g
written English or German. The problem of informal languages is that their syntax is
not well defined which leads to several problems which are illustrated with the following
informal example specification [10].

Serial-Parallel Converter
datain

1

sample
1

out

4

datatout
4

Figure 4.1.: Blockdiagram ’Serial-parallel Converter’

The input ’datain’ accepts a stream of bits and the output ’dataout’ emits the
same stream delayed by four clock cycles. The output ’out’ is four bits wide.
If the input ’sample’ is the value LOW then the 4-bit word at ’out’ is the last
four bits input at ’datain’. If ’sample’ is HIGH then the word at ’out’ is zero
or in other words four ’LOWs’.

This informal specification is not suitable as an input for the extended Metaprop frame-
work or for formal hardware verification in general because it is

• vague: For example it is not properly specified whether the ’last four bits input’
include the current bit.

• incomplete: The specification does not determine the ’dataout’ during the first
three clock cycles.

• not executable: The specification cannot be compiled into code for simulation.

• not parsable: The text is unstructured and therefore hard to analyze.

For the sake of automation a parsable specification written in a formal language is a
precondition for the proposed methodology such that the formal specification can be
read as an input in a easy and automated way.

Definition 4 (Formal Language) A language is called formal if it is a mathematically-
based language with a clearly defined syntax as well as semantics. As it has clearly defined
syntax there exists a parser to analyze the formal language.

31

4. Extended Property Automation Framework

In the scope of this thesis SystemC is chosen as design entry language to describe the
specification formally. SystemC is a system-modeling language which is implemented
as a C++ class library for system and hardware design [17]. Using the additional
SystemC library makes it possible to describe concurrent processes whereas the ba-
sic C++ language is purely sequential. There are mainly three reasons for choosing
SystemC as formal design entry language. First, as SystemC is a formal language it
solves the problems caused by specifications written in informal languages noted above.
A SystemC model is simulation capable and therefore can be verified with regards to
the informal specification to spot incompleteness or mismatches between formal and
informal specification (executable, complete). As SystemC uses C++ syntax its syntax
as well as its semantics are well defined (explicit, parsable). Second SystemC is widely
used in industry due to the already known C++ syntax. And third, SystemC uses the
concept of Transaction-Level Modeling (TLM) which is a high-level approach to model
communication between modules. Communication is modeled as time-abstract passing
of messages where the communicating modules synchronize with each other using events.
As unnecessary communication details are hidden inside these events simulation speed
increases because the simulation runs at a higher level of abstraction.

4.1.2. Semantics of the SystemC-PPA subset

The informal specification is modeled formally as a SystemC model which means specifying
the desired hardware behaviour in SystemC syntax. As SystemC is primarily a software
programming language some high-level objects of the SystemC class framework lack a
clear semantics with respect to the abstract hardware system. The C++ std::vector
class is an example for such an object as it is a container for arrays of dynamically
adjustable size. A high-level object dynamically allocating memory does semantically
not exist as an abstract hardware construct. By restricting the SystemC syntax to a
subset called SystemC-PPA [25] these objects lacking precise semantics in hardware are
excluded.
In the following we explain the semantics of SystemC-PPA. In SystemC one describes
functionality hierarchically separated as modules which interact with each other on
system-level using communication events based on TLM. Each module contains processes
which run concurrently and model the module’s functionality. In SystemC-PPA the
semantics of modules is extended in the sense that each module describes a PPA which
is a time-abstract FSM consisting of states and transitions. The states of the PPA
correspond to the communication events of the SystemC-PPA module and the transitions
to the paths connecting these events. Combining several modules to model system-level
behaviour results in an asynchronous product of time-abstract FSMs where each FSM is
defined by its SystemC-PPA description as a module [35]. As each PPA is time-abstract,
every PPA can have its own clock speed associated. This implies on system-level where
these PPAs need to communicate with each other the need of synchronisation mechanisms.

32

4. Extended Property Automation Framework

In SystemC-PPA synchronisation is implemented via three different types of handshaking
mechanisms which are explained in the following:

A
s = 0

S
s = 1

B
s = 0

Y
r = 0

R
r = 1

Z
r = 0

PPA1 PPA2

r = 1

r = 0

r = 0

r = 1

s = 1

s = 0

s = 0

s = 1

(a) Four-phase handshake for asynchronous com-
munication

A
s = 0

S
s = 1

B
s = 0

Y

R

PPA1 PPA2

s = 1

s = 0

(b) Easied handshake for unilateral synchronisa-
tion

Figure 4.2.: Handshaking mechanism provided in SystemC-PPA for synchronisation

• Blocking: The blocking communication inferface implements a full four-phase
handshake which ensures that messages are never lost. To explain the four-phase
handshake in detail we use figure 4.2a which illustrates state sequences of two
communicating PPAs (inputs are shown in blue and outputs inside the states).
Assume PPA1 and PPA2 want to exchange some data. To do so they need to
synchronize with each other. Assume initially PPA2 waits in state Y when PPA1
moves from state A to state S where the synchronisation signal s is asserted,
possibly together with some data. The synchronisation signal s to be true triggers
PPA2 which moves into state R where the received signal r is set, again possibly
together with some data. The fact that PPA1 needs to wait in its sending state S,
which implies s as well as the data to stay asserted until r is asserted, means that
this message from PPA1 to PPA2 is never lost. Vice versa PPA2 waits in state R
(data and r stay set) until s is de-asserted (PPA1 is in state B and has received the
message) which means the message from PPA2 to PPA1 was successfully exchanged.
Note that the waiting condition r = 1 in state B for PPA1 is necessary otherwise
a new message sent during some state sequence (B, . . . ,A,S,B) could remain
unrecognized if PPA2 stays in state R during this time. This is called a four-phase
handshake because two events for PPA1 (s = 0, s = 1) and PPA2 (r = 0, r = 1)
needs to happen until the next transaction can be processed.

33

4. Extended Property Automation Framework

• Master/Slave: There are cases where a four-phase handshake is unnecessary
effort, e.g if one side is always ready to communicate which is called slave. This is
illustrated in figure 4.2b where PPA1 acts as a master and PPA2 acts as a slave.
For unilateral synchronisation the slave does not have a synchronisation signal r as
it is assumed to be always available for communication. This eases the handshake
mechanism as shown in figure 4.2b

• Shared: The shared communication interface does not provide any handshaking
mechanisms and models a simple hardware port.

To make it more concrete we use an example formal specification consisting of exactly
one module such that the system-level behaviour is equivalent to the module’s behaviour.
Figure 4.3 contains the formal specification of an 8-bit serializer as the SystemC-PPA
model. We use this working example throughout the whole chapter to explain every
intermediate step of the extended Metaprop flow in detail.
Lines 1 to 18 from figure 4.3 refer to structural information about the SystemC-PPA
module, namely the module header, the constructor as well as datatype, port or variable
declarations. Note that the ports data_in and bit_out use the blocking communication
interface which implements the four-phase handshake mechanism described above. The
module’s behavioural information is contained in the lines 20 to 36, namely in the fsm()
process. Note that, as already indicated by the name of the process, it describes the
desired hardware behaviour in a FSM like manner. The process is composed of two
sections get_data and serialize_data. In the get_data section an integer value is
read from the port data_in and stored in the variable data_reg. As the port uses the
blocking communication interfaces the execution of the model blocks as long as data is
available at this port. Data from the data_reg is serialized by shifting with regards to the
value of the bit_counter starting with the most significant bit. Again the port bit_out
uses the blocking interface which implies that the execution blocks until the value of bit
is successfully written. After shifting eight times (bit_counter == 8) execution starts
again with reading in new data to be serialized.
Applying the SystemC-PPA semantics to this model leads to the PPA shown in fig-
ure 4.4 consisting of two states because there exist two communication events in the
description (line 25 and line 31 of figure 4.3). State S1 corresponds to the commu-
nication event data_in->read(data_reg) and S2 belongs to communication event
bit_out->write(bit). Paths between these communication events are compressed
as transitions between the former. Both ports use the blocking interface which imple-
ments the four-phase handshake shown in figure 4.2a. The blocking behaviour defined by
the interfaces of the ports data_in and data_out in the SystemC-PPA description is
included in the PPA with the presence of sync and notify signals. The sync signals
can be understood as inputs from the communication counterpart which when asserted
imply that the communication partner is ready to communicate such that a commu-
nication transaction is started. For example, the serializer stays in the state S1 until

34

4. Extended Property Automation Framework

data_in_sync signal is asserted by the communication partner implying data is available
at that port. At this point in time the execution stops blocking and reads the available
data from the data_in port and stores it in the variable data_reg. The notify signals
is the counterpart to the sync signal showing the communication opposite that the
module is ready for communication at that port. As long as the PPA is in state S1 the
data_in_notify is asserted signaling the communication partner which is connected to
the port data_in on system-level that data can be safely written to this port. The sync
and notify signals implement the four-phase handshake of the blocking communication
interface which guarantees that a message is never lost.

35

4. Extended Property Automation Framework

1 class Serializer : public sc_module {
2 public:
3 SC_CTOR(Serializer) :
4 nextsection(get_data) {SC_THREAD(fsm)};
5 enum Sections {
6 get_data, serialize_data
7 };
8 Sections section, nextsection;
9

10 /* Ports */
11 blocking_in<int> data_in;
12 blocking_out<bool> bit_out;
13
14 /* Variables */
15 int data_reg;
16 bool bit;
17 int test;
18 int bit_counter;
19
20 void fsm() {
21 while (true) {
22 section = nextsection;
23 if (section == get_data) {
24 /* Communication Event */
25 data_in->read(data_reg);
26 bit_counter = 0;
27 nextsection = serialize_data;
28 } else if (section == serialize_data) {
29 bit = ((data_reg << bit_counter) >> 7) == 1;
30 /* Communication Event */
31 bit_out->write(bit);
32 bit_counter = bit_counter + 1;
33 if (bit_counter == 8) nextsection = get_data;
34 }
35 }
36 }
37 };

Figure 4.3.: SystemC-PPA description of a serial-
izer

S1

data in notify=1

S2

bit out notify=1

data in sync
bit out sync ∧

bit counter == 8

!data in sync

(!bit out sync) ∨
(bit counter != 8 ∧ bit out sync)

Figure 4.4.: PPA of figure 4.3

The formal specification written in SystemC-PPA could be used directly as an input for
the extended Metaprop framework but the Metagen environment where each layer of
the Metaprop framework is embedded in does not provide a parser for SystemC syntax
intrinsically. To circumvent the need for implementing a SystemC parser we use an
open-source tool called SCAM [33] which parses the executable formal specification
written in SystemC-PPA based on the LLVM/Clang framework [24] and transforms the
model into an abstract syntax tree. SCAM’s plug-in system is extended with a plug-in

36

4. Extended Property Automation Framework

for Extensible Markup Language (XML) which intents to transform the abstract syntax
tree which was generated from the formal specification into XML format. The reason
for creating an intermediate representation of the formal specification in XML format is
that the Metagen environment provides an XML parser for every generated metamodel
automatically which can be used to read in data of the metamodel’s structure (see chapter
2.2.2). To make use of this intrinsically provided parser we generate a metamodel called
design entry language (MDEL) which defines the available SystemC constructs which
can be used to model the formal specification. The SCAM plug-in for XML is adopted
such that the generated XML output matches the needed data structure defined by the
metamodel MDEL. This circumvents the extra effort to write a SystemC parser and
makes it possible to read in the formal specifications in XML format with the intrinsic
Metagen XML parser. This also implies that the formal specification in XML format is
used as the input for the extended Metaprop framework. The complete available syntax
of SystemC-PPA for modeling formal specifications is shown in following chapter when
we define the metamodel for the design entry language SystemC-PPA called MDEL.

4.2. Metamodel-of-Things Design Entry Language

In the Metagen environment the classic approach to specify a metamodel is to a create
UML class diagram, please refer to chapter 2.2.4 for an example. But Metagen also
provides the possibility to define a metamodel in EBNF like syntax as the EBNF-
description of a formal language can be understood as metamodel of the former because
it defines the language’s structure. As the intention of the Metamodel Design Entry
Language (MDEL) is to define the syntax of SystemC-PPA it is reasonable to use
the EBNF like description to express the metamodel in the Metagen environment.
Note that any metamodel specified as textual description can be transformed into an
UML representation and vice versa as the same types of relations (primitive relation,
composition relation, association relation, generalisation relation) are supported by both,
graphical and textual, metamodeling techniques. Figure 4.5 shows the MDEL specified
in EBNF format which defines all available constructs of the design entry language
SystemC-PPA which can be used to formally model the informal specification. This
implies that, assuming that a given model only uses these available constructs and
the model has been converted by the SCAM tool into XML format, the XML parser
automatically generated by Metagen for the MDEL is able to parse that given model. In
other words there is only one unqiue metamodel, namely MDEL, which can be used to
capture all different kinds of specifications written in SystemC-PPA syntax. Note that
this metamodel is adapted to SystemC syntax with respect to the naming as well as
available constructs but can be extended easily with additional constructs to support
any design entry language, e.g. Python.

37

4. Extended Property Automation Framework

〈ModuleDescription〉 ::= Name {〈DataTypeDeclaration〉} {〈PortDeclaration〉}
{〈VariableDeclaration〉} {〈Section〉}

〈DataTypeDeclaration〉 ::= 〈BuiltInType〉
| 〈EnumType〉
| 〈CompoundType〉
| 〈CompoundSubType〉

〈BuiltInType〉 ::= ‘Int’ | ‘Unsigned’ | ‘Boolean’
〈EnumType〉 ::= Name {〈EnumElement〉}
〈EnumElement〉 ::= Name
〈CompoundSubType〉 ::= Name {〈CompoundSubType〉}
〈CompoundSubType〉 ::= Name Ref2DataTypeDeclaration

〈PortDeclaration〉 ::= Name 〈Interface〉 〈Direction〉 Ref2DataTypeDeclaration

〈Interface〉 ::= ‘Blocking’ | ‘Master’ | ‘Slave’ | ‘Shared’
〈Direction〉 ::= ‘In’ | ‘Out’

〈VariableDeclaration〉 ::= Name Ref2DataTypeDeclaration [Init]

〈Section〉 ::= Name {〈StatementOpt〉}
〈StatementOpt〉 ::= 〈CommunicationCall〉

| 〈Shared〉
| 〈ChangeSection〉
| 〈Assignment〉
| 〈ITE〉

〈CommunicationCall〉 ::= 〈Blocking〉
| 〈NonBlocking〉

〈Blocking〉 ::= 〈CommunicationType〉 〈Expression〉 Ref2PortDeclaration

〈NonBlocking〉 ::= 〈CommunicationType〉 〈Expression〉 Ref2PortDeclaration

〈CommunicationType〉 ::= ‘Read’ | ‘Write’
〈Shared〉 ::= 〈CommunicationType〉 〈Expression〉 Ref2PortDeclaration

〈ChangeSection〉 ::= Ref2Section
〈Assignment〉 ::= Ref2VariableDeclaration ‘=’ 〈Expression〉

〈ITE〉 ::= 〈Expression〉 〈IfPart〉 [〈ElsePart〉]
〈IfPart〉 ::= {〈StatementOpt〉}
〈ElsePart〉 ::= {〈StatementOpt〉}

Figure 4.5.: Textual description of the Metamodel Design Entry Language MDEL

The rootnode is called ModuleDescription and has composition relations with multi-
plicity 1..* to DataTypeDeclaration, PortDeclaration, VariableDeclaration and
Section expressed in EBNF notation of curly brackets. SystemC-PPA supports Int,

38

4. Extended Property Automation Framework

Unsigned and Boolean as built-in datatypes, arbitrary enumeration datatypes as well
as compound types of the formers. As explained in the previous section SystemC-PPA
introduces special semantics for the ports’ interfaces with regards to TLM of commun-
ciation between modules. This information is stored in the node PortDeclaration as
it can have any of the previously discussed interface types Blocking, Master, Slave
or Shared. A PortDeclaration node also stores information whether it is an input or
output port as attribute direction and has an association relation Ref2DataType to the
used datatype, indicated by the keyword Ref2. The behaviour of the module or in other
words the content of the specification is described in multiple Sections. A Section is
composed of several statements where the StatementOpt class provides the available
constructs for modeling the system behaviour. The CommunicationCall statements are
of special interest as they form the communication events which translate to the states
of the PPA described by the SystemC-PPA module. A CommunicationCall can either
be of Read or Write type, does have a association relation to the corresponding port
Ref2PortDeclaration, indicated by the keyword Ref2, as well as a composition relation
to Expression. Note that two types of CommunicationCalls are supported, namely
Blocking and NonBlocking. As already indicated by the name the Blocking commu-
nication event blocks the execution of the model until the transaction is successfully
processed, whereas the execution continues for the NonBlocking communication event.
The Expression class maps to a general abstract expression metamodel Metaexpression
which is shown in figure 4.6, a subset for bitwise expressions was already shown in figure
2.5.

Supported Primitives = [NOT,
CABS, CMINUS, CMULT, CMOD,
CREM, SLICE, INDEX,

REVERSE, HEAD, TAIL, ROR,
RAND, RNAND, RNOR, RXOR,
RXNOR, BAND, BNAND, BOR,
BNOR, BXOR, BXNOR, LAND,
LNAND, LOR, LNOR, LXOR,
LXNOR, SIGNEDCAST,
UNSIGNEDCAST, UNSIGNEDCONV,
SIGNEDCONV, HWPLUS, HWMUL,
HWMINUS, RSL, RSA, LS,

CONCAT, MUX, ISNEG, ISPOS,
LT, LTEQ, GT, GTEQ, EQ,

NEQ, REPEAT, PAST, NEXT,
WITHIN, ROSE, FELL, STABLE
]

Figure 4.6.: Expression metamodel

This metamodel is used to define arbitrary expressions as abstract expression trees. Note

39

4. Extended Property Automation Framework

that both metamodels from the figures 2.5 and 4.6 do have exactly the same structure.
For further explanation about the structure of the metamodel please refer to chapter 2.2.1.
The only differences are the TimePoint operator class as well as the the Primitive class
in figure 4.6. The TimePoint is a special timing operator which evaluates its arguments at
a specific offset whereas the Primitive class is a placeholder for all remaining supported
operators. A list of all supported operators can be seen on the right. Note that the
bitwise expressions metamodel from figure 2.5 is included as operators NOT, BAND, BOR
and BXOR where the B indicates that it is about the bitwise operators. Note as well that
the abstract expression model defined by the metamodel from figure 4.6 can be reused
by merging it with other metamodels. This technique is used for all metamodels in the
extended Metaprop flow to provide a common abstract expression model throughout the
complete flow.

Section_0:Section

Name = get_data

ChangeSection_1:ChangeSection

Ref2Section = get_data

ChangeSection_0:ChangeSection

Ref2Section = serialize_data

Section_1:Section

Name = serialize_data

Assignment_1:Assignment

Ref2VariableDeclaration = bit

ITE_0:ITE

Assignment_0:Assignment

Ref2VariableDeclaration = bit_counter

Blocking_0:Blocking

CommunicationType = Read

Ref2PortDeclaration = data_in

Blocking_1:Blocking

CommunicationType = Write

Ref2PortDeclaration = bit_out

Assignment_2:Assignment

Ref2VariableDeclaration = bit_counter

ModuleDescription_0:ModuleDescription

Name = Serializer

CPLUS_0:CPLUS

Name = CPLUS

Variable_1:Variable

Name = bit_counter

Variable_3:Variable

Name = bitRSA_0:RSA

Name = RSA

Literal_2:Literal

Name = Constant

Value = 7

LS_0:LS

Name = LS

Variable_2:Variable

Name = data_reg

IfPart_0:IfPart

Literal_1:Literal

Name = Constant

Value = 1

Literal_0:Literal

Name = Constant

Value = 0

Literal_3:Literal

Name = Constant

Value = 1

EQ_0:EQ

Name = EQ

Variable_4:Variable

Name = bit_counter

Variable_0:Variable

Name = data_in

Figure 4.7.: Serializer from figure 4.3 as instance of MDEL

To give a better understanding how the formal specification looks like after it has been
parsed into the Metagen environment as instance of the MDEL metamodel we reconsider
our working example of the serializer from figure 4.3. Figure 4.7 illustrates a simplified
view of the object diagram of the serializer’s formal specification. In other words Figure
4.7 shows the MoT of the serializer which is an instance of the MMoT MDEL. Omitted are
the declarations of ports, variables and types to ease the view. Objects colored in yellow
correspond to the objects defined in the MDEL metamodel whereas objects of color blue

40

4. Extended Property Automation Framework

belong to the abstract expression metamodel. The data structure of the MoT represents
the abstract syntax tree of the formal specification. The model does have two sections,
the get_data section modeling the parallel input data and the serialize_data section
modeling the serialized output. Each section has composition relations to the statements
which happen inside the respective section. For example section get_data of figure
4.3 contains the execution sequence of the statements [data_in->read(data_reg)] ⇒
[bit_counter=0] ⇒ [nextionsection=serialize_data] illustrated in figure 4.7 as
leaf nodes Blocking_0, Assignment_0 and ChangeSection_0 of Section_0.

4.3. Extraction of Path Predicate Abstraction from
Model-of-Things

This section explains in detail how a PPA is extracted from a given MoT, namely by
applying a specific operational graph coloring function to the objects of the MoT. As we
have introduced the PPA as abstraction technique we use the term extract to emphasize
that the formal specification written in SystemC-PPA matches precisely the abstraction
layer of PPAs. This implies that no abstraction or refinement happens during the process
of generating the PPA from the MoT. To extract the PPA from the MoT an operational
graph coloring function which follows definition 1 needs to be defined. As a recap,
definition 1 states the properties for a coloring function to be called operational based
on directed graphs. As shown in the previous chapter the MoT represents the abstract
syntax tree of the formal specification which is not a directed graph such that definition
1 can not be applied. To circumvent that we add additional semantics to the MoT. We
interpret the objects of the MoT which are visited when the SystemC-PPA description is
simulated as Control-Flow-Graph (CFG) which is directed graph by design.

Definition 5 (Control-Flow-Graph) A Control-Flow-Graph (CFG) is a directed graph
G = (V,E), where V is the set of the graph’s vertices and E is the set of edges which
are pairs (v1, v2) of elements of V , where v1 is the starting vertex of edge and v2 is the
ending vertex of edge. A Control-Flow-Graph is a representation of all possible paths
which might be traversed throughout the execution of a SystemC-PPA model. The set of
vertices V correspond to the objects of the MoT which are visited while the SystemC-PPA
model is executed and the edges E to the possible paths between these objects.

To interpret the MoT as CFG not all objects of the MoT need to be considered because
the type -, variable - or port declarations are not relevant for the execution of the
SystemC-PPA description but store additional information. Objects inside the subtrees
of Section objects however are relevant as these sections store information about the
desired behaviour of the hardware design. In other words, objects appearing in the
subtrees of Section objects get executed if the formal specification represented as
SystemC-PPA model is simulated and therefore need to be considered in the CFG. Figure

41

4. Extended Property Automation Framework

4.8 shows how the MoT’s Section objects including their subtrees are interpreted as
CFG based on the MoT of the serializer from 4.7.

Section_0

Blocking_0

Assignment_0

ChangeSection_0

Section_1

Assignment_1

Blocking_1

Assignment_2

ITE_0

ChangeSection_1

true

false

get data

serialize data

Figure 4.8.: MoT of the serializer interpreted as CFG

The figure above contains all objects from the simplified view of the MoT of figure 4.7 which
correspond to the MDEL metamodel (colored in yellow). Note again that the simplified
view of the MoT leaves out the declaration objects which do not need to be considered for
creating the CFG as explained above. Objects corresponding to the abstract expression
metamodel (colored in blue) are not explicitly shown in figure 4.8 either, because they
are children of the objects belonging to the MDEL metamodel and therefore implicitly
present. The CFG is another representation of the MoT’s abstract syntax tree which
expresses the sequence of executed objects when the SystemC-PPA description of figure
4.3 is simulated. In the get_data section (Section_0) data is read from the data_in
port (Blocking_0), the bit_counter is resetted to zero (Assignment_0) and the section
is changed to serialize_data (ChangeSection_0). In the serialize_data section
(Section_1) the bit to be sent is extracted from the received data (Assignment_1) and
written to the bit_out port (Blocking_1). If the received byte has been completely
serialized the execution goes back to get_data section (true) otherwise it iterates over
the serialize_data section again (false).
The MoT with extended semantics fulfills the precondition of definition 1 of being a
directed graph because a CFG is the former by definition. This makes it possible to
apply operational graph coloring following definition 1 for the MoT and by extracting the
colored states the PPA is generated from the MoT. Directly implementing operational
graph coloring following defintion 1 is not feasible due to two reasons. First, as already
shown in chapter 2.3 there are different coloring functions which fulfill the properties of
an operational coloring function leading to different PPAs. In other words the PPA is not

42

4. Extended Property Automation Framework

unique for a given directed graph. Second, algorithmically computing such an operational
coloring from definition 1 is a computationally complex task which belongs at least to
the NP-Complete complexity class. NP-Complete describes a group of computational
problems which share the property that assume a solution is given this solution can
be verified in polynomial time whereas finding a possible solution is not feasible in
polynomial time. Richard M. Karp stated in 1972 21 general problems which belong to
the NP-Complete complexity class [18]. The reason for operational graph coloring being
at least in NP-Complete complexity class becomes clear if we take a closer look at the
definition 1 again. The first condition states that every cyclic path in the operational
colored directed graph G = (V,E) contains at least one colored node v ∈W . Note that
the explicit color is not relevant for the following consideration but only the distinction
between the set of colored nodes W and the set of uncolored nodes W = V \W . This can
be reduced to the following satisfiability problem: Is it possible to color k = |W | nodes
such that every cycle in the directed graph G contains a node v ∈W which is called the
Feedback Node Set computation problem [18]. This is one of the 21 general problems
mentioned above which is shown to be NP-Complete.
To circumvent these problems we define a trivial operational coloring function for MoTs
which fulfills the requirements of definition 1 to be called operational.

Definition 6 (Operational Graph Coloring for MoTs) Consider a MoT represented
as a CFG, G = (V,E). Furthermore consider a subset C ⊆ V of the graph’s vertices
called communication events and a set of colors Ŵ = {ŵ1, ŵ2, . . . }. Assume that every
cyclic path in the CFG contains at least one communication event c ∈ C. The operational
coloring function fc is defined as fc : C 7→ Ŵ : ∀ u, v ∈ C =⇒ fc(u) 6= fc(v). Then
Operation Graph Coloring for MoTs is a valid operational graph coloring according to
definition 1.

To show whether this definition is a valid operational graph coloring the two conditions
of definition 1 need to be satisfied. The first condition evaluates to true by definition as
it is assumed that every cyclic path in the CFG contains at least one communication
event c ∈ C. This is referred to as a design rules for writing formal specifications in
SystemC-PPA syntax. Ignoring this design rule while writing the formal specification
lead to an error which is spotted by the SCAM tool which parses the SystemC-PPA
description. The proof of the second condition is trivial. The operational coloring function
fc assigns a unique color to each element c ∈ C. It follows instantly that assuming two
nodes u, v ∈ C of same color fc(u) = fc(v) need to be the same node u = v. Condition
two always evaluates to true if applied for the same nodes u0 = v0.
The reason for coloring communication events is that the execution of the formal specifica-
tion as SystemC-PPA model might block infinitely long if the underlaying communication
event uses the blocking communication interface which implements the four-phase hand-
shake. The execution is only allowed to continue if the according synchronisation signal
is received such that the communication transaction can be processed. In other words

43

4. Extended Property Automation Framework

the PPA needs to have a state which models this blocking behaviour, namely modeling
the wait for synchronisation with a self transition in the specific state in the PPA. We
apply operational graph coloring for MoTs on the serializer’s CFG from figure 4.8 which
results in figure 4.9.

Section_0

Blocking_0

Assignment_0

ChangeSection_0

Section_1

Assignment_1

Blocking_1

Assignment_2

ITE_0

ChangeSection_1

true

false

get data

serialize data

Figure 4.9.: Operationally colored CFG of the serializer

The colored communication events Blocking_0 and Blocking_1 are identified to be the
states of the serializer’s PPA which has already been shown in figure 4.4. The CFG
shows all possible paths which can be traversed if the SystemC-PPA model is executed.
To identify the transitions of the PPA we take a closer look at specific paths, namely all
possible paths connecting the already colored objects. For each of these paths exactly
one transition is added to the PPA of the serializer. For example, Blocking_1 has a
path to itself as well as to the colored object Blocking_0. This results in two transitions,
a self transition in state Blocking_1 and a transition from state Blocking_1 to state
Blocking_0 (see figure 4.4 which shows the complete PPA of the serializer). Uncolored
objects which occur along the paths connecting colored objects are not abstracted but
stored inside the according generated transition as they contain relevant information for
the property generation from the PPA. This implies that no abstraction or refinement
happens during this process as no information is added or removed from the original
CFG. The CFG from figure 4.9 shows in total three different paths between colored
objects which are transformed into transitions of the PPA. To receive the complete PPA
from figure 4.4 further transitions need to be added due to the SystemC-PPA semantics
which are not explicitly represented as paths in the CFG:

• Reset transition: The reset transition refers to the constructor of the SystemC-

44

4. Extended Property Automation Framework

PPA module which assigns an initial value for the nextsection variable. This
defines which communication event is visited first if the simulation of the SystemC-
PPA model is initiated. In other words the reset transitions expresses the initial
state of the PPA.

• Wait transition: Wait transitions are generated for communication events using
the blocking communication interface. Wait transitions are self transitions which
guarantee that the state of the PPA stays unchanged unless a synchronisation
signal from the communication counterpart is received.

We have shown how the explicit description of the PPA is extracted from a given MoT.
The explicit description of a PPA consists of states and transitions between the former
such that we map it to a general model of a FSM which is shown in the following chapter.

4.4. Path Predicate Abstraction as Finite State Machine

In this chapter we introduce the second metamodel of the Model-of-Things layer called
MetaFSM (MFSM), a generic metamodel for finite state machines, to store the explicit
model of the PPA after it has been extracted from the MoT. As a recap, the states of the
PPA correspond to the communication events of the SystemC-PPA model whereas the
PPA’s transitions refer to the paths connecting these states in the CFG. Each transition
representing a path in the CFG describes an operation of the overall design behavior
which can be understood as consecutive execution operations. Later in this chapter we
explain in detail how transitions are translated into operational properties, namely by
the model-to-model transformation to the Model-of-Properties layer. In addition this
metamodel includes further information about the specific RTL implementation of the
design, e.g. signal or register names which is needed for transformation to the Model-of-
Properties layer. This information is used to refine the PPA stored as instance of MFSM
to abstract temporal Boolean expressions which are stored as instances of the Metaprop
metamodel (see appendix A.1). Before going into detail about this model-to-model
transformation we present the metamodel MetaFSM in the following.

45

4. Extended Property Automation Framework

Figure 4.10.: Generic metamodel for FSMs

The root node is called MetaFSM and has a composition relation to StateMachine with
multiplicity *. The fact that an instance of MetaFSM can consist of several instances of
the StateMachine class as indicated by multiplicity * is due to the fact that theoretically
a general FSM can be decomposed into multiple submachines which interact with each
other. During the scope of this thesis however the PPA is stored as exactly one instance
of the StateMachine class. Each StateMachine has an arbitrary number of states which
refer to the communication events of the SystemC-PPA model as well as transitions which
correspond to the paths connecting these communication events. A State has a Name
which indicates by convention the section where the communication event takes place. In
FSM theory a transition triggers at specific events, has guard conditions which need to
evaluate to true as a precondition such that the transition is able to be taken as well as
action items which get executed when the transition is triggered. This is represented as
Transition class in the MetaFSM metamodel as it has composition relations to Guard,
Event as well as Action class which correspond to the former with respect to their
theoretical semantics. The Event class covers the handshaking mechanisms, in detail
stores information about the synchronisation signals which need to evaluate to true such
that the transition can be triggered. The Guard class holds other expressions appearing as
if conditions in the SystemC-PPA model which need to be true such that the underlaying
path of the transition is taken. The Action class however does not store action items
to be executed like in general FSM theory but expressions which need to be proven on
the specific design when the transition reached its sink. Note that the classes Guard,

46

4. Extended Property Automation Framework

Event and Action have primitive relations called Expression. This is a placeholder
which refers to the universal abstract expression metamodel of figure 4.6 which is used as
common expression model throughout the complete extended Metaprop flow. Note as
well that the StateMachine also has a composition relation to a class called Macro. In
software engineering the term macro is used for grouping a sequence of instructions to
execute them with a single call only. In terms of PPA this semantics slightly changes
because macros are used to map the PPA description to the specific implementation. In
detail, all identifiers which are used in the SystemC-PPA, e.g. variables or ports like
data_reg or bit_out, are understood as placeholders. For each of these identifiers or
placeholders an object of the Macro is automatically generated with the intention to map
this identifier to its hardware equivalent. The Name attribute of class Macro corresponds
to the identifier used in the SystemC-PPA model whereas the information of the hardware
equivalent is stored as an expression tree of the abstract expression metamodel.
The example illustrated in figure 4.11 explains the role of guard, event and action based
on the concrete working example of the serializer. On the left one can see the PPA
extracted from the SystemC-PPA description of the serializer. The transition which we
take a closer look at is highlighted in blue.

S1

data in notify=1

S2

bit out notify=1

data in sync
bit out sync ∧

bit counter == 8

!data in sync

(!bit out sync) ∨
(bit counter != 8 ∧ bit out sync)

guard_0:Guard event_0:Event

state_0:State

Name = get_data_0

expression_0:Expression

ExprString = (bit_counter@t + 1 == 8)

transition_1:Transition

Length = serialize_data_1_w rite_1_TP

Name = serialize_data_1_w rite_1

expression_1:Expression

ExprString = bit_out_sync

expression_2:Expression

ExprString = (bit = bit@t)

state_1:State

Name = serialize_data_1

action_0:Action

expression_5:Expression

ExprString = get_data_0

expression_3:Expression

ExprString = (bit_counter = bit_counter@t + 1)

expression_6:Expression

ExprString = serialize_data_1

expression_4:Expression

ExprString = (data_reg = data_reg@t)

Source
Sink

Figure 4.11.: Example transition as instance of MetaFSM’s Transition class

The highlighted transition corresponds to the path of the CFG where the last bit has
been successfully serialized and the execution goes back to get_data section to fetch
another byte to be serialized. On the right one can see the highlighted transition as
instance of the Transition class illustrated as object diagram. The Transition object is
called serialize_data_1_write_1 indicating the source state as well as that the source
state is a write communication event. The Guard object holds all expressions which
need to evaluate to true such the transition is triggered except expressions related to
synchronisation. For this transition to trigger we need to guarantee that the PPA is in the

47

4. Extended Property Automation Framework

correct state serialize_data_1 (expression_6) as well as the bit_counter equals eight
which implies the whole byte has already been successfully serialized (expression_0).
Synchronisation related conditions are stored as expressions of the Event object which
triggers the transition. The communication event in the CFG which corresponds to the
source state serialiaze_data_1 uses the blocking communication interface such that
the transition should only trigger if and only the synchronisation signal bit_out_sync
evaluates to true (expression_1). The Action class stores expressions which need to be
proven when the sink state is reached. This includes on the one hand datapath operations
specified in the SystemC-PPA model which are executed when the underlaying path is
traversed by the execution, namely if new values get assigned to the defined variables.
If a variable is not mentioned while traversing the underlaying path it needs to be
proven that the value of the variable stays unchanged. While traversing the path in the
CFG which corresponds to the highlighted transition the bit_counter is incremented by
one (expression_3) but the other variables bit and data_reg do not get assigned new
values. This implies that they keep the values they had when the operation has been
triggered (expression_4,expression_5).
Following the MDA approach for the extended Metaprop flow the next step is to perform
a model-to-model transformation from the PPA as instance of the MetaFSM metamodel
to the Model-of-Properties layer. Each object of the Transition class maps to exactly
one abstract temporal Boolean expression expressing the intended operation behaviour
which is captured as MoP. An abstract temporal Boolean expression object models an
interval property which consists of an assumption part A and a commitment part C.
The objects corresponding to the Guard and Event class form the assumption part A
because the expressions of these objects need to evaluate to true to trigger the transition
as explained in the semantics of the MetaFSM metamodel above. Expressions of the
Action object form the commitment part C.
Now as the model-to-model transformation from the MetaFSM metamodel to the Model-
of-Properties layer is defined the extended Metaprop flow is complete. Complete in this
context means that a property suite in a specific target language can be automatically
generated starting from a MoT because the extended Metaprop flow reuses the Model-of-
Properties layer, the View layer as well as the model-to-model transformation between
the former without any changes, please refer to chapter 2.2.3 for further information
about these layers.
Figure 4.12 shows the operation property generated by the extended Metaprop flow
for the transition from figure 4.11 in ITL syntax. It can be easily identified that the
assumption part is composed of expressions which are contained in the Guard and Event
objects whereas the commitment part consists of the expressions stored in Action object
(see figure 4.11).

48

4. Extended Property Automation Framework

1 property serialize_data_1_Write_1 is
2
3 for timepoints:
4 t_end = t+serialize_data_1_Write_1_TP;
5
6 assume:
7 at t: ((bit_counter + 1) = 8) and serialize_data_1 and bit_out_sync;
8 prove:
9 at t_end: (bit = prev(bit,serialize_data_1_Write_1_TP));

10 at t_end: (bit_counter = (bit_counter + 1));
11 at t_end: (data_reg = prev(data_reg,serialize_data_1_Write_1_TP));
12 at t_end: get_data_0;
13 end property;

Figure 4.12.: Generated interval property for transition serialize_data_1_write_1
from figure 4.11

To feed this property together with an RTL implementation to a formal tool to prove
whether this property holds on the given implementation of the design this property
needs to be mapped to the implementation which is done by using macros. Macros are
automatically generated by the extended Metaprop flow as instance of the Macro class of
the MetaFSM metamodel. Depending on the object which a macro is generated for its
semantics differ:

• Variable macros: For each variable declaration in the SystemC-PPA model a
macro is generated. A variable is used to store data which implies that variables in
the SystemC-PPA model refine to RTL registers which is the hardware equivalent
for storing data. For example the variable data_reg refines to the actual name
of the RTL register in the implementation wich stores the data to be serialized.
Generating macros for variables is fully automated in the extended Metaprop flow.

• Port macros: A port declaration may introduce multiple macros depending on
the used communication interface. Each port generates a message macro which
describes the received or sent message depending on whether it is an input or
output port. In addition to the message macro, macros for sync and notify signals
depending on the implemented handshaking mechanism need to be included. A
port using the shared interface does no implement any handshaking mechanism
such that only a message macro is generated. Ports with a Master/Slave interface
introduce, additonally to the message macro, a sync macro for the slave and a
notify macro for the master. For ports using the blocking interface both notify
and sync for both communication parts need to be included to implement the
four-phase handshake. Macro generation for ports is also fully automated in the
extended Metaprop flow.

• State macros: Each communication event refers to a state of the PPA which

49

4. Extended Property Automation Framework

introduces a macro for this specific state. This macro refines the name of the PPA
state, e.g. serialize_data_1 to a specific state of the hardware implementation
which can be any arbitrary encoding over the available RTL registers in the design.
Automatic macro generation for states is included in the extended Metaprop flow.

• Timepoint macros: For each transition a macro specifying the length of the
interval property which is described by the transition is introduced. This macro
states after how many clock cycles the commitment part of the interval property
should be evaluated. The identifier serialize_data_1_Write_1_TP is an example
for a timepoint macro generated for the interval property of figure 4.12. Note that
timing is not automated by the extended Metaprop flow such that timepoint macros
are automatically generated but initialized by default with the value 1. This implies
that the Verification Engineer needs to update the timepoint macros accordingly
after the property suits has been generated.

50

5. Application of the Methodology to a
Real-World Design

5.1. I2C as Real-World Design

I2C is a standard bidirectional 2-wire bus protocol developed by NXP Semiconductors in
1982 [1] which is used for inter-integrated-circuit communication. The I2C bus consists
of a serial data wire (SDA) and a serial clock wire (SCL) which are carrying information
between the devices connected to the bus. Each device has an unique address associated
and can act as receiver as well as transmitter (bidirectional). A device can either be
a master or a slave which is not predefined but dynamically allocated. We call the
device which initiates a transaction and controls the bus as master whereas all the other
devices act as slaves at that time. The I2C-bus is a multi-master bus which means that
an arbitrary number of devices capable of controlling the bus can be connected to the
it. This can lead to situations where two of these devices are trying to initiate data
transfers at the same time. To avoid data loss and guarantee a controlled sequence of
transactions, the I2C-bus protocol provides arbitration, a process to determine which
device gets access at the bus.

Microcontroller A

ADC

Gate Array

Microcontroller B

SDA
8

SCL
1

Figure 5.1.: Example of an I2C-bus multi-master configuration

Figure 5.1 shows an example of I2C-bus configuration consisting of two microcontrollers
and two peripherals, namely an Analogue-Digital-Converter (ADC) and a Gate Array.
In general every device is capable of becoming a master and therefore has the ability

51

5. Application of the Methodology to a Real-World Design

to invoke a transaction. Usually only microcontrollers have the need to initiate data
transfers such that in figure 5.1 the simplest multi-master configuration consisting of two
possible masters is shown. To make the master-slave as well as the receiver-transmitter
relationships more clear the following two scenarios are considered:

1. Suppose microcontroller A wants to transfer data to microcrontroller B:
Microcontroller A (master) addresses microcontroller B (slave) with its associated
unique address. The other peripherals act as slaves as well but are not relevant as
they are not addressed. After successfully addressing microcontroller B, microcon-
troller A (master-transmitter) sends data to B (slave-receiver) and terminates the
transfer when the transaction is done.

2. Suppose microcontroller A wants to receive data from microcontroller
B: Again microcontroller A (master) initiates the transaction by addressing micro-
controller B (slave). Afterwards Microcontroller A (master-receiver) receives data
from microcontroller B (slave-transmitter) and terminates the transaction.

Note: As shown in the scenarios above the receiver-transmitter relationship is not
permanent but only depend on the direction of data at that time. Also note that the
master always intiates the transaction which does not dependent on whether the master
wants to receive or transmit data.
Referring to the I2C-bus specification [1] the protocol has a number of features which
are either mandatory (M), optional (O) or not applicable (n/a), depending on the
configuration of the I2C-bus. We distinguish between two different configurations, namely
single master and multi master. The different possible setups are shown in table 5.1.

Feature Single-Master Multi-Master

START Symbol M M
STOP Symbol M M
Acknowledge M M
Synchronization n/a M
Arbitration n/a M
Clock stretching O O
7-Bit slave address M M
10-Bit slave address O O
General Call address O O
Software Reset O O
START byte n/a O

Table 5.1.: I2C-bus features depending on the configuration [1]

52

5. Application of the Methodology to a Real-World Design

In the scope of this thesis a basic single-master setup is considered. This is due to the
fact that Infineon’s I2C-bus implementation is used in single-master configuration only.
This leads to the fact that the features arbitration, synchronisation as well as START
byte do not have to be considered in the scope of this thesis. For further explanation
of the mandatory features as well as clock stretching, please refer to appendix C. The
optional features, namely 10-Bit slave address, general call address and software reset
are not considered due to complexity. The formal specification of the I2C-bus protocol
which we present in the following chapters can be extended with these optional features
such that they are also supported.

5.2. I2C-Bus Protocol Specification as SystemC-PPA
model

For running the extended Metaprop flow we need to capture the I2C-bus protocol
specification formally as a SystemC-PPA model. Due to the fact that an I2C-bus
implementation can either act as slave or master we split the formal specification into
two separate SystemC-PPA models. One model covers the master behaviour and the
other model captures the behaviour of the slave respectively. Both models operate on
byte nor on bit level which leads to a more abstract description of the formal specification
which is more easy to understand and model.

5.2.1. SystemC-PPA model for Slave Behaviour

A graybox of the slave SystemC-PPA model can be seen in figure 5.2 which visualizes the
declared ports and variables of the SystemC-PPA description (please refer to appendix
D.1 for the complete model). Edges illustrated on the left side refer to declared ports
which are used for communication between the slave module and an arbitrary device,
e.g. a microcontorller, which makes use of the I2C-bus. Edges shown on the right are
used by the slave module for transmitting to or receiving from the I2C-bus. All ports
use the blocking communication interface except the data_to_device port colored in
blue is defined with a shared communication interface. All declared variables are shown
as dashed boxes inside the slave module box. The function of the variables is indicated
by their assigned name, e.g. the data_from_device_reg variable is used to store data
which is received from the device and sent over the I2C-bus afterwards. Note that all
variable names do have the suffix reg to indicate that variables map to registers in
the RTL implementation of the design. Note as well that the status_reg defined as
compound type status_t in the SystemC-PPA description translates into two separate
variables status_reg_start and status_reg_stop. Both variables are of Boolean type
and contain information whether the slave has received a START or STOP symbol over
the I2C-bus respectively.

53

5. Application of the Methodology to a Real-World Design

Slave Module

data from device reg

data from bus reg

status reg start

status reg stop

RnW reg

ack reg

device addr

data to device

data from device

data from bus

address from bus

status from bus

ack from bus

data to bus

ack to bus

Figure 5.2.: Graybox model of slave SystemC-PPA description

The SystemC-PPA description modeling the I2C slave behaviour is divided into four
sections, idle, get_addr, transmit_data and receive_data, which we explain in the
detail in the following.

Section idle

1 if (section == idle) {
2 status_from_bus->read(status_reg);
3 if (status_reg.start) {
4 nextsection = get_addr;
5 }
6 }

Figure 5.3.: Code extract section idle from slave SystemC-PPA model

In the idle section the execution blocks until status information from the bus is available
at the port status_from_bus (line 2). Only if a START symbol is detected execution
changes the section to get_addr (line 4). If a STOP symbol or neither a STOP or a
START symbol is provided from the bus, the execution iterates over the idle section
again and waits for the next synchronisation signal to read status information from the
I2C-bus.

54

5. Application of the Methodology to a Real-World Design

Section get_addr

1 if (section == get_addr) {
2 address_from_bus->read(data_from_bus_reg);
3 if ((data_from_bus_reg >> 1) == device_addr) {
4 data_to_device->set(data_from_bus_reg);
5 RnW_reg = (data_from_bus_reg << 7) == 128;
6 ack_to_bus->write(true);
7 if (RnW_reg) {
8 nextsection = transmit_data;
9 } else {

10 nextsection = receive_data;
11 }
12 } else {
13 nextsection = idle;
14 }
15 }

Figure 5.4.: Code extract section get_addr from slave SystemC-PPA model

The get_addr section models receiving the 7-bit address extended with the R/W-bit
which indicates whether it is a write or read transaction. The address is always the first
byte to be sent over the I2C-bus after the START symbol. This byte is received by the
means of the port address_from_bus and stored in the variable data_from_bus_reg
(line 2). The seven most significant bits of this variable represent the received address
which is compared with the device_addr variable which stores the unique ID of the
device (line 3). Assume that they do not match which implies that the slave is not
addressed by the master. Given this scenario, the execution returns to the idle section
to wait for the next transaction (line 13). This behaviour is important for a single-
master/multi-slave setup of the I2C-bus because an address is always distributed by the
master to all connected slave. Each slave checks independently whether it is addressed
and if this is case continues with processing the transaction. Assume that the received
address matches the content of the device_addr variable, the received byte consisting
of address and R/W-bit is forwarded to the device (line 4). Afterwards the R/W-bit
is extracted as least significant bit from the data_from_device_reg and stored in the
variable RnW_reg (line 5). To signal the master the address has been successfully received
an acknowledgement signal is sent over the bus by the means of the ack_to_bus port
(line 6). Based on the content of the RnW_reg the section is changed to transmit_data
(line 8) or receive_data (line 10).

55

5. Application of the Methodology to a Real-World Design

Section transmit_data

1 if (section == transmit_data) {
2 data_from_device->read(data_from_device_reg);
3 status_from_bus->read(status_reg);
4 if (status_reg.start && !status_reg.stop) {
5 nextsection = get_addr;
6 } else if (status_reg.stop && !status_reg.start) {
7 RnW_reg = false;
8 nextsection = idle;
9 } else {

10 data_to_bus->write(data_from_device_reg);
11 ack_from_bus->read(ack_reg);
12 if (!ack_reg) {
13 nextsection = idle;
14 }
15 }
16 }

Figure 5.5.: Code extract section transmit_data from slave SystemC-PPA model

The transmit_data section models the transmission of a single byte assuming that
the received device address matches with the unique device ID and the R/W-bit being
asserted indicating that the master wants read data from the slave. To be able to transmit
data over the bus data needs to be read from the device which uses the I2C-bus for
communication. This is modeled by reading from port data_from_device and storing
the data in the according register data_from_device_reg (line 2). This communication
event implements the I2C-bus feature of clock stretching. As the port data_from_device
uses the blocking communication interface, the execution blocks until data is received
from the device forcing the communication counterpart, namely the master, into a wait
state. Before data can actually be sent over the I2C-bus the slave needs to check whether
a repeated START or STOP symbol has been sent by the master. For a START symbol
being detected (line 4) the execution returns to the get_addr section (line 5) to restart
the transaction and receive a new address. For a STOP symbol (line 6) the transaction
is terminated and the execution goes back to the idle section (line 8). If none of the
former is detected (both symbols cannot be detected at the same time as SDA line is not
able to fall and rise at the same time) the byte stored in the data_from_device_reg
is written to the bus by the means of the port data_to_bus (line 10). After data has
successfully been sent the slave reads from the port ack_from_bus whether the master
has acknowledged the transmitted data (line 11). If this is the case the execution returns
to the beginning of the transmit_data section to send another byte. Otherwise execution
returns to idle section (line 13).

56

5. Application of the Methodology to a Real-World Design

Section receive_data

1 if (section == receive_data) {
2 status_from_bus->read(status_reg);
3 if (status_reg.start && !status_reg.stop) {
4 nextsection = get_addr;
5 } else if (status_reg.stop && !status_reg.start) {
6 nextsection = idle;
7 } else {
8 data_from_bus->read(data_from_bus_reg);
9 data_to_device->set(data_from_bus_reg);

10 ack_to_bus->write(true);
11 }
12 }

Figure 5.6.: Code extract section receive_data from slave SystemC-PPA model

Assuming the received address matches the device ID and the R/W-bit not being
asserted the slave receives data from the master which is modeled in the receive_data
section. Before the slave is able to receive data from the I2C-bus it needs to check for
a START or STOP symbol appearing on the bus. To do so the slave reads from the
port status_from_bus and stores it to the according variables status_reg_start and
status_reg_stop (line 2). If a repeated START symbol is detected the execution goes
to section get_addr to restart the transaction by receiving the address (line 4). For a
STOP symbol appearing on the bus the transaction is terminated and the execution
returns to idle section (line 6). For the case that neither START nor STOP symbol
is received the slave continues with reading data from the I2C-bus by the means of
the port data_from_bus and storing it in the according variable data_from_bus_reg
(line 8). After the data has been successfully read it outputs the byte directly to the
device by setting the according output port data_to_device (line 9). The slave sends
an acknowledgment to the bus to signal the master that the byte has been received
successfully (line 10). The execution returns to the beginning of section receive_data
for receiving a new byte.

57

5. Application of the Methodology to a Real-World Design

5.2.2. SystemC-PPA model for Master behvaviour

Master Module

data from device reg

data from bus reg

cfg from device reg ack

cfg from device reg start

cfg from device reg restart

cfg from device reg stop

RnW reg

ack reg

received data reg

data to device

data from device

cfg from device

data to bus

start to bus

restart to bus

stop to bus

ack to bus

data from bus

ack from bus

Figure 5.7.: Graybox modle of master SystemC-PPA description

This chapter explains the SystemC-PPA description capturing the master behaviour of
the I2C-bus in more detail. A graybox model is given in figure 5.7 which shows the inputs
ports, outputs ports and variables of the model. Edges drawn on the left correspond to
the model’s ports which are related to communication between device and the SystemC-
PPA module. An edge shown on the right however does imply that the corresponding
port is used in the SystemC-PPA description for modeling communication over the
I2C-bus. The port data_to_device is colored in blue to highlight that this port uses
the shared communication interface whereas all the other ports are defined with blocking
communication interface. The registers data_from_device_reg, data_from_bus_reg,
Rnw_reg and ack_reg do have the equivalent function as is in the slave SystemC-
PPA description. The master starts, restarts or stops the transmission by sending the
corresponding symbol over the I2C-bus. To model this behaviour the master SystemC-PPA
description provides a variable cfg_from_device which is defined as a compound type
consisting of four subtypes. The device using the master interface for data transmission
sets the variables cfg_from_device_reg_start, cfg_from_device_reg_restart and
cfg_from_device_stop accordingly to initiate sending these control symbols over the
I2C-bus. The cfg_from_device_reg_ack variable is used to indicate whether the device
wants to acknowledge the received data. The register received_data_reg is needed to
indicate whether data is received from the device over the data_from_device port.

58

5. Application of the Methodology to a Real-World Design

Section idle

1 if (section == idle) {
2 cfg_from_device->read(cfg_from_device_reg);
3 if(cfg_from_device_reg.start) {
4 data_from_device->read(data_from_device_reg);
5 cfg_from_device_reg.start = false;
6 RnW_reg = (data_from_device_reg << 7) == 128;
7 start_to_bus->write(true);
8 nextsection = send_addr;
9 }

10 }

Figure 5.8.: Code extract of section idle from master SystemC-PPA model

The idle section models the master’s behaviour when waiting for a new transaction
to be processed. To initiate a transaction the device needs to assert the variable
cfg_from_device_start. To do so the port cfg_from_device is read (line 2) and it is
checked whether the cfg_from_device_start variable has been set (line 3). Only if the
variable cfg_from_device_start is asserted a new transaction is initiated. To be able to
send data over the I2C-bus certain data needs to be provided by the device. With regards
to the I2C-bus protocol the first byte to be sent over the I2C-bus is encoded as 7-bit address
extended with the R/W-bit. By reading from the port data_from_device the master
module fetches the provided data and stores it in the variable data_from_device_reg
(line 4). The variable cfg_from_device_start gets resetted (line 6), the R/W-bit is
extracted and stored in the variables RnW_reg (line 7) and the START symbol is sent
over I2C-bus (line 8). After the START symbol has been transferred to the slave over
the I2C-bus successfully execution changes to the send_addr section (line 9).

59

5. Application of the Methodology to a Real-World Design

Section send_addr

1 if (section == send_addr) {
2 data_to_bus->write(data_from_device_reg);
3 ack_from_bus->read(ack_reg);
4 if(ack_reg && RnW_reg) {
5 nextsection = receive_data;
6 } else if (ack_reg && !RnW_reg) {
7 nextsection = transmit_data;
8 } else {
9 nextsection = send_status;

10 }
11 }

Figure 5.9.: Code extract of section send_addr from master SystemC-PPA model

In the send_addr section the 7-bit address extended with the R/W-bit is sent over the
I2C-bus (line 2). This message is distributed to all slaves which are connected to the
I2C-bus but only the slave with the matching device address acknowledges the received
address. This acknowledgment is read over the port ack_from_bus and stored in the
ack_reg variable (line 3). Based on this variable and the content of the RnW_reg it is
determined how to proceed. Assuming that the slave has successfully acknowledged the
address (ack_reg = true), execution changes either to section receive_data if RnW_reg
is asserted (line 5) otherwise to section receive_data (line 7). If none of the connected
I2C modules acting as slaves acknowledged the sent address (ack_reg = false) the
master can either restart or terminate the transaction which is captured in section
send_status (line 9).

Section send_status

1 if (section == send_status) {
2 cfg_from_device->read(cfg_from_device_reg);
3 if (cfg_from_device_reg.restart) {
4 data_from_device->read(data_from_device_reg);
5 nextsection = send_restart;
6 } else if (cfg_from_device_reg.stop) {
7 nextsection = send_stop;
8 }
9 }

Figure 5.10.: Code extract section send_status from master SystemC-PPA model

60

5. Application of the Methodology to a Real-World Design

As none of the connected slaves have acknowledged the sent address the device using
the I2C module provides information about how to proceed (line 2). If the variable
cfg_from_device_reg_restart is asserted by the device the transaction is restarted by
resending an address (line 3). The address information is read from the device (line 4)
and the execution changes to section send_restart (line 5). Assuming
cfg_from_device_reg_stop being asserted asserted the transaction is terminated by
changing the section to send_stop. If none of the former variables have been asserted
by the device the execution iterates over the send_status section and blocks until new
information is provided by the device.

Section receive_data

1 if (section == receive_data) {
2 data_from_bus->read(data_from_bus_reg);
3 data_to_device->set(data_from_bus_reg);
4 cfg_from_device->read(cfg_from_device_reg);
5 if (cfg_from_device_reg.ack) {
6 ack_to_bus->write(true);
7 } else if (cfg_from_device_reg.restart) {
8 received_data_reg = data_from_device->nb_read(data_from_device_reg);
9 if (received_data_reg) {

10 nextsection = send_restart;
11 } else {
12 nextsection = send_stop;
13 }
14 } else {
15 nextsection = send_stop;
16 }
17 }

Figure 5.11.: Code extract section receive_data from master SystemC-PPA model

The slave with the matching address has acknowledged the address and the R/W-bit is
asserted which implies that the master reads data from the slave. A byte is read from the
I2C-bus by the means of the data_from_bus port, stored in variable data_from_bus_reg
(line 2) and forwarded to the device over the data_to_device port (line 3). After one byte
has been successfully received the device has three different options how to proceed the
transaction, namely requesting the next byte from the slave, restarting or terminating the
transaction. To determine the desired option the I2C master module reads the configura-
tion from the port cfg_from_device (line 4). If the variable cfg_from_device_reg_ack
is asserted by the device the I2C master module acknowledges the received byte (line 6)
and the execution returns to the beginning of the receive_data_ section to read another
byte from the I2C-bus. If the cfg_from_device_reg_restart variable is asserted the
transaction is restarted by retransmitting a new address extended with a R/W-bit. This

61

5. Application of the Methodology to a Real-World Design

information needs to be provided from the device and is read in line 8. Note that this
read communication event uses nb_read which means execution does not block until
data is available but immediately reads from a certain port. nb_read returns the success
to the variable received_data_reg whether the data has been read successfully. Only
if data is provided from the device which is modeled with received_data_reg being
asserted the transaction is restarted and the execution changes to section send_restart
(line 10). Otherwise no data is supplied by the device which terminates the transaction
by changing the section to send_stop (line 12). The transaction is also terminated if the
device sets the variable cfg_from_device_reg_stop in line 4.

Section transmit_data

1 if (section == transmit_data) {
2 cfg_from_device->read(cfg_from_device_reg);
3 if (cfg_from_device_reg.restart) {
4 data_from_device->read(data_from_device_reg);
5 nextsection = send_restart;
6 } else if (cfg_from_device_reg.stop) {
7 nextsection = send_stop;
8 } else {
9 data_from_device->read(data_from_device_reg);

10 data_to_bus->write(data_from_device_reg);
11 ack_from_bus->read(ack_reg);
12 if (!ack_reg) {
13 nextsection = send_status;
14 }
15 }
16 }

Figure 5.12.: Code extract section transmit_data from master SystemC-PPA model

This section models data transmission from the I2C master module to the slave module.
Before data can be transmitted the device using the master module needs to determine
whether the transaction should be restarted or terminated by asserting the according
variables data_from_device_reg_restart or data_from_device_reg_stop in line 2.
If none of the former is asserted data is read from the device (line 9) by the means of the
port data_from_device_reg and sent over the I2C-bus in line 10. After the byte has
been transmitted successfully the master module reads the acknowledgement from the
slave module (line 11). If the slave has acknowledged the transmitted data execution
returns to the beginning of section transmit_data to send another byte. Assume the case
that the slave has not acknowledged the transmitted byte execution changes to section
send_status which means that the transaction can either be restarted or terminated.

62

5. Application of the Methodology to a Real-World Design

Section send_restart

1 if (section == send_restart) {
2 RnW_reg = (data_from_device_reg << 7) == 128;
3 cfg_from_device_reg.restart = false;
4 restart_to_bus->write(true);
5 nextsection = send_addr;
6 }

Figure 5.13.: Code extract section send_restart from master SystemC-PPA model

When the section send_restart is reached the transaction is restarted by sending a
START symbol over the I2C-bus. The previous section ensures that the new address
is stored in the variable data_from_device. The R/W-bit is extracted (line 2), the
variable cfg_from_device_reg_restart is resetted (line 3) and the repeated START
symbol is sent over I2C-bus (line 4).

Section send_stop

1 if (section == send_stop) {
2 cfg_from_device_reg.stop = false;
3 stop_to_bus->write(true);
4 nextsection = idle;
5 }

Figure 5.14.: Code extract section send_stop from master SystemC-PPA model

By reaching the section send_stop the transaction is terminated with sending a STOP
symbol to the slave module. First the variable cfg_from_device_reg_stop is resetted
(line 2), second the STOP symbol is transmitted over the I2C-bus (line 3) and third,
execution changes to section idle to be able to process the next transaction.

5.3. Evaluation of the Results

We feed both SystemC-PPA models describing the master and slave behaviour respectively
to the extended property automation framework as inputs. Two separate set of interval
properties are generated in either SVA or ITL syntax as the extended Metaprop framework
provides writers for both languages. We use the formal verification tool OneSpin 360 -
Version 2017_06 [30] to prove the individual properties on the given I2C implementation.
First, we examine the resources consumed by OneSpin to perform the proofs. To do

63

5. Application of the Methodology to a Real-World Design

so we run the formal verification tool with the following setup: Intel Xeon E5-2690 v3
@ 2.6GHz with 32GB RAM. The resource consumption is summarized separately for
master and slave properties in table 5.2.

Table 5.2.: Resource evaluation

Properties # Hold # Unreachable Time in s Memory in MB
Slave 29 28 1 349 46701
Master 50 48 2 1451 86237

The slave SystemC-PPA module translates into 29 operation properties where 28 of them
do hold for the given I2C implementation, only one operation describes unreachable
behaviour. An operation property describing unreachable behaviour means in the context
of formal verification that the formal verification tool is not able to find a temporal trace
in the implementation such that the operation’s assumption part is satisfied. In other
words the specific property is never triggered and therefore the presence of this property
does not add any information to the proof. The reason for this specific property being
unreachable is that the assumption part contradicts the applied constraints which ensure
the correct configuration of the I2C implementation. In detail the specific property models
waiting for a synchronisation signal to evaluate to true which is already guaranteed to
be true by constraint. Unreachable properties in general can be removed by including a
SAT solver in the extended Metaprop framework which identifies unreachable behaviour.
Performing IPC on the full set of slave properties took 349s and 46701 MB of memory
were used by the formal verification tool.
The extended property automation framework generates a property suite consisting of 50
operation properties when provided with the SystemC-PPA master model as input. Again
two operations describe unreachable behaviour but for another reason than explained
before. In this case the properties’ assumption part do not contradict the constraints
which are applied to guarantee a correct configuration of the I2C implementation but
sub-formulas appearing in the assumption parts do contradict each other. This is due to
the fact that in general the PPA considers all possible paths in the CFG interpretation
of the MoT where some of these paths may not be reachable for the execution when the
corresponding SystemC-PPA module is simulated. These paths translate to operation
properties whose assumption parts are not satisfiable. These properties could also be
removed from the generated property suite by including a SAT solver into the extended
Metaprop framework as they do not add any information to the proofs. OneSpin needed
1451 s to prove every master property using the formal verification technique IPC and
used 86237 MB of storage.
As a next step we inspect functional coverage by showing that both sets of generated
properties are complete with respect to the completeness criterion introduced in section
2.1.3. Satisfying the completeness criterion means that there exist no gaps in the

64

5. Application of the Methodology to a Real-World Design

verification process which means that the consecutive execution of operation properties
covers the whole design behaviour. In other words, there exist no design behaviour that
is not uniquely described in the set of properties. The completeness criterion can be
evaluated automatically by the formal verification tool Onespin by executing several
tests, namely case split test, successor test, determination test and reset test. The results
are summarized in table 5.3.

Table 5.3.: Completeness evaluation

Case Split Test Successor Test Determination Test Reset Test
Slave X X X X
Master X X X X

As shown in table 5.3 all tests do pass for both property suites describing master and
slave behaviour respectively. This is expected as the extended Metaprop framework
is implemented specifically to generate property sets which satisfy the completeness
criterion by design. We have now certified by applying the completeness criterion that
the set of properties completely describe the desired design behaviour. By proving the
full set of properties on the I2C implementation as shown in 5.2 it is guaranteed that the
implementation mimics the desired behaviour with respect to the property suite.
Note that there still exists a possibility that there is an error left in the implementation
namely if some property explicitly contradicts the specification or if the verification is
over-constrained. It may also occur that some functionality is missed in the SystemC-PPA
model which is then not included in the generated set of properties which leads to the
fact that this functionality cannot be proven on the implementation.
As we have shown 100% functional coverage by satisfying the completeness criterion we
now inspect structural coverage for both, master and slave properties separately. This
can be of benefit to measure the progress of verification on the one hand as well as to
find dead or redundant RTL code. By running the structural code coverage evaluation in
OneSpin it identifies all code locations in the RTL implementation and checks whether
they are covered by a property of the given property suite. In terms of code coverage
evaluation, code locations are statements which are treated as targets. Onespin classifies
these targets into different categories which are defined in the following:

• Covered: The target is active in some witness trace and one or more formerly
holding properties fail due to the manipulation of the target.

• Uncovered: There is no witness trace in which this target is active such that
properties do not fail due to the manipulation of the target.

• Dead: The target is proven to be unreachable.

Code coverage information is collected by OneSpin and summarized in table 5.4.

65

5. Application of the Methodology to a Real-World Design

Table 5.4.: Code coverage evaluation

Slave Master
Covered in % 21.90 62.38
Uncovered in % 72.62 32.14
Dead in % 5.48 5.48

The property set describing the desired slave behaviour verified 21.90 % of the I2C
implementation’s overall code locations. 72.62 % of the code locations remain uncovered.
There are several reasons for a code location being classified as uncovered: First, as
explained the I2C implementation can act as both, master and slave, whereas the slave
property suite just describes desired slave behaviour such that all code locations relevant
for master behaviour only are not covered intrinsically. Second, the I2C implementation
provides functionalities needed for multi-master configuration only, e.g functionality to
detect bus collisions, which are not covered in the formal specification intentionally due
to the fact that Infineon uses the I2C-bus in single-master setup only. And third, the I2C
implementation provides debug features which are not covered in the formal specification
as slave SystemC-PPA module either such that these debug features are not reflected in
the generated property suite. 5.48 % of the code locations are classified as dead code, e.g
statements which can never be reached by any witness trace. This is due to the fact that
the given I2C implementation implements additional features, e.g the 10-bit addressing
mode, but these features are disabled in the implementation.
The property set describing the desired master behaviour reached 62.38 % code coverage.
The reasons for 32.14 % (5.48 %) of the overall code locations being classified as uncovered
(dead) code are equivalent to the ones explained above for the slave properties as both
sets are proven on the same I2C implementation.
Note that the code coverage results for master and slave cannot simply be added together
because there exist code locations which are covered by both sets of properties which
have to be accounted only once.

66

6. Future Work

In this chapter we present ideas to further improve the extended Metaprop framework in
general as well as the generated property suite for the I2C-bus protocol specification.
Depending on the SystemC-PPA model the extended Metaprop flow might produce
operation properties describing unreachable behaviour in the generated property suite
as we have seen in chapter 5.3. A property classified as unreachable by the formal
verification tool means that the tool is not able to find a trace in the implementation
starting from its initial state which satisfies the assumption part of the interval property.
To resolve this issue a SAT solver can be included in the extended Metaprop flow which
checks the assumption parts of the interval properties for contradictions. If contradicting
expressions in the assumption part are found the property is removed from the generated
property suite as it covers unreachable behaviour.
As already mentioned in chapter 5.1 the I2C-bus protocol specification includes optional
features, e.g. 10-Bit slave address, General Call address, Software Reset or START byte.
Furthermore Infineon uses the I2C-bus as single master configuration only such that
synchronisation or arbitration mechanism do not have to be considered. The mentioned
features as well as the multi master bus setup are currently not addressed in the SystemC-
PPA models for slave and master and therefore cannot be proven for the implementation.
Further extending the SystemC-PPA modules to cover these configurations such that
these features are reflected in the generated property suites is a future task.
The MDEL determines the available constructs which can be used by the Verification
Engineer to model the informal specification as SystemC-PPA model. In other words
MDEL defines the available SystemC-PPA syntax which is a subset of the complete
SystemC syntax. A future task is to extend the MDEL by adding constructs which
are present in the SystemC syntax to provide more expressive power for modeling the
informal specification. For example SystemC provides the opportunity to use ’functions’
which groups a sequence of statements to ease the view of the SystemC model as well
as for reusability. By extending the MDEL with the specific construct ’function’ this
functionality can also be supported in the extended Metaprop framework. Thinking this
idea one step further means that the MDEL is not restricted to SystemC syntax but is
able to support any construct of any design entry language. Especially Python as design
entry language is of special interest as the extended Metaprop framework as well as the
Metagen environment is implemented in Python.
In SystemC one has the possibility to model the module’s behaviour using multiple
processes which are running in parallel. In SystemC-PPA however we restrict the module

67

6. Future Work

to exactly one process which defines the underlaying PPA implicitly. Concurrency is
modeled using compound types to express that several variables are read or written
at the same time. But there exist occasions where concurrently running processes are
needed to fully model the desired hardware behaviour. For example, in the I2C slave
and master module communication events define specific timepoints where the module
requires data from the device as input. The implementation however is able to accept
input from the device at any arbitrary point in time which leads to the fact that the
communication between module and device needs to be modeled as separate, concurrently
running process to fully capture the implementation behaviour. This can be achieved by
extending the semantics of SystemC-PPA such that the concept of multiple processes
running in parallel is well defined with respect to the underlaying PPA.

68

69

A. Metamodels

A. Metamodels

A.1. Metaprop Metamodel

Figure A.1.: Metaprop Metamodel in the Model-of-Properties Layer

70

B. Generated Properties for Example
Design

B.1. SVA Syntax

module Blinker_prop(
input [2:0] Counter_A_OUT,
input [1:0] Counter_B_OUT,
input [1:0] Counter_C_OUT,
input [2:0] Counter_D_OUT,
input ovf_OUT,
input clk,
input rst
);

//// Properties ////

property Counter_A_OUT_RST_prop;
(rst
|->
(Counter_A_OUT == 0));
endproperty

property Counter_B_OUT_RST_prop;
(rst
|->
(Counter_B_OUT == 0));
endproperty

property Counter_C_OUT_RST_prop;
(rst
|->
(Counter_C_OUT == 0));
endproperty

property Counter_D_OUT_RST_prop;
(rst
|->
(Counter_D_OUT == 0));
endproperty

property ovf_OUT_RST_prop;
(rst
|->

(ovf_OUT == 0));
endproperty

property Counter_A_OVF_prop;
@(posedge clk)
disable iff(rst)
(((Counter_A_OUT == 0) &&
($past(Counter_A_OUT) == 5))
|->
##1
((Counter_B_OUT == ($past(Counter_B_OUT) +

1)) || (Counter_B_OUT == 0)));
endproperty

property Counter_A_NO_OVF_prop;
@(posedge clk)
disable iff(rst)
((!((Counter_A_OUT == 0) &&
($past(Counter_A_OUT) == 5)))
|->
##1
(Counter_B_OUT == $past(Counter_B_OUT)));
endproperty

property Counter_A_LSS_MAX_prop;
@(posedge clk)
disable iff(rst)
(1
|->
(Counter_A_OUT <= 5));
endproperty

property Counter_A_GRT_MIN_prop;
@(posedge clk)
disable iff(rst)
(1
|->
(Counter_A_OUT >= 0));
endproperty

71

B. Generated Properties for Example Design

property Counter_A_CNTR_INC_prop;
@(posedge clk)
disable iff(rst)
((Counter_A_OUT != 0)
|->
((Counter_A_OUT == $past(Counter_A_OUT)) ||

(Counter_A_OUT == ($past(
Counter_A_OUT) + 1))));

endproperty

property Counter_A_CNTR_RES_prop;
@(posedge clk)
disable iff(rst)
((Counter_A_OUT == 0)
|->
((Counter_A_OUT == $past(Counter_A_OUT)) ||

($past(Counter_A_OUT) == 5)));
endproperty

property Counter_B_OVF_prop;
@(posedge clk)
disable iff(rst)
(((Counter_B_OUT == 0) &&
($past(Counter_B_OUT) == 3))
|->
##1
((Counter_C_OUT == ($past(Counter_C_OUT) +

1)) || (Counter_C_OUT == 0)));
endproperty

property Counter_B_NO_OVF_prop;
@(posedge clk)
disable iff(rst)
((!((Counter_B_OUT == 0) &&
($past(Counter_B_OUT) == 3)))
|->
##1
(Counter_C_OUT == $past(Counter_C_OUT)));
endproperty

property Counter_B_LSS_MAX_prop;
@(posedge clk)
disable iff(rst)
(1
|->
(Counter_B_OUT <= 3));
endproperty

property Counter_B_GRT_MIN_prop;
@(posedge clk)
disable iff(rst)
(1

|->
(Counter_B_OUT >= 0));
endproperty

property Counter_B_CNTR_INC_prop;
@(posedge clk)
disable iff(rst)
((Counter_B_OUT != 0)
|->
((Counter_B_OUT == $past(Counter_B_OUT)) ||

(Counter_B_OUT == ($past(
Counter_B_OUT) + 1))));

endproperty

property Counter_B_CNTR_RES_prop;
@(posedge clk)
disable iff(rst)
((Counter_B_OUT == 0)
|->
((Counter_B_OUT == $past(Counter_B_OUT)) ||

($past(Counter_B_OUT) == 3)));
endproperty

property Counter_C_OVF_prop;
@(posedge clk)
disable iff(rst)
(((Counter_C_OUT == 0) &&
($past(Counter_C_OUT) == 2))
|->
##1
((Counter_D_OUT == ($past(Counter_D_OUT) +

1)) || (Counter_D_OUT == 0)));
endproperty

property Counter_C_NO_OVF_prop;
@(posedge clk)
disable iff(rst)
((!((Counter_C_OUT == 0) &&
($past(Counter_C_OUT) == 2)))
|->
##1
(Counter_D_OUT == $past(Counter_D_OUT)));
endproperty

property Counter_C_LSS_MAX_prop;
@(posedge clk)
disable iff(rst)
(1
|->
(Counter_C_OUT <= 2));
endproperty

property Counter_C_GRT_MIN_prop;

72

B. Generated Properties for Example Design

@(posedge clk)
disable iff(rst)
(1
|->
(Counter_C_OUT >= 0));
endproperty

property Counter_C_CNTR_INC_prop;
@(posedge clk)
disable iff(rst)
((Counter_C_OUT != 0)
|->
((Counter_C_OUT == $past(Counter_C_OUT)) ||

(Counter_C_OUT == ($past(
Counter_C_OUT) + 1))));

endproperty

property Counter_C_CNTR_RES_prop;
@(posedge clk)
disable iff(rst)
((Counter_C_OUT == 0)
|->
((Counter_C_OUT == $past(Counter_C_OUT)) ||

($past(Counter_C_OUT) == 2)));
endproperty

property Counter_D_OVF_prop;
@(posedge clk)
disable iff(rst)
(((Counter_D_OUT == 0) &&
($past(Counter_D_OUT) == 7))
|->
(ovf_OUT == 1));
endproperty

property Counter_D_NO_OVF_prop;
@(posedge clk)
disable iff(rst)
((!(Counter_D_OUT == 0) && ($past(

Counter_D_OUT) == 7))
|->
(ovf_OUT == 0));
endproperty

property Counter_D_LSS_MAX_prop;
@(posedge clk)
disable iff(rst)
(1
|->
(Counter_D_OUT <= 7));
endproperty

property Counter_D_GRT_MIN_prop;

@(posedge clk)
disable iff(rst)
(1
|->
(Counter_D_OUT >= 0));
endproperty

property Counter_D_CNTR_INC_prop;
@(posedge clk)
disable iff(rst)
((Counter_D_OUT != 0)
|->
((Counter_D_OUT == $past(Counter_D_OUT)) ||

(Counter_D_OUT == ($past(
Counter_D_OUT) + 1))));

endproperty

property Counter_D_CNTR_RES_prop;
@(posedge clk)
disable iff(rst)
((Counter_D_OUT == 0)
|->
((Counter_D_OUT == $past(Counter_D_OUT)) ||

($past(Counter_D_OUT) == 7)));
endproperty

Counter_A_OUT_RST_prop_assert: assert
property(Counter_A_OUT_RST_prop);

Counter_B_OUT_RST_prop_assert: assert
property(Counter_B_OUT_RST_prop);

Counter_C_OUT_RST_prop_assert: assert
property(Counter_C_OUT_RST_prop);

Counter_D_OUT_RST_prop_assert: assert
property(Counter_D_OUT_RST_prop);

ovf_OUT_RST_prop_assert: assert property(
ovf_OUT_RST_prop);

Counter_A_OVF_prop_assert: assert property(
Counter_A_OVF_prop);

Counter_A_NO_OVF_prop_assert: assert
property(Counter_A_NO_OVF_prop);

Counter_A_LSS_MAX_prop_assert: assert
property(Counter_A_LSS_MAX_prop);

Counter_A_GRT_MIN_prop_assert: assert
property(Counter_A_GRT_MIN_prop);

Counter_A_CNTR_INC_prop_assert: assert
property(Counter_A_CNTR_INC_prop);

Counter_A_CNTR_RES_prop_assert: assert
property(Counter_A_CNTR_RES_prop);

Counter_B_OVF_prop_assert: assert property(
Counter_B_OVF_prop);

Counter_B_NO_OVF_prop_assert: assert
property(Counter_B_NO_OVF_prop);

73

B. Generated Properties for Example Design

Counter_B_LSS_MAX_prop_assert: assert
property(Counter_B_LSS_MAX_prop);

Counter_B_GRT_MIN_prop_assert: assert
property(Counter_B_GRT_MIN_prop);

Counter_B_CNTR_INC_prop_assert: assert
property(Counter_B_CNTR_INC_prop);

Counter_B_CNTR_RES_prop_assert: assert
property(Counter_B_CNTR_RES_prop);

Counter_C_OVF_prop_assert: assert property(
Counter_C_OVF_prop);

Counter_C_NO_OVF_prop_assert: assert
property(Counter_C_NO_OVF_prop);

Counter_C_LSS_MAX_prop_assert: assert
property(Counter_C_LSS_MAX_prop);

Counter_C_GRT_MIN_prop_assert: assert
property(Counter_C_GRT_MIN_prop);

Counter_C_CNTR_INC_prop_assert: assert
property(Counter_C_CNTR_INC_prop);

Counter_C_CNTR_RES_prop_assert: assert
property(Counter_C_CNTR_RES_prop);

Counter_D_OVF_prop_assert: assert property(
Counter_D_OVF_prop);

Counter_D_NO_OVF_prop_assert: assert
property(Counter_D_NO_OVF_prop);

Counter_D_LSS_MAX_prop_assert: assert
property(Counter_D_LSS_MAX_prop);

Counter_D_GRT_MIN_prop_assert: assert
property(Counter_D_GRT_MIN_prop);

Counter_D_CNTR_INC_prop_assert: assert
property(Counter_D_CNTR_INC_prop);

Counter_D_CNTR_RES_prop_assert: assert
property(Counter_D_CNTR_RES_prop);

endmodule
bind Blinker Blinker_prop inst_Blinker_prop

(.*);

B.2. ITL Syntax

property Counter_A_OUT_RST_prop is
assume:
at t: rst;
prove:
at t: (Counter_A_OUT = 0);
end property;

property Counter_B_OUT_RST_prop is
assume:
at t: rst;
prove:
at t: (Counter_B_OUT = 0);
end property;

property Counter_C_OUT_RST_prop is
assume:
at t: rst;
prove:
at t: (Counter_C_OUT = 0);
end property;

property Counter_D_OUT_RST_prop is
assume:
at t: rst;
prove:
at t: (Counter_D_OUT = 0);
end property;

property ovf_OUT_RST_prop is
assume:

at t: rst;
prove:
at t: (ovf_OUT = 0);
end property;

property Counter_A_OVF_prop is
local trigger:rose(clk);
disable iff:(rst);
assume:
at t: ((Counter_A_OUT = ’0’) and (prev(

Counter_A_OUT) = 5));
prove:
at t + 1: ((Counter_B_OUT = (prev(

Counter_B_OUT) + ’1’)) or (
Counter_B_OUT = ’0’));

end property;

property Counter_A_NO_OVF_prop is
local trigger:rose(clk);
disable iff:(rst);
assume:
at t: not(((Counter_A_OUT = ’0’) and (prev(

Counter_A_OUT) = 5)));
prove:
at t + 1: (Counter_B_OUT = prev(

Counter_B_OUT));
end property;

property Counter_A_LSS_MAX_prop is
local trigger:rose(clk);

74

B. Generated Properties for Example Design

disable iff:(rst);
assume:
at t: ’1’;
prove:
at t: (Counter_A_OUT <= 5);
end property;

property Counter_A_GRT_MIN_prop is
local trigger:rose(clk);
disable iff:(rst);
assume:
at t: ’1’;
prove:
at t: (Counter_A_OUT >= ’0’);
end property;

property Counter_A_CNTR_INC_prop is
local trigger:rose(clk);
disable iff:(rst);
assume:
at t: (Counter_A_OUT /= ’0’);
prove:
at t: ((Counter_A_OUT = prev(Counter_A_OUT)

) or (Counter_A_OUT = (prev(
Counter_A_OUT) + ’1’)));

end property;

property Counter_A_CNTR_RES_prop is
local trigger:rose(clk);
disable iff:(rst);
assume:
at t: (Counter_A_OUT = ’0’);
prove:
at t: ((Counter_A_OUT = prev(Counter_A_OUT)

) or (prev(Counter_A_OUT) = 5));
end property;

property Counter_B_OVF_prop is
local trigger:rose(clk);
disable iff:(rst);
assume:
at t: ((Counter_B_OUT = ’0’) and (prev(

Counter_B_OUT) = 3));
prove:
at t + 1: ((Counter_C_OUT = (prev(

Counter_C_OUT) + ’1’)) or (
Counter_C_OUT = ’0’));

end property;

property Counter_B_NO_OVF_prop is
local trigger:rose(clk);
disable iff:(rst);
assume:

at t: not(((Counter_B_OUT = ’0’) and (prev(
Counter_B_OUT) = 3)));

prove:
at t + 1: (Counter_C_OUT = prev(

Counter_C_OUT));
end property;

property Counter_B_LSS_MAX_prop is
local trigger:rose(clk);
disable iff:(rst);
assume:
at t: ’1’;
prove:
at t: (Counter_B_OUT <= 3);
end property;

property Counter_B_GRT_MIN_prop is
local trigger:rose(clk);
disable iff:(rst);
assume:
at t: ’1’;
prove:
at t: (Counter_B_OUT >= ’0’);
end property;

property Counter_B_CNTR_INC_prop is
local trigger:rose(clk);
disable iff:(rst);
assume:
at t: (Counter_B_OUT /= ’0’);
prove:
at t: ((Counter_B_OUT = prev(Counter_B_OUT)

) or (Counter_B_OUT = (prev(
Counter_B_OUT) + ’1’)));

end property;

property Counter_B_CNTR_RES_prop is
local trigger:rose(clk);
disable iff:(rst);
assume:
at t: (Counter_B_OUT = ’0’);
prove:
at t: ((Counter_B_OUT = prev(Counter_B_OUT)

) or (prev(Counter_B_OUT) = 3));
end property;

property Counter_C_OVF_prop is
local trigger:rose(clk);
disable iff:(rst);
assume:
at t: ((Counter_C_OUT = ’0’) and (prev(

Counter_C_OUT) = 2));
prove:

75

B. Generated Properties for Example Design

at t + 1: ((Counter_D_OUT = (prev(
Counter_D_OUT) + ’1’)) or (
Counter_D_OUT = ’0’));

end property;

property Counter_C_NO_OVF_prop is
local trigger:rose(clk);
disable iff:(rst);
assume:
at t: not(((Counter_C_OUT = ’0’) and (prev(

Counter_C_OUT) = 2)));
prove:
at t + 1: (Counter_D_OUT = prev(

Counter_D_OUT));
end property;

property Counter_C_LSS_MAX_prop is
local trigger:rose(clk);
disable iff:(rst);
assume:
at t: ’1’;
prove:
at t: (Counter_C_OUT <= 2);
end property;

property Counter_C_GRT_MIN_prop is
local trigger:rose(clk);
disable iff:(rst);
assume:
at t: ’1’;
prove:
at t: (Counter_C_OUT >= ’0’);
end property;

property Counter_C_CNTR_INC_prop is
local trigger:rose(clk);
disable iff:(rst);
assume:
at t: (Counter_C_OUT /= ’0’);
prove:
at t: ((Counter_C_OUT = prev(Counter_C_OUT)

) or (Counter_C_OUT = (prev(
Counter_C_OUT) + ’1’)));

end property;

property Counter_C_CNTR_RES_prop is
local trigger:rose(clk);
disable iff:(rst);
assume:
at t: (Counter_C_OUT = ’0’);
prove:
at t: ((Counter_C_OUT = prev(Counter_C_OUT)

) or (prev(Counter_C_OUT) = 2));

end property;

property Counter_D_OVF_prop is
local trigger:rose(clk);
disable iff:(rst);
assume:
at t: ((Counter_D_OUT = ’0’) and (prev(

Counter_D_OUT) = 7));
prove:
at t: (ovf_OUT = ’1’);
end property;

property Counter_D_NO_OVF_prop is
local trigger:rose(clk);
disable iff:(rst);
assume:
at t: ((Counter_D_OUT = ’0’) nand (prev(

Counter_D_OUT) = 7));
prove:
at t: (ovf_OUT = ’0’);
end property;

property Counter_D_LSS_MAX_prop is
local trigger:rose(clk);
disable iff:(rst);
assume:
at t: ’1’;
prove:
at t: (Counter_D_OUT <= 7);
end property;

property Counter_D_GRT_MIN_prop is
local trigger:rose(clk);
disable iff:(rst);
assume:
at t: ’1’;
prove:
at t: (Counter_D_OUT >= ’0’);
end property;

property Counter_D_CNTR_INC_prop is
local trigger:rose(clk);
disable iff:(rst);
assume:
at t: (Counter_D_OUT /= ’0’);
prove:
at t: ((Counter_D_OUT = prev(Counter_D_OUT)

) or (Counter_D_OUT = (prev(
Counter_D_OUT) + ’1’)));

end property;

property Counter_D_CNTR_RES_prop is
local trigger:rose(clk);

76

B. Generated Properties for Example Design

disable iff:(rst);
assume:
at t: (Counter_D_OUT = ’0’);
prove:

at t: ((Counter_D_OUT = prev(Counter_D_OUT)
) or (prev(Counter_D_OUT) = 7));

end property;

77

C. I2C-Bus Features

C.1. START and STOP Symbol

All transactions have to start with a START symbol and need to end with a STOP symbol
(see figure C.1). Both symbols are always generated by the initator of the transaction
which is by definition the master. The bus is free for usage for any device if the SDA
as well as the SCL line are HIGH. A START symbol is encoded as a HIGH to LOW
transition on the SDA wire while SCL wire is HIGH. The number of bytes that can be
transmitted per transaction is unrestricted. After the complete transaction has finished
(all bytes are transferred) the STOP symbol is sent by the master. The STOP symbol is
defined as LOW to HIGH transition on the SDA wire while SCL is HIGH. Furhtermore
the master has the opportunity to restart the transaction during an ongoing data transfer
by sending a so-called repeated START symbol which is encoded equivalent as the START
symbol.

SDA

SCL
P

STOP condition

S

START condition

Figure C.1.: START and STOP Symbols[1]

C.2. Acknowledge

The Acknowledge (ACK) bit is used by the receiver to notify the transmitter that a byte
was successfully transfered. This also implies that the receiver is ready for another byte
to be sent. It is defined as follows: The transmitter releases the SDA wire during the
ninth clock period after START symbol (acknowledgement clock phase) such that the
receiver can set the SDA wire to LOW to indicate an ACK (see figure C.2). The receiver
also has the possbility to send a Not Acknowledge (NACK) which is represented by the
SDA wire being HIGH during the ninth clock period. This indicates that the transactions
was not successfully processed which for example can be due to the fact that simply no
receiver is present on the bus with the associated address. Given this scenario the SDA

78

C. I2C-Bus Features

remains HIGH during the ninth clock period because there is no driver to pull it to LOW
which is decoded as NACK by the master side. After receiving a NACK the transmitter
has the possibility either to restart the transfer by sending a repeated START symbol or
abort the transaction by sending a STOP condition.

S or Sr

SDA

SCL

MSB

1 2 7 8 9 1 2 3 to 8 9

ACK
START or

repeated START
condition

acknowledgement
signal from slave

byte complete,
interrupt within slave

Figure C.2.: Data transfer including Acknowledge bit[1]

C.3. Clock Stretching

Clock Stretching means holding the SCL line low and therby forcing the communication
counterpart of the transaction into a wait state. Clock Stretching makes use of the physical
bus setup, namely the wired-AND connection between I2C-interface and SCL/SDA line.
To be connected using a wired-AND means, if a device pulls the SCL/SDA line LOW it
stays LOW even if another devices tries to set it to HIGH. Figure C.3 shows a possible
scenario where Clock Stretching is needed.

CLK
1

CLK
2

SCL

counter
reset

wait
state

start counting
HIGH period

Figure C.3.: Clock Synchronization[1]

Assume CLK1 is associated with the master which transmits data to the slave whereas
CLK2 corresponds to the slave which receives data from the former. In general the
master drives the SCL wire with a specific frequency. In this scenario the slave is not
able to store data as quickly as it is able to receive data. To solve this situation the slave

79

C. I2C-Bus Features

stretches the clock which means holding the SCL line LOW as long as needed to store
the received byte, forcing the transmitter into a wait state. After releasing the SCL line
again the receiver is ready to read the next byte. Note that this mechanism leads to the
fact the I2C-bus runs at a lower baudrate than specified.

80

D. SystemC-PPA models

D.1. I2C-Bus Protocol Slave Model

1 class Slave : public sc_module {
2 public:
3 SC_CTOR(Slave) :
4 nextsection(idle) {SC_THREAD(fsm)};
5 struct status_t {
6 bool start;
7 bool stop;
8 };
9

10 enum Sections {
11 idle, get_addr, receive_data, transmit_data
12 };
13 Sections section, nextsection;
14
15 /* Communcation from bus */
16 blocking_in<int> data_from_bus;
17 blocking_in<int> address_from_bus;
18 blocking_in<status_t> status_from_bus;
19 blocking_in<bool> ack_from_bus;
20
21 /* Communication to bus */
22 blocking_out<int> data_to_bus;
23 blocking_out<bool> ack_to_bus;
24
25
26 /* Communication with device */
27 shared_out<int> data_to_device;
28 blocking_in<int> data_from_device;
29
30 int data_from_device_reg;
31 int data_from_bus_reg;
32 status_t status_reg;
33 bool RnW_reg;
34 bool ack_reg;
35 int device_addr;
36
37
38 void fsm() {
39 while (true) {
40 section = nextsection;
41 if (section == idle) {

81

D. SystemC-PPA models

42 /* Read status from bus */
43 status_from_bus->read(status_reg);
44 if (status_reg.start) {
45 /* START symbol detected on the bus | Change to section ’get_addr’ */
46 nextsection = get_addr;
47 } else {
48 /* No START symbol detected on the bus | Iterate over section ’idle’ */
49 }
50 } else if (section == get_addr) {
51 /* Read address from bus */
52 address_from_bus->read(data_from_bus_reg);
53 /* Check whether Slave is addressed */
54 if ((data_from_bus_reg >> 1) == device_addr) {
55 /* Slave is addressed | Write data to device */
56 data_to_device->set(data_from_bus_reg);
57 /* Extract RnW bit from address */
58 RnW_reg = (data_from_bus_reg << 7) == 128;
59 /* Send acknowledgment to bus */
60 ack_to_bus->write(true);
61 /* Check whether RnW-bit is asserted */
62 if (RnW_reg) {
63 /* RnW asserted | Read transaction -> slave needs to transmit data | Change

section to ’transmit_data’ */
64 nextsection = transmit_data;
65 } else {
66 /* RnW not asserted | Write transaction -> slave needs to receive data | Change

section to ’receive_data’ */
67 nextsection = receive_data;
68 }
69 } else {
70 /* Slave not addressed | Change section to ’idle’ */
71 nextsection = idle;
72 }
73 } else if (section == transmit_data) {
74 /* Read data from device */
75 data_from_device->read(data_from_device_reg);
76 /* Read status from bus */
77 status_from_bus->read(status_reg);
78 if (status_reg.start && !status_reg.stop) {
79 /* START symbol detected | Restart transaction | Change section to ’get_addr’
80 nextsection = get_addr;
81 } else if (status_reg.stop && !status_reg.start) {
82 /* STOP symbol detected | Stop transaction | Reset RnW-bit */
83 RnW_reg = false;
84 /* Change to section ’idle’ */
85 nextsection = idle;
86 } else {
87 /* Write data to bus */
88 data_to_bus->write(data_from_device_reg);
89 /* Receive acknowledgement from bus */
90 ack_from_bus->read(ack_reg);
91 /* Check whether master sent ACK or NACK */
92 if (!ack_reg) {

82

D. SystemC-PPA models

93 /* Master sent NACK | Change section to ’idle’ */
94 nextsection = idle;
95 }
96 }
97 } else if (section == receive_data) {
98 /* Read status from bus */
99 status_from_bus->read(status_reg);

100 if (status_reg.start && !status_reg.stop) {
101 /* START symbol detected | Restart transaction | Change section to ’get_addr’ */
102 nextsection = get_addr;
103 } else if (status_reg.stop && !status_reg.start) {
104 /* STOP symbol detected | Stop transaction | Change section to ’idle’ */
105 nextsection = idle;
106 } else {
107 /* Neither START or STOP symbol detected | Read data from bus */
108 data_from_bus->read(data_from_bus_reg);
109 /* Write data to device */
110 data_to_device->set(data_from_bus_reg);
111 /* Send acknowledgement to bus */
112 ack_to_bus->write(true);
113 }
114 }
115 }
116 }
117 };

D.2. I2C-Bus Protocol Master Model

1 class Master: public sc_module{
2 public:
3 SC_CTOR(Master):
4 nextsection(setup){SC_THREAD(fsm)};
5 struct cfg_t{
6 bool start;
7 bool restart;
8 bool stop;
9 bool ack;

10 };
11
12 enum Sections {idle,send_addr,send_status,receive_data,transmit_data,send_restart,

send_stop};
13 Sections section,nextsection;
14
15 /* Communcation from bus */
16 blocking_in<bool> ack_from_bus;
17 blocking_in<int> data_from_bus;
18
19 /* Communication to bus */
20 blocking_out<bool> start_to_bus;
21 blocking_out<bool> restart_to_bus;

83

D. SystemC-PPA models

22 blocking_out<bool> stop_to_bus;
23 blocking_out<int> data_to_bus;
24 blocking_out<bool> ack_to_bus;
25
26 /* Communication with device */
27 blocking_in<int> data_from_device;
28 blocking_in<cfg_t> cfg_from_device;
29 shared_out<int> data_to_device;
30
31 /* Visible registers */
32 int data_from_device_reg;
33 cfg_t cfg_from_device_reg;
34 bool RnW_reg;
35 bool ack_reg;
36 int data_from_bus_reg;
37 bool received_data_reg;
38
39
40 void fsm() {
41 while (true) {
42 section = nextsection;
43 if (section == idle) {
44 /* Read configuration from device */
45 cfg_from_device->read(cfg_from_device_reg);
46 /* Start transaction only if START flag was set by device */
47 if(cfg_from_device_reg.start) {
48 /* START flag asserted from device | Read data from device */
49 data_from_device->read(data_from_device_reg);
50 /* Clear START flag */
51 cfg_from_device_reg.start = false;
52 /* Store RnW-bit */
53 RnW_reg = (data_from_device_reg << 7) == 128;
54 /* Write START symbol to bus */
55 start_to_bus->write(true);
56 /* Change section to ’send_addr’ */
57 nextsection = send_addr;
58 } else {
59 /* START flag not asserted by device | Iterate over section ’idle’ */
60 }
61 } else if (section == send_addr) {
62 /* Write address and RnW-bit to bus */
63 data_to_bus->write(data_from_device_reg);
64 /* Read acknowledgement from bus */
65 ack_from_bus->read(ack_reg);
66 if(ack_reg && RnW_reg) {
67 /* Slave sent ACK | RnW flag asserted | Change section to ’receive_data’ */
68 nextsection = receive_data;
69 } else if (ack_reg && !RnW_reg) {
70 /* Slave sent ACK | RnW flag not asserted | Change to ’transmit_data’ */
71 nextsection = transmit_data;
72 } else {
73 /* Change to section ’send_status’ */
74 nextsection = send_status;

84

D. SystemC-PPA models

75 }
76 } else if (section == send_status) {
77 /* Read configuration from device */
78 cfg_from_device->read(cfg_from_device_reg);
79 if (cfg_from_device_reg.restart) {
80 /* RESTART flag asserted by device | Read new address from device */
81 data_from_device->read(data_from_device_reg);
82 /* Change to section ’send_restart’ */
83 nextsection = send_restart;
84 } else if (cfg_from_device_reg.stop) {
85 /* STOP flag asserted by device | Change to section ’send_stop’ */
86 nextsection = send_stop;
87 } else {
88 /* Read configuration from device again | Iterate over section ’send_status’ */
89 }
90 } else if (section == receive_data) {
91 /* Read data from bus */
92 data_from_bus->read(data_from_bus_reg);
93 /* Forward read data to device */
94 data_to_device->set(data_from_bus_reg);
95 /* Read configuration from device */
96 cfg_from_device->read(cfg_from_device_reg);
97 if (cfg_from_device_reg.ack) {
98 /* ACK flag is asserted by device | write ACK to bus */
99 ack_to_bus->write(true);

100 } else if (cfg_from_device_reg.restart) {
101 /* RESTART flag asserted by device | Read new address from device */
102 received_data_reg = data_from_device->nb_read(data_from_device_reg);
103 /* Check whether address was provided by device */
104 if (received_data_reg) {
105 /* Address provided by device | Change to section ’send_restart’ */
106 nextsection = send_restart;
107 } else {
108 /* Address not provided by device | Change to section ’send_stop’ */
109 nextsection = send_stop;
110 }
111 } else {
112 /* Change to section ’send_stop’ */
113 nextsection = send_stop;
114 }
115 } else if (section == transmit_data) {
116 /* Read configuration from device */
117 cfg_from_device->read(cfg_from_device_reg);
118 if (cfg_from_device_reg.restart) {
119 /* RESTART flag asserted by device | Read new address from device */
120 data_from_device->read(data_from_device_reg);
121 /* Change to section ’send_restart’ */
122 nextsection = send_restart;
123 } else if (cfg_from_device_reg.stop) {
124 /* STOP flag asserted by device | Change to section ’send_stop’ */
125 nextsection = send_stop;
126 } else {
127 /* Read data from device */

85

D. SystemC-PPA models

128 data_from_device->read(data_from_device_reg);
129 /* Write data to bus */
130 data_to_bus->write(data_from_device_reg);
131 /* Read acknowledgement from bus */
132 ack_from_bus->read(ack_reg);
133 if (!ack_reg) {
134 /* NACK sent from slave | Change section to ’send_status’ */
135 nextsection = send_status;
136 }
137 }
138 } else if (section == send_restart) {
139 /* RESTART flag was asserted by device | Extract RnW-bit from data */
140 RnW_reg = (data_from_device_reg << 7) == 128;
141 /* Clear RESTART flag */
142 cfg_from_device_reg.restart = false;
143 /* Send RESTART symbol to bus */
144 restart_to_bus->write(true);
145 /* Change section to ’send_addr’ */
146 nextsection = send_addr;
147 } else if (section == send_stop) {
148 /* Clear STOP flag */
149 cfg_from_device_reg.stop = false;
150 /* Send STOP symbol to bus */
151 stop_to_bus->write(true);
152 /* Change section to ’idle’ */
153 nextsection = idle;
154 }
155 }
156 }
157 };

86

List of Figures

2.1. Example for UVM testbench composed of three verification components [16] 6
2.2. General model of a sequential circuit . 9
2.3. Bounded circuit model unrolled for n = 3 clock cycles 10
2.4. Proof computation for interval property encompassing a time interval of

n = 3 . 11
2.5. Metamodel MetaExpression for bitwise expressions 13
2.6. Sample instance of the metamodel MetaExpression 15
2.7. Structure of the Metagen framework [9] . 16
2.8. Metaprop: A model-driven property automation framework [8] 18
2.9. Block diagram of design ’Cascaded Counters’ 19
2.11. Operationally colored graph . 22
2.12. Operational graph colorings for different l = |Ŵ | 23
2.14. Graph predicate abstractions for operational graph colorings. 24

3.1. Extended version of the property automation framework Metaprop 27

4.1. Blockdiagram ’Serial-parallel Converter’ . 31
4.2. Handshaking mechanism provided in SystemC-PPA for synchronisation . . 33
4.3. SystemC-PPA description of a serializer . 36
4.4. PPA of figure 4.3 . 36
4.5. Textual description of the Metamodel Design Entry Language MDEL . . . 38
4.6. Expression metamodel . 39
4.7. Serializer from figure 4.3 as instance of MDEL 40
4.8. MoT of the serializer interpreted as CFG . 42
4.9. Operationally colored CFG of the serializer 44
4.10. Generic metamodel for FSMs . 46
4.11. Example transition as instance of MetaFSM’s Transition class 47
4.12. Generated interval property for transition serialize_data_1_write_1

from figure 4.11 . 49

5.1. Example of an I2C-bus multi-master configuration 51
5.2. Graybox model of slave SystemC-PPA description 54
5.3. Code extract section idle from slave SystemC-PPA model 54
5.4. Code extract section get_addr from slave SystemC-PPA model 55
5.5. Code extract section transmit_data from slave SystemC-PPA model . . . 56

87

List of Figures

5.6. Code extract section receive_data from slave SystemC-PPA model . . . 57
5.7. Graybox modle of master SystemC-PPA description 58
5.8. Code extract of section idle from master SystemC-PPA model 59
5.9. Code extract of section send_addr from master SystemC-PPA model . . . 60
5.10. Code extract section send_status from master SystemC-PPA model . . . 60
5.11. Code extract section receive_data from master SystemC-PPA model . . 61
5.12. Code extract section transmit_data from master SystemC-PPA model . . 62
5.13. Code extract section send_restart from master SystemC-PPA model . . 63
5.14. Code extract section send_stop from master SystemC-PPA model 63

A.1. Metaprop Metamodel in the Model-of-Properties Layer 70

C.1. START and STOP Symbols[1] . 78
C.2. Data transfer including Acknowledge bit[1] 79
C.3. Clock Synchronization[1] . 79

88

List of Tables

5.1. I2C-bus features depending on the configuration [1] 52
5.2. Resource evaluation . 64
5.3. Completeness evaluation . 65
5.4. Code coverage evaluation . 66

89

Bibliography

[1] I2C-bus specification and user manual. English. Version v.6. NXP Semiconductors.
2014.

[2] Berkeley Architecture Research. Chisel. Accessed: 2019-25-03. url: https://
chisel.eecs.berkeley.edu/.

[3] Bormann, J. “Vollständige funktionale Verifikation”. PhD thesis. Technische Uni-
versität Kaiserslautern, Germany, 2009.

[4] Chu, X. “Combination of Assertion and Coverage-Driven Verification Methodology”.
In: MICROELECTRONICS & COMPUTER (2008), pp. 1–1315.

[5] Clarke, E., Emerson, E. A., and Sistla, A. P. “Automatic Verification of Finite-
state Concurrent Systems Using Temporal Logic Specifications”. In: ACM Trans.
Program. Lang. Syst. (1986), pp. 244–263.

[6] Clarke, E., Biere, A., Raimi, R., and Zhu, Y. “Bounded Model Checking Using
Satisfiability Solving”. In: Form. Methods Syst. Des. (2001), pp. 7–34.

[7] Collett, R. and Pyle, D. What happens when chip-design complexity outpaces
development productivity? Accessed: 2019-25-03. url: https://www.mckinsey.
com/~/media/McKinsey/dotcom/client_service/Semiconductors/Issue%
203%20Autumn%202013/PDFs/4_ChipDesign.ashx.

[8] Devarajegowda, K. and Ecker, W. “Meta-model Based Automation of Properties
for Pre-Silicon Verification”. In: 2018 IFIP/IEEE International Conference on Very
Large Scale Integration (VLSI-SoC). 2018, pp. 231–236.

[9] Ecker, W., Velten, M., Zafari, L., and Goyal, A. “The metamodeling approach to
system level synthesis”. In: 2014 Design, Automation Test in Europe Conference
Exhibition. 2014, pp. 1–2.

[10] Görke, W. Fehlertolerante Rechensysteme. Munich: Oldenburg Verlag, 1989.
[11] Henftling, R., Zinn, A., Bauer, M., Zambaldi, M., and Ecker, W. “Re-use-centric

architecture for a fully accelerated testbench environment”. In: Proceedings 2003.
Design Automation Conference (IEEE Cat. No.03CH37451). 2003, pp. 372–375.

[12] “IEEE Standard for SystemVerilog–Unified Hardware Design, Specification, and
Verification Language”. In: IEEE Std 1800-2017 (Revision of IEEE Std 1800-2012)
(2018), pp. 1–1315.

90

https://chisel.eecs.berkeley.edu/
https://chisel.eecs.berkeley.edu/
https://www.mckinsey.com/~/media/McKinsey/dotcom/client_service/Semiconductors/Issue%203%20Autumn%202013/PDFs/4_ChipDesign.ashx
https://www.mckinsey.com/~/media/McKinsey/dotcom/client_service/Semiconductors/Issue%203%20Autumn%202013/PDFs/4_ChipDesign.ashx
https://www.mckinsey.com/~/media/McKinsey/dotcom/client_service/Semiconductors/Issue%203%20Autumn%202013/PDFs/4_ChipDesign.ashx

Bibliography

[13] “IEEE Standard for Universal Verification Methodology Language Reference Man-
ual”. In: IEEE Std 1800.2-2017 (2017), pp. 1–472.

[14] “IEEE Standard Verilog Hardware Description Language”. In: IEEE Std 1364-2001
(2001), pp. 1–856.

[15] “IEEE Standard VHDL Language Reference Manual”. In: IEEE Std 1076-2008
(Revision of IEEE Std 1076-2002) (2009), pp. c1–626.

[16] Initiative, A. S. Universal Verification Methodology 1.1 User’s guide. English.
Version 1.1. Accellera. 190 pp.

[17] John Aynsley, D. L. “IEEE Standard for Standard SystemC Language Reference
Manual”. In: IEEE Std 1666-2011 (Revision of IEEE Std 1666-2005) (2012).

[18] Karp, R. M. “Reducibility Among Combinatorial Problems”. In: Proceedings of a
symposium on the Complexity of Computer Computations, held March 20-22, 1972,
at the IBM Thomas J. Watson Research Center, Yorktown Heights, New York,
USA. 1972, pp. 85–103.

[19] Kim, Y.-I. and Kyung, C.-M. “TPartition: testbench partitioning for hardware-
accelerated functional verification”. In: IEEE Design Test of Computers (2004),
pp. 484–493.

[20] Kim, Y.-I., Yang, W., Kwon, Y.-S., and Kyung, C.-M. “Communication-efficient
hardware acceleration for fast functional simulation”. In: Proceedings. 41st Design
Automation Conference, 2004. 2004, pp. 293–298.

[21] Koczor, A., Matoga, Ł., Penkala, P., and Pawlak, A. “Verification approach based
on emulation technology”. In: 2016 IEEE 19th International Symposium on Design
and Diagnostics of Electronic Circuits Systems (DDECS). 2016, pp. 1–6.

[22] Kropf, T. Introduction to Formal Hardware Verification: Methods and Tools for
Designing Correct Circuits and Systems. 1st. Berlin, Heidelberg: Springer-Verlag,
1999. isbn: 3540654453.

[23] Kudlugi, M., Hassoun, S., Selvidge, C., and Pryor, D. “A transaction-based unified
simulation/emulation architecture for functional verification”. In: Proceedings of the
38th Design Automation Conference (IEEE Cat. No.01CH37232). 2001, pp. 623–
628.

[24] L. Foundation. LLVM. Accessed: 2019-02-03. url: http://llvm.org/.
[25] Ludwig, T., Schwarz, M., Urdahl, J., Deutschmann, L., Hetalani, S., Stoffel, D.,

and Kunz, W. “Property-Driven Development of a RISC-V CPU”. submitted.
[26] Mavroidis, I., Mavroidis, I., and Papaefstathiou, I. “Accelerating Emulation and

Providing Full Chip Observability and Controllability”. In: IEEE Design Test of
Computers (2009), pp. 84–94.

91

http://llvm.org/

Bibliography

[27] Mentor. The 2018 Wilson Research Group Functional Verification Study. Accessed:
2019-25-03. url: https://blogs.mentor.com/verificationhorizons/blog/
2018 / 11 / 14 / prologue - the - 2018 - wilson - research - group - functional -
verification-study/.

[28] Narayan, R. and Symons, T. I created the Verification Gap. Accessed: 2019-25-03.
url: http://events.dvcon.org/2015/proceedings/papers/10_1.pdf.

[29] Nguyen, M. D., Thalmaier, M., Wedler, M., Bormann, J., Stoffel, D., and Kunz, W.
“Unbounded Protocol Compliance Verification Using Interval Property Checking
With Invariants”. In: IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems (2008), pp. 2068–2082.

[30] OneSpin Solutions GmbH. url: https://www.onespin.com/.
[31] Pnueli, A. “The temporal logic of programs”. In: 18th Annual Symposium on

Foundations of Computer Science (sfcs 1977). 1977, pp. 46–57.
[32] Rizzatti, L. Hardware Emulation: Three Decades of Evolution—Part III. 2015. url:

https://www.mentor.com/products/fv/verificationhorizons/volume11/
issue3/hardware-emulation-3-decades-evolution-part3 (visited on 11/28/2018).

[33] SCAM. Accessed: 2019-02-03. url: https://github.com/ludwig247/SCAM.
[34] Truyen, F. “The Fast Guide to Model Driven Architecture The Basics of Model

Driven Architecture”. In: (2006), p. 16.
[35] Urdahl, J., Stoffel, D., and Kunz, W. “Path Predicate Abstraction for Sound

System-Level Models of RT-Level Circuit Designs”. In: IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems (2014), pp. 291–304.

[36] Urdahl, J. “Path Predicate Abstraction for Sound System-Level Modeling of Digital
Circuits”. dissertation. 2015.

[37] Yuan, J., Pixley, C., Aziz, A., and Albin, K. “A framework for constrained functional
verification”. In: ICCAD-2003. International Conference on Computer Aided Design
(IEEE Cat. No.03CH37486). 2003, pp. 142–145.

92

https://blogs.mentor.com/verificationhorizons/blog/2018/11/14/prologue-the-2018-wilson-research-group-functional-verification-study/
https://blogs.mentor.com/verificationhorizons/blog/2018/11/14/prologue-the-2018-wilson-research-group-functional-verification-study/
https://blogs.mentor.com/verificationhorizons/blog/2018/11/14/prologue-the-2018-wilson-research-group-functional-verification-study/
http://events.dvcon.org/2015/proceedings/papers/10_1.pdf
https://www.onespin.com/
https://www.mentor.com/products/fv/verificationhorizons/volume11/issue3/hardware-emulation-3-decades-evolution-part3
https://www.mentor.com/products/fv/verificationhorizons/volume11/issue3/hardware-emulation-3-decades-evolution-part3
https://github.com/ludwig247/SCAM

	Acknowledgments
	Abstract
	Contents
	Introduction
	State of the Art
	Hardware Verification
	Simulation-based Hardware Verification
	Hardware Emulation
	Formal Hardware Verification

	Automation through Metamodeling
	Concept of Metamodeling
	Metamodel-based Automation Framework Metagen
	Application of Metagen for Formal Hardware Verification
	Automated Property Generation for Example Design

	Abstraction Technique Path Predicate Abstraction

	Specification of the Tasks
	Extended Property Automation Framework
	Modeling the Formal Specification in the Design Entry Language SystemC-PPA
	Problems of Informal Specifications
	Semantics of the SystemC-PPA subset

	Metamodel-of-Things Design Entry Language
	Extraction of Path Predicate Abstraction from Model-of-Things
	Path Predicate Abstraction as Finite State Machine

	Application of the Methodology to a Real-World Design
	I2C as Real-World Design
	I2C-Bus Protocol Specification as SystemC-PPA model
	SystemC-PPA model for Slave Behaviour
	SystemC-PPA model for Master behvaviour

	Evaluation of the Results

	Future Work
	Metamodels
	Metaprop Metamodel

	Generated Properties for Example Design
	SVA Syntax
	ITL Syntax

	I2C-Bus Features
	START and STOP Symbol
	Acknowledge
	Clock Stretching

	SystemC-PPA models
	I2C-Bus Protocol Slave Model
	I2C-Bus Protocol Master Model

	List of Figures
	List of Tables
	Bibliography

