
Profrssorship of Hybrid Control Systems

Statutory declaration

I declare that I have authored this thesis independently, that I have not used other than
the declared sources / resources, and that I have explicitly marked all material which
has been quoted either literally or by content from the used sources.

Munich, 29.09.2019

Georgios Lionas

i

Abstract

In today's connected world, everything seems possible. Buzzwords, like big data and
arti�cial intelligence can be found in many scienti�c papers and journals. These tech-
nologies are very interesting for autonomous driving. However there is a problem with
them: Proof of functionality. These algorithms depend on training data and complex
models that are interconnected. In order to prove the correct function of these systems,
many tests have to be made. There is an alternative. It is called symbolic control.
With symbolic control, a controller is created based on the underlying model and the
speci�cation. First, a discrete model is constructed from the continuous model of a ve-
hicle. Next, speci�cations are de�ned, which de�ne the bad states and the target states.
Finally, a discrete controller is synthesised based on the speci�cations. This discrete
controller avoids all bad states, while trying to reach the target set. The problem with
symbolic control is like many problems in engineering the state-space problem. Models,
with high-dimensional state and input spaces need many computing resources in order
construct a controller. If a real-time construction is needed, these resources grow anal-
ogously. Nonetheless, there is a solution to this problem with cloud-based computing.
Cloud providers provide the user with as many computing resources as needed. A sym-
bolic control algorithm could run in the cloud providing real-time inputs to a vehicle.
What remains to be solved, is the communication protocol connecting the vehicle with
the cloud.
This thesis aims to create and implement a concept of a communication protocol that
could be used to remotely control an autonomous vehicle. The protocol will be called
Open Automotive Control Protocol. The protocol should be easy to use and provide
the engineers with the �exibility they need. It should also be lightweight and secure.
On top of the protocol, an enterprise application is built in order to provide a sample
application, which automotive engineers could use in order to use the protocol.

iii

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Problem description and goal . 4

1.3 Structure of the thesis . 6

2 Research and related work 9

2.1 Classical control loop in vehicles . 9

2.2 Driver assistance and automation in automotive 9

2.2.1 Modes of automation . 11

2.3 Mathematical background . 12

2.4 Vehicle Models . 12

2.4.1 Point-mass model . 12

2.4.2 Kinematic single-track model . 13

2.5 Cost functions and motion planning . 15

2.5.1 Cost functions . 16

2.5.2 Motion planning . 17

2.6 Formal synthesis algorithm for embedded systems 19

2.6.1 System modeling . 19

2.6.2 High level speci�cations . 23

2.6.3 Finite abstractions of continuous systems 27

2.6.4 Symbolic controller synthesis of a provably correct controller . . . 28

2.6.5 Practical implementation of formal techniques 29

2.6.6 pFaces: A software ecosystem for parallel computation 31

2.7 Protocol design principles . 33

2.8 Simulators . 33

2.8.1 SUMO . 33

2.8.2 Movsim . 34

2.8.3 Carla . 35

2.8.4 Comparison of simulators . 35

v

Contents

3 Concept and implementation of a control protocol and an application

for symbolic control 39

3.1 Requirement and speci�cation analysis 39
3.2 High level architecture of the enterprise application 40

3.2.1 Component model . 40
3.2.2 Data Flow Diagram . 41

3.3 Management system . 44
3.3.1 Database . 44
3.3.2 Backend . 44
3.3.3 Web interface . 48
3.3.4 Production ready deployment in AWS 48

3.4 Concept of the OACP . 49
3.4.1 Goal of the OACP . 49
3.4.2 Design of the OACP . 49
3.4.3 Protocol Speci�cation . 52

3.5 Implementation of the OACP . 64
3.5.1 The OACPProtocol library . 66
3.5.2 The OACPServer . 69
3.5.3 The OACPClient . 75

4 Conclusion and Outlook 77

4.1 Conclusion . 77
4.2 Outlook . 78

Bibliography 79

vi

List of Figures

1.1 The �rst automobile from 1886, invented by Carl Benz 1
1.2 Structure of an cyber-physical system, [LS17] 3
1.3 Cloud spending from 2015 to 2026 [Mic] 5

2.1 The classical control loop in vehicles . 10
2.2 Single-track model, visualisation of the parameter from [AKM] 14
2.3 A simple motion diagram like shown in [Ton] 18
2.4 Abstracted system with inputs (u), outputs (y) and states (x) 19
2.5 Outputsignal of the continuous system with a constant input 22
2.6 Output signal of the discrete system with a constant input 22
2.7 A simple state chart . 22
2.8 The state chart of the system S1 . 24
2.9 Intuition behind "w satis�es ϕ", from the book "Principles of model

checking" [BK08] . 26
2.10 Di�erence between GPU and CPU, as noted in [OAD] 30
2.11 Computing model considered in pFaces [KZ] 31
2.12 Internal structure of pFaces [KZ] . 32
2.13 The classic approach to interface with pFaces in the cloud [MM] 33
2.14 Carla simulator - The information is shown left 36

3.1 OACP Enterprise architecture . 42
3.2 Data Flow Diagram of the application 43
3.3 Admissible commands for every state . 54
3.4 The OACP State Chart . 57
3.5 Example listing of a communication in the IDLE state 58
3.6 Example listing of a communication in the SESSION state 60
3.7 Example listing of the ENC command 61
3.8 Example listing of a communication in the PREDRIVE state 62
3.9 Example listing of a communication in the SESSIONINITIALIZED state 63
3.10 Example listing of the control loop clientside 65
3.11 Example listing of the control loop serverside 66

vii

List of Figures

3.12 Stream pipeline of the OACPStream class 70
3.13 Structure of the OACPStream class . 71
3.14 Snippet of the StateHandler class . 73
3.15 Snippet of the PreDriveHandler class . 74
3.16 The structure of the OACPData type . 76

viii

List of Tables

2.1 Overview of cost functions as discussed in [AKM] 16
2.2 Comparison of the simulators . 37

ix

Abbreviations

FSC Formally synthesised controller

IoT Internet of things

CPU Central processing unit

IT Information technology

IaaS Infrastructure as a service

SaaS Software as a service

PaaS Platform as a service

TUM Technical university of Munich

OSI Open system interconnection model

ADAS Advanced driver assistance system

ACC Adaptive cruise control

OEM Original equipment manufacturer

ECU Electronic control unit

SISO Single input, single output

ZOH Zero-order hold

LTL Linear temporal logic

HPC High performance computing

CN Compute nodes

CU Computing units

xi

List of Tables

PE Processing elements

CK Computation kernel

REST Representational state transfer

SUMO Simulation of urban mobility

API Application programming interface

AUTOSAR Automotive open system architecture

HTTP Hypertext transfer protocol

DFD Data �ow diagram

SQL Structured query language

MVC Model-view controller

JWT JSON web token

AES Advanced encryption standard

AWS Amazon web services

xii

1

Introduction

The world has changed with a fast rate in recent years due to technological improve-
ments. As time goes on, people realise that almost every real problem has a solution.
The answer to many technical and non-technical problems is simply science. What
seemed impossible �fty years ago, has become reality now or will become reality in the
near future.

1.1 Motivation

In 1886, Carl Benz introduced a concept of a vehicle to the world that solved the problem
of that time: Mobility. This was a crucial moment in history, which is considered
the birth of the automobile. The cognition of distance changed. The perception of
reality depends strongy on the environment in which the individual was raised and the
experience of that human being in our physical world.

Figure 1.1: The �rst automobile from 1886, invented by Carl Benz

Since 1886 the automotive industry has evolved. The word "automotive" is a com-
position of the greek word "αυτ ȯς" and the latin word "mobilis". It means that the

1

1. Introduction

vehicle is moving autonomously. In 1886 it was not moving autonomously. The driver
had to control the vehicle. He had to sense the environment and to provide actions to
control the yaw and the acceleration of the vehicle. Today, the semantics of this word
and the actual representation of that physical object, the automobile, in our world, are
almost the same.

What is the reason for this transormation? The answer is the following: Information
technology and computers. With Claude Shannon, exploring deep insights in the math-
ematical theory of information technology and the parallel inventions and improvements
of hardware chips, it was a matter of time until the world realised the potential of this
strong duo. What started with the de�nition of a bit as information measure has now
become a world-wide phenomenon. The world as we know it today depends strongly on
technology. Smart grids are distributing energy in an e�cient manner, providing whole
countries with energy. Biologists are exploring the human DNA to �ght biological mal-
functions with the help of software. Individuals rely on smart station towers, which
control the data �ow of an area, allowing them to communicate all over the world. The
use of software in various areas has increased dramatically. There are some good reasons
for that:

1. Software is easy to change

2. Software is cheap

3. Everyone can learn how to program and develop solutions

4. Digital communication is a de-facto standard

As software is used almost everywhere we live in a time period that is called Industry
4.0. It targets another industrial revolution with the help of software systems, interde-
vicecommunication, data-analysis and machine learning concepts. Buzzwords like big
data or IoT are all over the scienti�c and industrial world. What sounded like science
�ctions some years ago, becomes now reality.

While new ideas and inventions �nd their place in the world, the automotive industry
and academia are researching about autonomous vehicles. Today's vehicles are "cyber-
phsical systems". According to [LS17], a cyber phyisical system is a composition of
computation with physical processes. This provides the vehicle the capability to inter-
act with the environment in a prede�ned logical manner. Figure 1.2 shows the structure
of a cyber-physical system.

2

1. Introduction

Figure 1.2: Structure of an cyber-physical system, [LS17]

In addition to the mainstream car manufacturers, computer related companies are
now researching about autonomous driving. These companies do have a big advantage
over the oldschool car manufacturers. They are much more specialized in software.
While the model dynamics of vehicles have not changed drastically in the last years,
software development take 180 degree turns every few years. With mostly mechanical
engineers in their back, it is di�cult to compete with these software experts in this �eld.

There are a lot of methods to achieve autonomous driving. In simple cases it could
be done with a few if-else statements and some sensors. If it gets more complex, then
some state-machine approach could solve these cases. Another approach is the ma-
chine learning approach, where the object constantly learns from some training data
until some cost-function criterium is met. But there is a problem with these principles:
Safety. How can you actually verify that the car will behave like expected? Can you
make sure that there is no such situation, in which the car is going to hurt someone, a
so called "bad state"? Pendants of these methods rely on tests of the systems to make
sure that the system behaves like expected. There is usually some inherent test team
that gets the same requirements like the developer team from the project manager and
their job is to test the system against these requirements. Testing often requires low
mathematical skills and is cheap. But there is a problem with this test-driven approach.
Like Edsger W. Dijkstra said years ago:

�Program testing can be a very e�ective way to show the presence of bugs,
but it is hopelessly inadequate for showing their absence.�

However there is an alternative approach, the formal synthesis design. Synthesis is the
process of generating the description of a system in terms of related lower-level compo-
nents from some high-level description of the expected behavior. With this approach we
specify and design in contrast to specify-design-verify-re�ne [Mar18]. The synthesised

3

1. Introduction

controller is formally correct-by-construction. In theory we would not need functional
tests any more. Practically it is good to test the behavior, to make sure that the high-
level speci�cations match the expected behavior.

However, there is a catch. The way this controller works, is through �nite state ab-
stractions of the system, subsequently performing some complex veri�cation algorithms
to calculate the right input, in the right state. Like many other engineering problems,
it su�ers from the state-space-explosion problem. This means that the complexity of
the problem grows exponentially in the number of state variables. Traditional CPUs
are not designed for this type of problems. The sequential mode of such computing
platforms is a huge drawback in terms of e�ciency. Instead, parallel computing plat-
forms can mitigate the e�ect of the state-space explosion. If a task can be parallelized,
then with corresponding computing resources, real-time computing can be done. If an
autonomous vehicle could use this type of controller, it would be a formally correct
system without any bad behavior. But these computing platforms are not well suited
for vehicles. Firstly, they are expensive, and secondly, they are not well tested in the
automotive industry. Instead there is another place today, that provides us with all
computing resources that we need. The cloud.

1.2 Problem description and goal

According to [SB18] the term cloud computing refers to the serving of IT services,
applications and data over a network, abstracting away the complex underlying infras-
tructure. It is also stated that cloud computing is a model for enabling convenient,
on-demand network access to a shared pool of con�gurable computing resources. The
cloud provides the user with three types of services:

1. Software as a Service: Provides application access to di�erent users over the net-
work.

2. Platform as a Service: Provides application servers that vary in hardware con�g-
uration needs.

3. Infrastructure as a Service: Provides direct access to virtualized or containerized
hardware.

With the services of the cloud every user can request a computing platform that meets
his requirements. The problem of computing the formal synthesised controller actions
has now a solution. We can do the expensive computations in the cloud, using Infras-
tructure as a Service.

The software prerequisite of this work is pFaces, an acceleration ecosystem for sym-
bolic control[KZ], that runs in the cloud a symbolic control algorithm. The software
pFaces is introduced in section 2.6.6 to provide the reader with the foundation that is
required to follow along with the thesis.

4

1. Introduction

Figure 1.3: Cloud spending from 2015 to 2026 [Mic]

Also, we need an imaginary autonomous car , that has network capabilities and an
user, who wants to use a formally correct controller for his autonomous vehicle. We will
limit the possible use cases of the autonomous car to the highway, for convenience.

Goal of this masterthesis is to de�ne a communication protocol standard that aims
the reliable, safe and secure communication between the autonomous vehicle and the
formal synthesised controller in the cloud. With this communication protocol, everyone
could interact with a controller in the cloud. Remote control could be standardized.
Testing modes will be included in the protocol itself, for rapid prototyping and integra-
tion purposes. This will hopefully have an impact to the future of autonomous driving.
This masterthesis will provide a unique standard for that purpose. The protocol will be
called: Open Automotive Control Protocol (OACP).

To be precise, the following list includes all the goals of this masterthesis:

• Conception and implementation of the required prerequisites, in order ful�ll the
registration of the vehicle in the controlling platform, to perform valid control
actions, like registration, model generation and security.

• Design of a speci�cation for the communication between a remote controller and
an autonomous vehicle.

5

1. Introduction

• Conception and implementation of a backend system that implements the OACP.

• Conception and implementation of the required interface for an autonomous car,
so that it can use the remote control actions.

• Simulation and tests of the formal controller and the protocol in a simulation
environment.

1.3 Structure of the thesis

In chapter 2, we will cover all the basic building blocks needed for the work context.
First we will cover the classical vehicle control loop. Then we will analyze the state
of the art driver assistance systems and the di�erent modes of automation in today's
technology. In this section we will clarify the a�liation of the formal synthesised remote
controller - vehicle system.

Afterwards that, we will introduce a mathematical model of a vehicle, that is going
to play an important role in the controller synthesis. The symbolic control algorithm
works with mathematical models, so it is important to gain a deep understanding of this
topic. In addition we will analyze cost functions, and their role in the synthesis process.

Next, we will present the formal synthesis algorithm. This is important, because the
function and the algorithm are not wide known in academia and industry. In order to
gain added value of something, there is a huge requirement that needs to be satis�ed:
This something has to be used. The user of this system have to trust it. According to
Mayer et al[MDS95]:

"...trust [. . .] is the willingness of a party [trustor] to be vulnerable to the
actions of another party [trustee] based on the expectation that the other
will perform a particular action important to the trustor, irrespective of the
ability to monitor or control that other party."

To improve the acceptance and trust from this stakeholders we need to focus on the
mathematical background of the algorithm, so that the users have an understanding of
the functionality of the algorithm.

After the introduction to the formal synthesis algorithm we will cover the function-
ality of pFaces and the the role of it in this thesis.

We will then focus on network communications and we will provide some requirements
for the protocol that is going to be written. Finally, we will introduce some autonomous
vehicle simulators, and we will choose one that should be used in future testing for our
software.

6

1. Introduction

In chapter 3, we will start with an abstract view of the environment. We will de-
sign data �ow diagrams and make a component view, with all the interfaces and the
stakeholders for this problem. This aims to provide the user with a general image of the
software architecture.

After the general introduction, we will start with the design registration of an user
and a vehicle. We will analyse security and usability issues. After the design we will
implement a prototype and we will run it in in the cloud.

After the implementation of the registration and the testing, we will begin with the
design of our OACP. We will start with basic requirements that the protocol should
ful�ll. Also, a classi�cation in the OSI Protocol Layer will be made.

Next, some advanced features and exceptions are described. At the end, the data stream
during the protocol including all the details is explained.

Last, a backend system is described that serves the controller service, and a concept
of a cloud-based control manager is developed. A similar system for the vehicle side is
implemented.

Finally, in chapter 4, a conclusion is formed from the previous. We will also spot
improvements and re�nements of the whole system.

7

2

Research and related work

In this chapter we will explain various topics and concepts that are needed for a further
understanding. We will also cover some correlated papers and the state of the art
synthesis algorithm. The chapter ends with an introduction to vehicle simulators, a
comparison of them and an idea for future testing purposes.

2.1 Classical control loop in vehicles

The classical hybrid system driver-vehicle-street can be modelled as a cybernetic control
loop with the following components [Dil, Dip]:

• Driver (Controller)

• Vehicle (Plant)

• Street, environment (Set value)

In �gure 2.1 we can see the higly abstracted control system. The driver is acting as the
composition of the controller and the sensors in the control loop. He acts based on the
di�erence of the current and the set-value he wants to have and chooses the right action
to handle the situation. He controls the system by applying longitudinal and transverse
control inputs. The disturbances can a�ect the driver (e.g. fog) or the vehicle itself (e.g.
crosswind).

2.2 Driver assistance and automation in automotive

Advanced driver assistance systems (ADAS) are a very popular topic in the automotive
industry. ADAS are widely used nowadays and automotive companies make big invest-
ments to innovate and to develop new and more reliable, comfortable and safe driver
assistance systems. Reichart and Haller gave the following de�nition for ADAS in 1995
[RH, W.]:

9

2. Research and related work

Figure 2.1: The classical control loop in vehicles

"An advanced driver assistance system should help the driver to accomplish
the task (or subtasks) of driving, according to his rules based on informations,
interactions or autonomous behaviour".

An example of an ADAS is the Advanced control cruise (ACC) system which keeps a
prede�ned distance to the front vehicle and if it is absent, the system keeps a constant
speed.

ADAS have a wide range of applications. In the early days of ADAS, they improved
the comfort of the driver. While more and more vehicles were produced and consumed
and the tra�c increased, ADAS helped with the safety during driving. Beside these two
potential bene�ts, ADAS can improve e�ciency of the fuel consumption. With com-
plex algorithms, predictive models and landscape data, ADAS can reduce the braking
and acceleration scenarios during a trip and therefore minimising fuel consumption and
emissions [SZL16].

Beside these gains in everyday mobility problems, ADAS have some drawbacks. In
order to achieve their desired behavior, they rely on complex sensors, big data amounts
and complex algorithms. The development of such systems is not an easy task. Most
often a divide & conquer approach is taken, where the project is split into smaller
projects. OEMs typically outsource the development and testing to engineering compa-
nies in order to reduce costs and focus on the system requirements. Because they focus
on the short-term cost of goods and want fast development times, the modi�ability and
reusability of the software is su�ering. This increases again the costs, as a big part of
the ADAS has to be redeveloped.

Another drawback of the increasing demand on ADAS comes with the fact that sensors
for automobiles are often integrated with a small processor, in order to minimize data
send via bus and to compute usefull information that the ECU needs. These integrated
sensors are �exible but have some disadvantages, as [JSRG] analyses:

• Possible sensor duplication because of di�erent data processing algorithms

10

2. Research and related work

• Unpredictable latencies because of the computing part

• Increased overhead for system integration and testing

• In�exibility combining sensor and data processing algorithms

Moreover, they increase development time because of the overhead related to analyse
and understand the datasheet.

2.2.1 Modes of automation

In order to classify ADAS regarding the automation state, there have been de�ned 6
stages of automation [Ver].

Stage 0 The driver is controlling the vehicle without any help from the system in
stage 0. However the system could warn the driver in case of an emergency, without
taking control of subfunctions.

Stage 1 In stage 1, the system can control one of the two main control inputs to the
vehicle: The longitudinal or the transverse control. The driver has to constantly control
the other control input.

Stage 2 Stage 2 automation systems can control both, the longitudinal and transverse
control, but only in speci�c circumstances. During the automated driving mode, the
driver has to control the actions from the system and he should be ready to take action
if the system fails.

Stage 3 Stage 3 is the same as stage 2, except that the system recognises the limits of
the automated control, and gives the driver feedback regarding the driving. The driver
doesn't have to control the system behavior, but should take be able to take action of
the system in a prede�ned time.

Stage 4 In stage 4, the driver can give the vehicle the full responsibility of the driving
act in a prede�ned scenario.

Stage 5 Stage 5 automated systems have the capability to drive autonomously, in
every situation. Stage 5 ADAS can be reconsidered as driverless vehicles.

We will attach stage 4 of automation for the autonomous system that is getting control
from a formal controller.

11

2. Research and related work

2.3 Mathematical background

In this section we will give a brief introduction to the mathematics behind the model
of a vehicle. In addition, we will discuss cost functions and decision theory. Both
parts are needed for the conception part of the protocol implementation and for a deep
understanding of the controller functionality.

2.4 Vehicle Models

In order to successfully control the vehicle, �rst one has to gain a deep understanding of
the dynamics. There exist di�erent models for di�erent use cases. We will discuss and
analyze vehicle models based on the paper "CommonRoad: Composable Benchmarks
for Motion Planning on Roads", written by Matthias Altho�, Markus Koschi and Ste-
fanie Manzinger at the TUM [AKM].

The mathematical model of a vehicle is a prerequisite for the formal synthesis algo-
rithm, in order to compute the right inputs in the right states and get the desired
output. However we need to understand that there will always be errors and uncertain-
ties regarding the vehicle models, and the models of complex systems in general. We
can choose the abstraction which we want to get from the model. There exist di�erent
models, as like discussed in [AKM]. In order to not blow the content up we will focus
on two models from the paper [AKM] The models we will discuss are the following:

• Point-mass model

• Kinematic single-track model

We will not discuss the single-track model, or the multi-body model.

2.4.1 Point-mass model

The simplest vehicle model we can choose from, is the point-mass model. The point-
mass model abstracts away the details of the vehicle, and gives us a point in space,
that can be accelerated and deccelerated in bounds. The dynamics of the model are
very basic, and give us a very rough approximation of the real vehicle. The model also
ignores that vehicles have a minimum turning cycle.

Dynamics of the point-mass model

The dynamics of the point-mass model are given by the equation

s̈x = αx

s̈y = αy√
α2
x + α2

x ≤ αmax

12

2. Research and related work

where sx,y is the discplacement in x or y direction, αx,y is the acceleration in x or y
direction respectively.

State-space model

After choosing x1 = sx, x2 = sy, x3 = ṡx, x4 = ṡy, u1 = αx, u2 = αy we get the dynamics

ẋ = Ax+Bu

with

A =

0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

and

B =

0 0
0 0
1 0
0 1

 .

The only constraint is
√
u21 + u22 ≤ αmax.

Parameters

The only parameter for the model is αmax.

2.4.2 Kinematic single-track model

The kinematic single-track model, is abstracting away the geometry of the front and
rear wheels. This model assumes that the vehicle has only two wheels, one in front and
one in the rear. Roll dynamics are not considered. Also any tire slip is not considered,
meaning that the velocity is always aligned with the link between the two wheels. This
model is often used in motion planning projects like in [PCY+16].

Dynamics of the kinematic single-track model

In order to de�ne the model we will need additional parameters and variables. We will
introduce now:

• The steering angle velocity: vδ

• The steering angle: δ

• The heading: Ψ

• The wheelbase: lwb

• The velocity above which the engine power is not su�cient to cause wheel slip: vS

13

2. Research and related work

Figure 2.2: Single-track model, visualisation of the parameter from [AKM]

The dynamics are given by the following formulas:

δ̇ = vδ

Ψ̇ =
v

lwb
tanδ

v̇ = αlongitude

ṡx = v cos (Ψ)

ṡy = v sin (Ψ)

where vδ ∈ [−vδ,max, vδ,max], δ ∈ [−δmax, δmax], v ∈ [vmin, vmax], αlongitude ∈ [−αmax, αmax,i],
where αmax,i = α

vS
v
max for v > vS and αmax,i = αmax otherwise. Also

√
α2
longitude + (vΨ̇)2 ≤

αmax, where αlatitude = vΨ̇.

State-space model

To derive the state-space model we de�ne:x1 = sx, x2 = sy, x3 = δ, x4 = v, x5 = Ψ.
The input variables are u1 = vδ and u2 = αlongitude. By insterting the variables in the
dynamic equations we get the following system:

ẋ1 = x4 cos (x5)

ẋ2 = x4 sin (x5)

ẋ3 =

0 if(x3 ≤ δ ∧ u1 ≤ 0) ∨ (x3 ≥ δmax ∧ u1 ≥ 0)(E1)

vδ,min if¬E1 ∧ u1 ≤ uδ,min

vδ,max if¬E1 ∧ u1 ≥ uδ,max

u1 otherwise

14

2. Research and related work

ẋ4 =

0 if(x4 ≤ vmin ∧ u2 ≤ 0) ∨ (x4 ≥ vmax ∧ u2 ≥ 0)(E2)

αmin if¬E2 ∧ u2 ≤ αmin

αmax if¬E2 ∧ u2 ≥ αmax

u2 otherwise

ẋ5 =
x4
lwb

tanx3.

The constraints can be converted into state-space form by exchanging the variables from
the dynamics.

Parameters

The kinematic single-track model has three model parameters and eight constraint pa-
rameters. The three vehicle parameters are:

• Vehicle length (l)

• Vehicle width (w)

• Wheelbase (lwb)

The constraint parameters are:

• Minimum steering angle (δmin)

• Maximum steering angle (δmax)

• Minimum steering velocity (vδ,min)

• Maximum steering velocity (vδ,max)

• Minimum velocity (vmin)

• Maximum velocity (vmax)

• Switching velocity (vS)

• Maximum acceleration (αmax)

2.5 Cost functions and motion planning

In order to achieve a high con�gurability of the system, we need some sort of cost
functions as middleware between the cloud-controller and the vehicle, that �lters and
responds with the optimal control inputs, in the right mode. Since the controller provides
us all possible input sequences that can bring the system from state a to a state b in a
prede�ned time-span, we have to choose the path that matches our expectations of the
motion planning problem. Because of the modularity and the indepence of the algorithm

15

2. Research and related work

ID Function Optimization criterion

0 JA =
∫ tf
t0
α2dt Acceleration

1 JJ =
∫ tf
t0
α̇2dt Jerk

2 JSA =
∫ tf
t0
δ2dt Steering angle

3 JSR =
∫ tf
t0
v2δdt Steering velocity

4 JE =
∫ tf
t0
P (x, u)dt Engine power

5 JY =
∫ tf
t0

Ψ̇2dt Yaw rate

6 JLC =
∫ tf
t0
d(t)2dt Lane center o�set

7 JV =
∫ tf
t0

(vdes(x(t))− v(t))2dt Velocity o�set

9 JO =
∫ tf
t0

(θdes(x(t))− θ(t))2dt Orientation o�set

9 JD =
∫ tf
t0
max(ξ1, ..., ξn)dt Distance to obstacles

10 JL =
∫ tf
t0
vdt Path length

11 JID = 1.0
τ

Inverse duration

Table 2.1: Overview of cost functions as discussed in [AKM]

itself, the cost function middleware can be created and con�gured very �exible based
on the needs of the driver. We will �rst introduce the idea of cost functions as a
highly abstracted concept and also introduce standardised cost functions for the vehicle
motion planning problem. After that we will discuss the motion planning problem in a
mathematical fashion and make a connection between the problem and the associated
cost function. Most of the following information is taken from the paper CommonRoad:
Composable Benchmarks for Motion Planning on Roads by Stefanie Manzinger, Markus
Koschi and Matthias Altho� at the TUM [AKM].

2.5.1 Cost functions

A cost function is a function J : D → R, where D is a subset of a multi-crossproduct of
the di�erent parameter domains e.g. D ⊆ A×B×C.., where A,B,C... are the di�erent
domains of interest. The cost function describes the associated cost of taking speci�c
actions of the possible variables in the domain over a time period [t0, tf [regarding that
cost function. The input sequence with the lowest cost is the optimal sequence in order
to reach the �nal set regarding the topic of interest that the cost function describes. In
order to compare results of an algorithm or a function, we need cost functions for dif-
ferent domains. Cost functions can be also combined with a weight factor w to pick the
best solution for a speci�c pro�le or con�guration. Thus, by applying di�erent weights
and not changing the function map, we can create di�erent pro�les based on just the
partial sum of the cost functions.

Following cost functions have been taken from the paper and will be presented in
2.1. As observed, there exist plenty of cost functions and we can create new ones by

taking the linear combinations of these. For example, let's say, that we want to minimise

16

2. Research and related work

acceleration, meaning that we want a really smooth trip, and also that we want to have
a large distance to obstacles, because we feel more safe with that. Also consider that
acceleration is more important to us than the distance. With example parameters
wA = 0.7 and wD = 0.3, we would get our personal cost function: Jopt = wAJA +wDJD
= 0.7

∫ tf
t0
α2dt+ 0.3

∫ tf
t0
max(ξ1, ..., ξn)dt, that we now have to minimise with an optimal

path.

2.5.2 Motion planning

The motion planning problem is a very prominent problem in engineering. We will
use the de�nition of the book "Spatial Representation and Motion Planning" by Angel
Pasqual del PobilMiguel Angel Serna [PS95]:

"Given a robot B and an environment E occupied by a set of obstacles C, �nd
a motion for B among the obstacles in C that ful�lls certain given conditions
and is optimal in a certain sense."

Since this is a very abstract de�nition of the problem, we can apply the de�nition to
various speci�c problems. In [PS95], following taxonomies are presented:

• Dimension of real space

• Complexity of the environment

• Physical nature of the robot

• Nature and dimensions of con�guration space

• Object representation

• Motion omptimisation

• Motion conditions

Another de�nition found in [HHL19] is:

"Given an initial con�guration qinit and a goal con�guration qgoal, �nd a path
in the free space F between qinit and qgoal."

The two de�nitions may apper, but have a signi�cant di�erence: The �rst de�nition,
seeks to �nd a motion - meaning a trajectory - that satis�es the dynamics of the system.
The second de�nition, searches for a path in the free space between the initial and the
�nal con�guration of the system.

Path planning is the pure planning of the waypoints that the system needs to reach
in a speci�c order until the �nal state. There are no time considerations when analysing
paths. This problem can be solved with search algorithms, like Djikstra.

17

2. Research and related work

Figure 2.3: A simple motion diagram like shown in [Ton]

Motion planning, considers the time when planning the motion. This means that we
can make assumptions on the velocity, the acceleration, the jerk and other derivatives
of the position. Usually a spline, meaning a curve composed from several polynomials,
is used to describe the systems motion. The graphical form of motion description is
called motion diagram[Ton]. A very basic motion diagram is shown in �gure 2.3. As we
see, the problem is not limited to autonomous vehicles but rather general. The same
problem arises with exploration robots, or drones. However the underlying con�guration
space, the dimension of real space, the motion optimization criteria and various other
parameters to the problem change. We will now introduce our de�nition, which is based
on [AKM]:

Given a dynamical system of the form ẋ(t) = f(x(t), u(t)) with an initial position in the
state-space x(t0) = x0, where x ∈ Rn is the state-vector and u ∈ Rm is the input-vector.
Also, a goal region G ⊂ Rn, a cost function J and constraints on the system of the form
gS(x(t), u(t), u) ≤ 0 are given. Find the input u(t) for t ∈ [t0, tf] s. t. x(tf) ∈ G, while
considering:

• ẋ(t) = f(x(t), u(t))

• x(t) ∈ WS,free(t)

• u∗(.) = argminu(.) J(x(t), u(t), t0, tf)

18

2. Research and related work

• gS(x(t), u(t), t) ≤ 0

• O(x(t)) ∈ WS,free(t) ∀t ∈ [t0, tf], where WS,free(t) ⊂ R2.

The problem is solved when an input function is found satisfying all criteria. The
collision with obstacles is avoided, meaning that the state of the system doesn't collide
with states of other systems in the relevant state dimensions, as indicated in the last
criterium.

2.6 Formal synthesis algorithm for embedded systems

The main topic of this masterthesis is to design and to implement a communication
protocol for the communication between an autonomous vehicle and a formal synthesis
algorithm running in the cloud. In order to understand the implications to the protocol
itself and to gain system knowledge we will focus in this chapter in the math and the
concept behind the formal synthesis algorithm. Most of the de�nitions are based on the
lecture "Formal Synthesis of Embedded Systems" at the TUM.

2.6.1 System modeling

A system de�nes and represents the functional behavior of a technical or non-technical
dynamical phenomenon, and the dynamic processes inside. The system model repre-
sents these processes in a mathematical fashion. The system is modelled as a closed
environment, which can communicate with the extern environment with input signals
and output signals. States exist inside the system, which capture the information of the
past and save history data in an optimal manner [Uni15].

Figure 2.4: Abstracted system with inputs (u), outputs (y) and states (x)

Systems can be categorised in di�erent fashions: We can di�erentiate systems based

19

2. Research and related work

on the time continuity and the number of the state set. Systems which evolve in contin-
uous time are called continuous systems. On the other hand, systems that evolve discrete
are called discrete systems. If a system can only have a �nite number of states, it is
called a �nite system. If the number of states has no bound it is called in�nite-state sys-
tem. Hybrid systems are a combination of �nite-state and in�nite-state systems. [TA09].

We will consider dynamical systems of the form:

x(t+ 1) ∈ F ((x(t), u(t))

y(t) ∈ H((x(t), u(t))

}
System de�nition (2.1)

where x is the state vecor, u is the input vector, y is the output vector, F is the transi-
tion function and H is the output function.

In order to de�ne a meaningful composition of this type of systems we need to de-
�ne internal variables. This need stems from the fact that not all of the outputs from
a system may be used as inputs to the other system. The remaining outputs can a�ect
the state transition.

We de�ne a system S as the Septuple S = (X,X0, U, V, Y, F,H) where:

1. X,U, V, Y are non-empty sets where

• X is the state alphabet

• X0 is the initial state alphabet

• U is the input alphabet

• V is the internal input alphabet

• Y is the output alphabet

2. H : X × U → Y × V is the output function and is strict i.e. ∀(x, u) ∈ X × U :
H(x, u) 6= ∅.

3. F : X × V → X is the transition function.

Based on this de�nition we can categorise systems based on properties of the sets and
the functions. We call a system

• Finite if X,U, V, Y are �nite;

• In�nite if it is not �nite;

• Autonomous if U is a singleton, i.e. |U | = 1;

• Basic if U = V and (y, v) ∈ H(x, u)⇒ v = u;

• Static if X is a singleton;

20

2. Research and related work

• Moore if the output does not depend on the input

• Moore with state output if X = Y and (y, v) ∈ H(x, u)→ y = x

The system S is called simple if it is basic and Moore with state output. Based on these
de�nitions a simple system S can be denoted by S = (X,X0, U, F), where the original
system de�nition can be recovered by (X,X0, U, U,X, F, id) where id is the identity re-
lation.

A pair (x, v) ∈ X × V with F (x, v) = ∅ is called blocking.

In order to understand the system de�nition, we will analyze a simple continuous lin-
ear system like de�ned in most control-theory books and then de�ne the corresponding
system with our de�nition.

Example of a system Let us start with a simple SISO (Single input, single output)
linear continuous system of the form x′ = Ax+Bu with A = −2, B = 1 and x0 = 0. The
output should be the state itself i.e. y = x. Since the system is described by a di�erential
equation, we can solve the equation with a variable input and get a function x(t), which
describes the system's behaviour for an input. The solution to this di�erential equation
is:

x(t) = eAtx0 +

∫ t

0

eA(t−τ)bu(τ)dτ

where t0 = 0. Let us consider that the input is a constant function with u(t) = 1 and
x0 = 0. Then the solution becomes: x(t) = −0.5e−2t + 0.5.

In order to discretise the system and apply our de�nition of a system, we can use
the solution of the di�erential equation in every time step as the transition function of
the system:

F (x, u) = {eAtx+ (

∫ τ

0

eAsds)Bu}

Basically, we look at the system in every time step, we set xcurrent = x0 and t = t0 and
solve the di�erential equation for t ∈ [t0, t0 + h], with h being the sample time. What
follows, is an in�nite simple system. If we compare the two output signals from the
continuous and the discretised system, we understand that the discretised system gets
input every sample time and it is held constant. This discretisation of the input signal
is called zero-order hold (ZOH). The output signal is then sampled and held constant
during the sample period.

In case of �nite systems, we can draw the behavior of the systems graphically. The
states are illustrated by circles. Initial states are marked with incoming arrows. Tran-
sitions from one state to another are drawn with arrows. On the top of the arrows, we
notate the input, the internal input and the output that are participating in this state
change. In �g 2.7 we can see a simple system with two states.

21

2. Research and related work

Figure 2.5: Outputsignal of the continuous system with a constant input

Figure 2.6: Output signal of the discrete system with a constant input

Figure 2.7: A simple state chart

22

2. Research and related work

2.6.2 High level speci�cations

After the system de�nition, we have to think about the behavior, we want the system to
adopt. The system itself, is considered close, meaning that we can't change the behavior
of the system directly by intersecting the states or the transitions of the system itself.
Our actual task is to �nd another System C, which can be connected to the plant system,
in such a manner that the overall system is behaving and ful�lling our speci�cations.
We will start by analyzing the behavior and the solutions of a system. After that we
will talk about the mathematical notation of high level speci�cations. Finally we will
analyze the connection between these two mathematical concepts.

Solution and behavior of a system Let us consider a system

S = (X,X0, U, V, Y, F,H).

For a �xed T ∈ N ∪∞, the quadruple (u, v, x, y) ∈ (U × V ×X × Y)[0;T [is a solution
of S on [0;T [if and only if

• x(0) ∈ X0

• ∀t ∈ [0;T − 1[: x(t+ 1) ∈ F (x(t), v(t))

• ∀t ∈ [0;T [: (y(t), v(t)) ∈ H(x(t), u(t))

A solution is a unique path through the states of the state machine. It doesn't matter
if the last state is a blocking state or not, since we can choose the parameter T and it
can be �nite. For every T , there can exist di�erent solutions.

The behavior B(S) of S are all tuple sequences (u, y)[0;T [where:

• ∃v,x,T (u, v, x, y) is a solution of S

• T <∞ =⇒ (x(T − 1), v(T − 1)) are blocking

So the behavior of a system, consists of the sequences of the system which end in a
blocking state and all the in�nite sequences, of the inputs and outputs. The behavior is
in an abstract way, the actual behavior of a system if we think of the system as a closed
system with an interface (in- and outputs) and stress out all the possible outcomes. In
a mathematical notation:

(u, y) ∈ (U × Y)∞ = ∪τ∈N(U × Y)[0;τ [∪ (U × Y)ω

.

As an example let us consider the system S1 = (X,X0, U, V, Y, F,H) where

• X = {x1, x2}

23

2. Research and related work

• X0 = {x1}

• U = {u1, u2, u3}

• V = U

• Y = {y1, y2, y3}

• F (x1, u1) = F (x1, u2) = {x1};
F (x1, u3) = F (x2, u1) = F (x2, u2) = F (x2, u3) = {x2};

• H(x1, u1) = H(x1, u2) = H(x1, u3) = {y1};
H(x2, u1) = H(x2, u2) = {y2};
H(x2, u3) = {y3};

We can draw the corresponding state chart, as seen in �gure 2.8: We can now, de�ne

Figure 2.8: The state chart of the system S1

the behavior of this system. To de�ne the behavior, we use ω-regular expressions over
sets. The behavior is composed of all possible tuple sequences of the in- and outputs.
The behavior of the system S1 is:

B(S1) = L(((u1, y1)+(u2, y1))
ω+((u1, y1)+(u2, y1))

∗(u3, y1)((u1, y2)+(u2, y2)+(u3, y3))
ω)

For example, the in�nite path (u1, y1)(u2, y1)(u1, y1)(u2, y1)..., de�nes a behavior of the
system S1.

24

2. Research and related work

Speci�cations Speci�cations and requirements are often written in natural language.
However, a mathematical notation is needed in order to apply the formal synthesis algo-
rithm to a plant system. Let's de�ne speci�cations. Given a set Z, any subset Σ ⊆ Z∞

is called a speci�cation (or property) on Z. In other words, every �nite or in�nite se-
quence of elements of the set, is called a speci�cation.

For example let's consider the set Z = {a, b, c}. The following ,single-element sets
of Z∞ are speci�cations on Z:

• w1(t) = aaa... (Every time step a should hold)

• w2(t) = abcccababcabccabcab... (After an a, there should always hold b)

• w3(t) = c (In the �rst time step c should hold)

We can naturally express these types of properties with the help of linear temporal logic.
Linear temporal logic formulas stand for properties of sequences. Linear Temporal Logic
is an extension of propositional logic to formally de�ne properties within a linear-time
perspective. Temporal logic allows the speci�cation of the relative order of events. LTL
formulas are always de�ned on a �nite set of atomic propositions. LTL formulas are
built from these atomic propositions and are closed under the boolean connectivenes,
the unary temporal operator ◦ (next-time) and the binary temporal operator U (until)
[dGV13, RWR17, BK08]. The underlying time domain is discrete. The time modalities
are time-abstract, meaning that time gets passed by the incremental time tick, and all
implications to the S.I unit second, have to be done manually.

We can create sequences of sets consisting of atomic propositions and then check if the
trace satis�es the LTL formula. In fact, let ϕ be a LTL formula over the atomic propo-
sition set AP = {a, b} and w ∈ AP [0;∞[. Figure 2.9 shows the intuitive idea behind "w
satis�es ϕ". The set of all satisfying sequences is denoted by P (ϕ) = {w : [0;∞[→ AP
| w |= ϕ}.

More information regarding LTL can be found in [BK08, dGV13].

Speci�cations on systems, realisability Now, that we de�ned speci�cations on
sets, we can �nally create a connection between a system and a speci�cation. What
matters for us, is the behavior of the system because this is the interface with the sys-
tem, consisting of the actuators we can control and the data we can actually measure.
The behavior of a system is de�ned as the �nite and in�nite sequences of tuples from
the in- and outputs, that are solutions of the system and end because a state is blocking
or the sequence is in�nite.

Given a system S = (X,X0, U, V, Y, F,H) and a speci�cation R over U × Y , we say
that S satis�es R if

B(S) ⊆ R.

25

2. Research and related work

Figure 2.9: Intuition behind "w satis�es ϕ", from the book "Principles of model check-
ing" [BK08]

In other words, this means that a system satis�es a requirement, if the behavior it im-
poses, is a subset of all possible solutions that ful�ll the requirement.

On the other hand, given a speci�cation R over U × Y , we say that R is realisable
on S if there exists a system C (the controller), which is feedback composable with the
system S and

B(C × S) ⊆ R

.This de�nition shows us, that we have to control the output of the system, by applying
appropriate input in the right state.

We can naturally de�ne speci�cations on a set of atomic propositions using linear tem-
poral logic [RWR17, BK08]. Like already noted, the set of all satisfying sequences is de-
noted by P (ϕ). To make a connection between the LTL formula ϕ on the set AP , and the
behavior of a system S, we have to create a strict labeling function L : U×Y → AP . Ev-
ery element of the behavior of the system (u, y) ∈ B(S), induces a sequence w ∈ (2AP)∞,
with w(t) = L(u(t), y(t)). P (ϕ) is the set of all satisfying sequences for the LTL formula
ϕ and a property over (2AP)∞. We can now de�ne the property P (ϕ) over (U × Y)∞,
with the labeling function L:

PL(ϕ) = {(u, y) ∈ (U × Y)∞|L ◦ (u, y) ∈ P (ϕ)}.

We say that:

26

2. Research and related work

1. (u, y) satis�es ϕ if (u, y) ∈ PL(ϕ)

2. S satis�es ϕ (under L), if S satis�es PL(ϕ)

3. ϕ is realisable on S (under L), if PL(ϕ) is realisable on S

2.6.3 Finite abstractions of continuous systems

Since we are interested in controlling continuous systems, we will have to abstract the
continuous system to a �nite abstraction in order to apply symbolic control.

To understand the �nite abstraction we �rst have to de�ne the set of admissible in-
puts, as well feedback re�nement relations, as de�ned in [RWR17].
We de�ne the set of admissible inputs US(x) = {u ∈ U |F (x, u) 6= ∅}. This set of a state
x contains all possible inputs that will not block the system, i.e. F (x, u) 6= ∅.

Now let S1 and S2 be simple systems, where the sets are indexed with the system
index. Assume that U2 ⊆ U1. A strict relation Q ⊆ X1 × X2 is a feedback re�nement

relation from S1 to S2 if following conditions hold for all (x1, x2) ∈ Q:

1. US2(x2) ⊆ US1(x1)

2. u ∈ US2(x2)→ Q(F1(x1, u)) ⊆ F2(x2, u).

A feedback re�nement relation associates states of systems with states of other systems.
Additionally the FRR imposes requirements on the local dynamics of the associated
states [RWR17]. More information can be found in [RWR17].

Consider a continuous system of the form

Σ : ẋ(t) = f(x(t), u),

where x(t) ∈ X ⊆ Rn is the state vector and u ∈ U ⊆ Rm is an input vector. We
partition the set X into a �nite partition X, that is constructed by a set of hyper-
rectangles of identical widths η ∈ R+

n. The component wise widths don't have to be
same, i.e. η ∈ R+

n. We also de�ne U as a �nite subset of U, i.e. U ⊂ U . Note the
di�erence between X and U , since X is a set containing sets, and U is a set containing
vectors.
We de�ne xx,u(.) as the trajectory satisfying the di�erential equation at almost every
t ∈ [0, τ [, where τ ∈ R+ is the sampling period, with the initial condition xx,u(0) = x
and the input u being constant. A �nite abstraction of the system Σ, is then de�ned as
a �nite-state system Σ = (X,U, T), where T ∈ X × U ×X is a transition relation that
ful�lls the fact, that there exists a feedback re�nement relation R ∈ X ×X from Σ to
Σ [KZ]. Since discretisation naturally introduces some errors in the transition of states,
we want to bound the error by over-approximating the reachable sets starting from a
set x ∈ X when the input u is applied. This over approximation can be thought as a

27

2. Research and related work

function Ωf : X × U → X2. An over-approximation of all the reachable sets can then
be obtained by the map ωf : X × U → 2X , de�ned by Of (x, u) = Q ◦ Ωf (x, u), with Q
being a quantization map, like de�ned in [KZ].

2.6.4 Symbolic controller synthesis of a provably correct con-

troller

We are now able to de�ne the synthesis problem: Given a system S = (X,X0, U, V, Y, F,H).
Given a set Z and a speci�cation Σ on Z. The system S satis�es the speci�cation Σ on
U × Y if B(S) ⊆ Σ. Given a speci�cation Σ on U × Y , the system C solves the control
problem (S,Σ) if C is feedback composable with S and the closel loop C ×S satis�es Σ
[RWR17, TA09].

So the problem is, given a speci�cation on the input and output sequences and a system,
to �nd a controller, that can be connected to the system, which enforces this behavior
that ful�lls the speci�cation.

We will introduce an algorithm for the solution of symbolic controllers, like described
in the lecture "Formal synthesis of embedded systems" at the TUM. Also data from
[KZ, BK08, RWR17, TA09, MPS] was used.

Given a simple system S = (X,X0, U, F,H) with the original system de�nition be-
ing: S = (X,X0, U, U,X, F,H). We �rst de�ne the predecessor map for Z ⊆ U × X
by

pre(Z) = {(u, x) ∈ U ×X|∅ 6= F (x, u) ⊆ πX(Z)}.

The map πX(Z) is de�ned as πX(Z) = {x ∈ X|∃u∈U(u, x) ∈ Z}. It is just the set with
all states x of the set Z, i.e. πX(Z) ⊆ X. The predecessor map is the set of non-blocking
input/state pairs for which all successor states are in the projection of Z on X. Also
notice that the predecessor map, which is de�ned in pre : 2U×X → 2U×X , is monotone,
meaning that the function takes a set and produces at least a set with the same number
of elements i.e. |Z| ≤ |pre(Z)| and Z ⊆ pre(Z).

Let us introduce a set of atomic propositions AP . We will focus on reachability spec-
i�cations on simple propositional formulas. Consider a LTL formula ϕ over the set
AP with the propositional formula ψ. We construct the winning set Zψ = {((u, x) ∈
U × X|L(u, x) |= ψ}, where L : U × X → 2AP is a labeling function, mapping every
element of U ×X to a set whose elements α ∈ AP , [KZ, RWR17].

We consider now the monotone function G : 2U×X → wU×X which is de�ned by
G(Z) = pre(Z) ∪ Zψ. We will compute Z∞ = µZ.G(Z) starting with Z0 = ∅. We
adopt the notation from µ−calculus with µ as the minimal �xed point operator and Z
is the operated variable. That means we �rst construct the winning set and starting
with that, we compute the set of reachable states based on the winning set. The theorem

28

2. Research and related work

says that: ∃ �nite system C so that C × S satis�es ψ under L i� X0 ⊆ πX(µZ.G(Z)).
In other words, if we can reach the desired state from the initial states of the system,
meaning there exists a path from X0 to Zψ, the speci�cation is realizable and there
exists a controller which can enforce the behavior. Notice that every element of X0 has
to be in the �nal state µZ.G(Z), since we have to make sure that the speci�cation is
realizable from all starting states because the initial state is chosen non deterministically.

The synthesised controller is a static system C = ({q}, {q}, X,X, U, id,Hc) with only
a dummy state q, the states X as input and U as output. The strict output map
Hc(q, x) = Hc,state(x)× {x} is de�ned on Hc,state(x) : X → 2U by

Hc,state(x) = β(j(x) <∞, {u ∈ U |(u, x) ∈ µj(x)Z.G(Z)}, U),

where β is the operator which assigns Hc,state(x) the second argument if the �rst argu-
ment is true, and otherwise the third argument. The function j(x) : X → N ∪ {∞} is
given by

j(x) = inf{i ∈ N ∪ {∞}|x ∈ πx(µiZ.G(Z))}.

The system C is then feedback composable with the system S and C × S satis�es φ
[KZ, RWR17, RZ, TA09].

The idea behind this controller is simple. We apply the monotone function G to the
plant system. The function outputs in every step the set of reachable states starting
from the desired state. If the algorithm ends and the initial states are inside the �nal
set, then there exist paths from the initial states to the desired states. To get from an
initial state to the desired state, we just have to apply the appropriate input from the
input-state tuple, that we found out with the �xed-point algorithm �rst (note j(x)). If
we recursively apply the right input in the right state, we can get from all initial states
to the desired states and thus the speci�cation is met.

2.6.5 Practical implementation of formal techniques

At this point we have analysed the main theoretical part of the prerequisites. In this
section we will focus on a practical implementation of the symbolic control algorithm,
that we will use as backend server that implements the algorithm, in order to test, debug
and validate our protocol.

Model-based techniques allow us to algorithmically solve the control or veri�cation prob-
lem. However these formal techniques su�er from the state-space explosion problem.
The problem with symbolic control and formal veri�cation techniques is the computa-
tion part[KZ].

There exist implementations of symbolic control, like in [HMMS, RZ], but as noted
in [KZ], these are only serial implementations that utilise only one CPU. The serial
implementation of the algorithm is counter-optimal, and bounds the set of systems that

29

2. Research and related work

Figure 2.10: Di�erence between GPU and CPU, as noted in [OAD]

can be analysed with that approach to small systems with limited number of states and
inputs. Also, the controllers cannot be computed online, because the serial implemen-
tations are too slow.

In the past years we have seen a stagnation in the processing speed of processing units,
disobeying moores law [JK12]. CPU Vendors like Intel are trying to o�set the stagnation
with multi-core hardware architectures and complex circuits that should speed up the
processor. However, these approaches increase the complexity of the processor. The
increasing complexity of these systems can have signi�cant security issues. In 2018, two
security issues were reported that a�ect most commercial CPUs, Meltdown and Spectre
[Mor18]. Both security issues, are correlated with the "out-of-order execution" feature
of intel CPUs, which is an optimisation technique that utilizes all execution units of a
CPU core at the maximum. Practically, the CPUs supporting out-of-order execution,
allow running operations speculatively, with a probability that the branch is not taken
and the results will be omitted. More information on these security �aws can be found
in [Mor18].

In recent years another approach for achieving high throughput is getting more pop-
ular: Parallel computing. Several years ago, engineers noted the potential of using
GPUs for general purpose applications. GPUs can speed up parts of application that
require numerical computations. The reason for that, is that more hardware circuits are
assigned in the GPU to handle computations, instead of �ow control or caching, like in
today's CPUs as seen in �gure 2.10 [OAD].

Tasks that can be parallelized achieve a signi�cant speedup in order of magnitudes,
like in [KZ]. In order to use this type of computing platforms, several standards and
programming models evolved like CUDA and OpenCL [OAD, JK12]. These platforms
allow developers to write code that can run on a simple CPU, as well on complex hard-
warecluster consisting of GPUs and CPUs without the need to rewrite code. Last, cloud

30

2. Research and related work

services providers, which support IaaS (Infrastructure as a Service), give customers the
option to lease hardware systems via the internet [SB18]. With this solution, everyone
can book hardware clusters and use them to run a parallel algorithm with little cost.

In [KZ], the authors present us a software-ecosystem called pFaces, that can be used
for the utilization of high-performance computing (HPC) platforms. In [MM], pFaces is
migrated to the cloud with Amazon Web Services (AWS). Since we will use pFaces as a
generic accelerator that runs in the cloud on top of a hardware cluster in this thesis, we
will brie�y analyse the structure, function and capabilities of pFaces in the next section.

2.6.6 pFaces: A software ecosystem for parallel computation

pFaces, is a software platform that manages and supervises the execution of parallel
algorithms on existing computing resources. This software tries to utilize all computing
resources under management, in order to reduce the computation time of algorithms
[KZ].

pFaces supports high performance computing (HPC) platforms. This platforms con-
sist of an interconnection network that connects di�erent compute nodes (CN). Each
CN connects di�erent computing units (CUs), like CPUs or GPUs. Each CN has a
prede�ned set of processing elements (PE). PEs are the hardware circuits doing math-
ematical and logical computations. In order to minimize computation time, pFaces
utilises all available PEs in this type of heterogeneous systems [KZ]. In �gure 2.11 we
can see the computing model considered in pFaces.

Figure 2.11: Computing model considered in pFaces [KZ]

The software is built aiming to utilise computing resources, independent from the ac-

31

2. Research and related work

Figure 2.12: Internal structure of pFaces [KZ]

tual algorithm which is called Computation Kernel (CK). The management ecosystem
is independent from the computation Kernel. Figure 2.12 shows the internal software
structure of pFaces. pFaces goal is to utilize all available PEs in a heterogeneous system.
Therefore pFaces manages the runtime of this computation by assigning computation
jobs to PEs.

The main modules of pFaces are:

• Resource Identi�cation and Management Engine : Identi�es the underlying hard-
ware resources and runs part of the kernel

• Kernel Tuner Module : Approximates the computing power of each CU

• Task scheduler Module : Runs the kernel as e�cient as possible

• Con�guration Interface Module : Gives an interface to the user via text con�gu-
ration �les

• Logging and Debugging Module : Provides hints, suggestions, debugging and state
information about the executing kernel

• Computation Kernel : The job to be accelerated

In order to accelerate an algorithm with pFaces, the software should be written in
OpenCL with some extensions de�ned by pFaces.

32

2. Research and related work

Figure 2.13: The classic approach to interface with pFaces in the cloud [MM]

For our considerations, we will interface with pFaces through a REST Api and not
through the basic web-interface which is shown in �gure 2.13. The components of the
implemented system are discussed in chapter 3. More information on pFaces can be
found in [KZ, MM].

2.7 Protocol design principles

2.8 Simulators

In this chapter we will introduce automotive simulators which can be used for testing
and debugging purposes.

2.8.1 SUMO

According to the paper SUMO - Simulation of Urban Mobility: An Overview [Beh],
SUMO is an open source, highly portable, microscopic and continuous road tra�c sim-
ulation package designed to handle large road networks. It is being developed and
maintained by employees of the Institute of Transportation Systems at the German
Aerospace Center. It is open source.

SUMO is not just a tra�c simulator, but a complete simulation suite with many tools
and interfaces. With SUMO we can con�gure the simulation environment very �exible.
For example we can build a simulation environment that supports light systems, bus
stops and vehicles with di�erent behavior [Joe].

33

2. Research and related work

The documentation has a high quality and is very readable. There is a separate user
and developer documentation. The user documentation focuses on the various tools
and the possibilities one has with SUMO. The developer documentation focuses on the
extensibility of the simulator and code, test and debug capabilities of SUMO[Pab].

SUMO has a rich ecosystem for map generation. The tool netgenerate generates a
map based on di�erent precon�gured settings. The tool netconvert is capable of con-
verting many digital network formats[HHH].

SUMO has two di�erent simulation environments. There is a command for a non-
graphical simulation, that is used for testing and integration purposes, and one for
graphical simulation, where the vehicle and the environment are rendered.

SUMO can output information of the simulation, such as the vehicle position or tra�c
key values in every time step. There is also a noise emission and fuel consumption model.

Finally, SUMO has an API that can be accessed from every programming language
through TCP/IP sockets. SUMO includes a Python and Java API builtin.

2.8.2 Movsim

Movsim stands for Multi-model open-source vehicular-tra�c Simulator. It is a software
tool that is used in evaluation and monitoring of control software of autonomous vehi-
cles. Movsim is written in JAVA. The source code can be found in github. Because it
is open-source, it can be me modi�ed and extended with a desired behavior. The code
is divided in di�erent modules and submodules, which can be exchanged and combined
in various situations. For example, the tra�c simulation can output a csv �le, that
can be used for analysing the data. The functionality and the simulation trace can be
con�gured with an xml con�guration �le. The simulator can output various information
in the csv format[GBH+].

The models that are implemented are derived from the textbook Tra�c Flow Dynamics
by Martin Treiber and Arne Kesting[TK13].

Movsim supports many features such as:

• Multiple models of di�erent model classes

• Physics-based model for fuel consumption and emissions based Tra�c Flow Dynamics[TK13]

• Drivers behavioral models

• Multi-lane simulator

34

2. Research and related work

The documentation is very understandable and the tool is relatively easy to use. Because
it is written in JAVA, the JAVA Runtime is required to run the simulator. MovSim is
a great simulator for academic purposes, because the underlying models features are
implemented based on scienti�c papers and books.

2.8.3 Carla

Carla is a simulator for autonomous vehicles. It is open source, written in C++ and
very extensible. Carla runs on Linux and Windows machines. The framework provides
the user with an incredible �exibility. Almost everything can be con�gured, like roads,
sensors or the weather. Carla is also very extensible. Users can create digital assets like
vehicles or buildings and use them in their simulation. This is great for simulations in
di�erent environments[DRC+].

Carla has a simulator and a powerful python api. The simulator is responsible for
doing all the computations and rendering, while the API module just connects to the
simulator and controls it. The Carla documentation is very readable and easy to un-
derstand. The documentation structure is intuitive, so that the user can �nd fast what
he needs. With the API the user can spawn vehicles, control the weather, attach and
detach sensors, control the vehicles and many more. Carla also got an impressive GUI.

One overlooked feature of Carla is that we can disable the rendering process. In case of
automated tests or performance reasons, one can choose to disable the rendering. With
this feature Carla does not render and just computes the state of the world[DRC+].
This gives a performance boost to the simulation that allows engineers to run tests and
simulations very fast.

2.8.4 Comparison of simulators

In this section, we will compare the simulators based on some prede�ned criteria. Every
criterium has got an individual weight to compensate detail criteria. Each criterium can
get 1 up to 10 points. The simulator with the greatest percentage is the most sophisti-
cated.

Carla satis�es almost every criterium. It has also a very active community and reg-
ular updates.

SUMO is a real good simulator with a �exible con�guration. However, the visuali-
sation is limited. The API is �ne, but the Carla API is really powerful and intuitive.

MovSim was the light weighted simulator in our simulator comparison. The capabilities
are bounded. However MovSim is a great simulator for beginners and students that
want to learn more about the functionalities of simulators and the physics behind them.

35

2. Research and related work

Figure 2.14: Carla simulator - The information is shown left

36

2. Research and related work

Criteria (Weight in %)
Simulator

SUMO MovSim Carla

Lightsystems (6) 8 4 7
Map and streets (9) 8 4 9
Vehicle diversity (7) 8 5 10
Fuel calculation (8) 10 10 8
Map import and generation (9) 8 5 10
Simulation information (8) 7 3 9
Visualisation (7) 6 3 9
Interaction with Api (9) 5 5 8
Documentation (10) 9 5 8
Support (8) 5 2 9
Active community (6) 6 1 10
Last update (5) 6 3 9
Additional tool support (8) 9 2 9
Total 73.9 41.3 88.3

Table 2.2: Comparison of the simulators

Based on this short analysis, we will recommend Carla for future simulation purposes.

37

3

Concept and implementation of a

control protocol and an application for

symbolic control

In this chapter we will focus on the enterprise application that we will develop. The
main topic of the thesis, is to create a protocol for the remote control of autonomous
vehicles over the cloud. With this protocol, we will connect a mock vehicle that is im-
plemented using C#, to a self-implemented server and get the symbolic control from
pFaces. The whole application consists of a registration system, a database, and a web
frontend too.

We will call the designed protocol Open Automotive Control Protocol, and in short-
hand notation OACP.

3.1 Requirement and speci�cation analysis

In this section we will �x the requirements of the application and the parts that compose
the application.

We will �rst analyse our imagined user experience and the steps a user should take
in order to use our system.

To use the protocol, there should be a registration system where the user can regis-
ter and manage all their vehicles. The user should be able to create a new vehicle with
di�erent protocol modes and download a �ash extract for each vehicle and protocol
mode, that will later be �ashed to the ECU of a vehicle. This �ash extract contains
all con�guration and communication settings in order for the protocol itself to function
correctly.

The ECU should run a standardised AUTOSAR communication thread with a sampling

39

3. Concept and implementation of a control protocol and an application for symbolic
control

time of dtthread, where the communication with the server is handled. The communi-
cation with the server is scheduled in a discrete time manner, and the thread gets called
every dtthread seconds. In the worst case, after a wcet time dtmax the optimized inputs
are received. The ECU should then apply all inputs in a time discrete sequential fashion
with a sampling time of dtinput.

The server should listen for incoming connections at a prede�ned port. It should also
be able to handle multiple clients at once. The server should also validate the vehicle
with the con�guration saved in a database

The protocol itself should have security mechanisms built-in. There should be a stan-
dardised way to communicate with a participant. It should provide authentication and
encryption schemes. It should be extensible and easy to use. Also, there should be some
safety concept in order to use the protocol and make sure that the communication is
safe. The protocol should have di�erent protocol modes that di�er in logging, testing,
debugging and calibration authorization schemes. The protocol should also provide a
way to alter the driving mode, or optimize the control inputs in some fashion. Last but
not least, the state and control communication, should be unique and deterministic.

3.2 High level architecture of the enterprise applica-

tion

In this section we will start the project with a high level architecture of the application,
based on the requirements of section 3.1. We will create a system drawing, with all
required systems and their connection. After that we will analyse the information �ow
of the whole system to get more requirements for the implementation.

3.2.1 Component model

The application as a whole consists of distributed systems that are connected with dif-
ferent protocols.

We �rst need a database to store the data about the user and the vehicle con�gura-
tions.

Next, we need a management front-end application that takes care of the user inter-
face. The user should download the �ash extract of a created vehicle and calibrate the
ECU with that con�guration in order for a vehicle to successfully connect to the server.

The front-end application connects with a back-end application via a REST API over
HTTP. The back-end application accepts requests from di�erent clients with di�erent
authorization rules, and gives standardised interfaces to alter and query the database.

40

3. Concept and implementation of a control protocol and an application for symbolic
control

pFaces runs alongside the other systems, and listens on a speci�ed TCP/IP port for
incoming requests. When a client connects to pFaces, the system opens a new port for
the speci�c symbolic control problem and delegates the communication between pFaces
and the client to that port. Every control action is then requested with that endpoint.

The OACPProtocol, is implemented as a dynamiced linked library (.dll), that gives
applications OACP capabilities. It provides a standardised message communication
scheme, data querying of responses and encryption capabilities.

The OACP-Server is an application by itself, handling incoming vehicle control requests
and referencing the OACPProtocol, in order to have a standardised communication
with clients. The server is communicating with pFaces and the back-end application
with HTTP. The server gets also connected with the vehicle over TCP/IP and the
OACPProtocol itself.

The vehicle is an abstract client, referencing the OACPProtocol in order to use it. It
can be a real physical vehicle, a robot-car, a simulation or anything else that ful�lls the
requirements of the protocol. In any case, the client runs a timed thread that handles
the communication with the server. The inputs are then placed in an input queue, and
are applied in a discrete fashion. In �gure 3.1 we can see the di�erent components of
the system and the connections between them.

3.2.2 Data Flow Diagram

A Data Flow Diagram (DFD) is a graphical diagram that visualises the data �ow within
a system. We will create a data �ow diagram to visualise the data transformations in
our application.

In order to draw the data �ow diagram we will discuss the steps a user has to take
in order to use the protocol.

1. Create an user account

2. Create a new vehicle

3. Download the �ash extract for the vehicle

4. Calibrate the ECU of the vehicle and apply the con�guration

5. The vehicle connects to the server and the OACP session starts

In our architecture we got two external entities: The application user and the vehicle.
We will model only one database as a central repository, that contains many tables. The
DFD can be seen in �gure 3.2.

41

3. Concept and implementation of a control protocol and an application for symbolic
control

Figure 3.1: OACP Enterprise architecture

42

3. Concept and implementation of a control protocol and an application for symbolic
control

Figure 3.2: Data Flow Diagram of the application

43

3. Concept and implementation of a control protocol and an application for symbolic
control

3.3 Management system

In this section we will take a look on the registration system. The registration system
is responsible for providing an interface to the user in order to register and manage the
corresponding vehicle data.

We will implement the registration system using ASP.NET Core for the backend func-
tionality and Angular for the frontend functionality. The frontend will communicate
with the backend using a HTTP REST Api. We separate the two applications in order
to have a clean separation of concerns and to enable users to build their own frontend
without changing the backend.

3.3.1 Database

To save application data we will use Microsoft SQL Server. SQL Server is a relational
database management system. We can connect to a SQL Server instance remotely, with
TCP/IP on the port 1433. To connect to a SQL Server instance from our application,
we have to provide a connection string that contains di�erent settings, like User Id and
Password. After that we can write SQL Queries and read and modify data. We will not
write the SQL Queries by ourselves, since we will use Entity Framework, which is an
object-relational mapper that encodes our C# queries in SQL Queries.

3.3.2 Backend

The backend is responsible for providing a complete API to the frontend for the user
and vehicle management. We will build our backend in ASP.NET Core in C#. We
will try to implement the system with clean architecture and a clear separation between
di�erent modules of the application. Thus, there are 3 di�erent projects that we will
implement:

• OACPCore - The main module that implements the entities, provides standardised
access to those and is independent of the other modules

• OACPPersistence - The database access layer, that manages the communication
with a database and provides entities for manipulation that get saved into the
database

• OACPWebApi - The interface to the application as a REST Api, using MVC
(Model-View-Controller) that makes calls to the OACPCore project

OACPCore

The OACPCore project is the main part of the application that contains the business
logic of the system. We �rst have to think about all the di�erent entities that we have
to deal with in our software.

44

3. Concept and implementation of a control protocol and an application for symbolic
control

First, we have to model the user, which is the entity that can create vehicles and
manage them. We can model a user with the standardised Identity Model of ASP.NET
core by inheriting from IdentityUser. IdentityUser is a base class from ASP.NET Core
that provides us with standard properties which are very useful in user management
software, like:

• Username - The username, with which the user can authenticate for this applica-
tion

• LockOutEnd - Is the account locked out?

• PhoneNumber - The telephone number for the user

• SecurityStamp - A random value that must change whenever a user's credentials
change

• PasswordHash - A salted and hashed representation of the password for the user

• NormalisedEmail - The normalised email address for the user

We will extend the base class and add three more properties for the actual entity Ap-
pUser:

• FirstName - The �rst name of the user

• LastName - The last name of the user

• Vehicles - A list that contains all vehicles that belong to the user

We will also add a constructor, that accepts the username and the email address as
required values to create a new user. Notice that the password is not needed, since the
IdentityModel library provides us with standardised access methods to the user.

The IdentityModel library creates default object that handle the user management.
There exist a user manager, a signing manager and even a role manager. In order to use
these classes, we have to provide store implementations, meaning we have to provide
classes that implement a speci�c interface that handles the actual connection with a
database, that manages how the data is stored and so on. ASP.NET Core provides a
default implementation of these user stores with the entity framework, which we will use.
This means we only have to add the registration of these user stores to our application
and we can then use all the helper classes of this library.

The next entity we need to model is the vehicle itself. A vehicle should always be
assigned to a user and have an unique Id. We also need to store a name for the vehicle
(this can be the model of the vehicle, like BMW 320i). Also we need to store the math-
ematical model of it, because this is needed in the symbolic control algorithm. Last but

45

3. Concept and implementation of a control protocol and an application for symbolic
control

not least we add a list with protocol modes to the vehicle.

The protocol modes are standardised values in the protocol, which should control dif-
ferent variants for the current session. For our protocol we de�ne the three values:

• LIVE

• DEBUG

• TEST

Every vehicle can be activated for di�erent protocol modes. To capture this we create
our last class, the ProtocolModeCredentials class. This class models a protocol mode
with all the metadata. It contains a mode, a boolean �ag indicating if the mode is
currently activated and a secret key that is valid only for this particular mode. It also
contains a reference to the vehicle for data store reasons. We also add a constructor to
this class, that accepts a vehicle Id, a protocol mode, and the isActive �ag. The secret
key gets auto generated and assigned to each mode.

The next thing we need to do is to de�ne some services, that provide the interface
to the core module. We create a UserService, a VehicleService and a ProtocolModeSer-
vice class. We then implement standardised methods to query and modify the values
in the database, like GetUserByUsername, or CreateUser and so on. We need to keep
the references to actual implementations to a minimum, to make use of the dependency
injection buil-in feature of ASP.NET Core. Thus, we create an interface of the class
and make the class implement that interface. This means we also have an IUserService,
an IVehicleService and an IProtocolModeService interface. Last but not least we need
to register all interfaces, the database, and do some processing in the start of the ap-
plication. The problem is, that the OACPCore project, does not contain a reference
to the OACPPersistence project, which handles the database connection. In order to
maintain our clean architecture, we create an interface called IPersistenceCon�guration,
which de�nes two methods: AddDbContext, and AddUserStores. We will then inject
that interface to a method called AddApplication, that handles all initialisation logic.
The actual implementation is generated when the OACPWebApi project starts, which
is the starting project of our system. The OACPWebApi project will inject an imple-
mentation of that interface (of the OACPPersistence class), to the OACPCore project
that will call the two methods in that method.

We also add some con�guration to our IdentityModel, like the password strength, and
the unique email property. After that we register all of our services to the dependency
injection system and we save the OACPCore project.

OACPPersistence

The OACPPersistence project, is the data access layer in our system. It is a very small
project that only contains the PersistenceCon�guration that the OACPCore project

46

3. Concept and implementation of a control protocol and an application for symbolic
control

needs and an ApplicationDbContext class that models a database connection. This
DbContext class de�nes all entities that can be accessed through that class. We de�ne
the three entities AppUsers, vehicles and protocol mode credentials.

OACPWebApi

Finally, the OACPWebApi project is the starting point of our whole application. Since
we created a modular architecture, we could build a desktop application that runs lo-
cally, a web interface, an app that runs in smartphones or anything else. We will build a
web interface in order to enable users to access our application via HTTP. For the whole
application we will use asynchronous functions that do not block the system when the
request queue is blown up.

ASP.NET Core has a built-in server called Kestrel, which we will use. Kestrel ac-
cepts a startup class as a parameter, with which we can con�gure the middleware that
is getting called for every HTTP request that arrives. The framework also provides
us with a strong logging functionality and con�guration handling. We save all of our
con�gurations in the appsettings.json �le. We can then access every property of that
particular json �le with a dictionary approach. In the con�guration �le, we will save
our database connection string, some logging functionality and our security settings.

We will use MVC (Model-View-Controller) for our system. MVC allows us to mod-
ify a model with the help of a controller that gets called whenever a particular route
is accessed. The controller then transforms that model in to a view and returns the
response back to the user.

To use MVC, we �rst implement the controllers. The controllers, have an Route At-
tribute with a string parameter, that con�gures the controller to �re whenever that
route is matched. With the Http<"Verb"> Attribute, we can con�gure methods to get
called whenever the corresponding Http-Verb is used in conjunction with the request.
Finally the Authorize Attribute con�gures the controller actions to only get called when
the user is authenticated.

To authorise our user we will make use of the JWT (Json Web Token) Bearer Authen-
tication Scheme. According to ..., JSON Web Tokens are an open, industry standard
RFC 7519 method for representing claims securely between two parties. The JSON Web
Token is a human readable string, that contains claims about a given user. It contains
a header, a payload and a cryptographically signed signature. In the header we specify
the algorithm and the type of the token. In the payload section we de�ne the claims
that the application needs from the user, which we need in order to verify the user
and not to make database class to get extra information. The signature contains the
hash of the concatenation of the base64 encoded strings of the header and the payload
with the algorithm speci�ed in the header. With this approach, we can make sure that
the token is generated from the server by calculating the hash of the concatenation of

47

3. Concept and implementation of a control protocol and an application for symbolic
control

the header and the payload and then comparing to signature. The unique properties
of cryptographic hash functions make the JSON Web Token secure. We register the
JWT Bearer authentication scheme with our application and then we can �nally start
implementing the controllers.

The controller classes should delegate the workload to services that can be called from
di�erent controllers. This means that the logic of our web app, is implemented in
services again, that wrap the functionality of the OACPCore services in a controller-
friendly way. For each entity we create an I<Entity>ControllerService interface and the
corresponding <Entity>Controller Service class that implements that interface. The im-
plementation is straight forward and we will not worry about the implementation details.

After that we create our ViewModels, that contain the response format of the con-
troller. This is also very trivial and we will let the implementation details out.

Finally we compile our application and get a dynamic linked library (.dll), that can
run on the ASP.NET Core runtime.

3.3.3 Web interface

In order to use the backend system, we will implement a front-end web application with
Angular. Angular is a JavaScript Framework built by Google, which supports dynamic
data binding, a well architected project and asynchronous calls. Since it is relatively
straight forward, we will not discuss with the implementation details and focus on the
user interaction concept.

The user can register to the OACP Service and after that log in. He also can cre-
ate vehicles and choose which protocol modes he wants to use for that speci�c vehicle.
After that he can view all the vehicles in a table and then view the vehicle details by
clicking on the vehicle-details button. In the vehicle details the user has the ability
to change the name, the mathematical model and to change the activation�ag of the
protocol modes. Finally, he can download a �ash extract which is a �le with all the
con�guration the vehicle should need in order to successfully connect to the server.

3.3.4 Production ready deployment in AWS

In order for a user to use the management system, we will get a virtual machine in Ama-
zon Web Services (AWS). In this machine we will install Internet Information Services
(IIS), which is a standard web server for Windows.

To host the �nal web application we create a new root folder for the web application.
We create a new website in IIS and bind the website to the port 80. Next, we add an
application to the website under the relative path /oacp/, and choose the physical loca-
tion of our angular production build to resolve the dependencies. After that we create

48

3. Concept and implementation of a control protocol and an application for symbolic
control

a new application under the relative path /oacpback/, and choose the physical location
of our ASP.NET Core backend application. We use this architecture to successfully call
the backend application from our frontend, since the browser would prevent any http
requests to domains other than the initial domain. For example, the frontend can create
a new user with a POST request in : http://*:80/oacpback/api/account and get a jwt
token with a POST request in: http://*:80/oacpback/api/auth/login.

We will also install SQL Server in this machine. Next, we modify the connection string
in our ASP.NET Core application and create a server user, that has full access to the
database. The service is now running and waiting for client requests.

3.4 Concept of the OACP

In this section we will create the concept and �nally implement the Open Automotive
Control Protocol. We will start with writing some basic requirements for the protocol.
We will make some decisions regarding the protocols message format, state handling,
error handling, security and safety. After that we will go along with the implementation.

3.4.1 Goal of the OACP

To start with the concept we �rst need to de�ne the goal of the protocol.

The protocol should be used by vehicles that have a fast internet connection. The
goal of the protocol is to safely navigate a vehicle from a starting point to an end des-
tination. In order to do so, the vehicle should be registered in an OACP Service, like
the one we implemented in the last section, to apply authentication and security schemes.

The OACP Server that accepts vehicle clients, is responsible for the control input gener-
ation, data gathering, navigation, path planning, connection check, optimisation of the
control sequence and authorisation. The client - the vehicle - is responsible for exact
state measurement and sensor fusion, initiation of the connection, encryption initiation
and the actuator task execution. We will use a symbolic controller implementation for
the control input generation, but it is not mandatory. One could also implement a
classic discrete controller with this approach, since the controller implementation is not
speci�ed.

3.4.2 Design of the OACP

The design of a protocol involves the choice of protocol properties. We will de�ne
following properties:

• Communication pattern

• Transmission pattern

49

3. Concept and implementation of a control protocol and an application for symbolic
control

• Design goals

• Message format

• Message structure

• Communication rules

• Security mechanisms

• Error handling

Communication pattern A vehicle should communicate with a server and gather
control input information. There should be no external references. This implies that
the vehicle does not need to connect to other vehicles, nor that it needs additional infor-
mation about other external entities. Since there are only two parties involved we will
use a client-server architecture for the protocol. This means that one party (the vehicle)
initiates the communication and the other (the server) responds accordingly.

However since this is a prototype and we do not know what requirements will exist in
the future, we have the capability to enforce inter-vehicle communication via the server.
This means, a server could possibly act as a proxy for inter-vehicle communication for
vehicles of a speci�ed radius r in a prede�ned area.

Transmission pattern Only two parties are involved in communication at a time.
Since one vehicle connects to one server, we use a One-to-one transmission pattern for
the communication.

Design goals In this paragraph we will de�ne the framework for communication.

We �rst need a fast, lightweight communication between the two parties, since we have
to act in real-time to prevent a bad state. Any latencies and delays disturb our controller
and can a�ect the safety of the vehicle.

Next, we need reliable exchanges, but not necessary in our protocol layer, since we
can use the reliability of the protocol stack under our protocol.

The protocol should have authentication capabilities built-in. This is mandatory, since
a hacker could overwrite our messages and thus change the response of the server. For
that reason the protocol should also support encryption of messages.

50

3. Concept and implementation of a control protocol and an application for symbolic
control

Message format We can choose between a human-readable format and a binary for-
mat. Because there isn't much overhead in a text-based format and it is easy to log
and understand by people, (which is a very crucial point in automotive software engi-
neering) debug and trace a communication we will choose the human-readable version.
For our own convenience, we will encode the characters in ASCII and don't bother with
encodings.

Message structure We will use the JSON format (JavaScript Object Notation) to
de�ne our message structure. JSON is a very popular standard that describes the
structure of a data. We will de�ne the required �elds for a message and additional �elds
that have to be populated in certain states.

Communication rules In this paragraph we will de�ne some basic communication
rules.

First, the server should listen to some port. The communication starts when the client
connects to the speci�ed port.

The communication between the two parties is handled by request messages and re-
sponse messages. The client sends request messages and the server responds with re-
sponse messages.

In every request message from the client, there should be a command �eld, which spec-
i�es the command the client wants to execute. Also, there should be a state �eld which
speci�es the current state of the protocol in the clientside. The initial state is IDLE.

The server responds with response messages. Every response message should de�ne
at least the following two �elds: The response result and the state of the server. Be-
cause both parties send the current state, each of them can synchronise and detect
possible errors. Other necessary �elds that are result of the command applied, should
be integrated in this response.

Command messages may require additional data from the client. A full description
can be found in the subsection 3.4.3.6.

The server responds with response messages. A full description can be found in the
section 3.4.3.6.

Every state accepts a prede�ned set of commands. The commands that can be used in
every state are called admissible commands of that state. In case that the client sends a
non-admissible command, the server should respond with a list of admissible commands.

51

3. Concept and implementation of a control protocol and an application for symbolic
control

Security mechanisms In order to have a secure transmission between the two parties,
the protocol should support authentication and encryption.
Authentication will be supported with a challenge - response protocol. Encryption
should be widely supported, whereas the two parties involved decide which encryption
scheme to apply and what parameters to use for that.

Error handling In order to prevent communication deadlocks, the client should get
information from the server about the current state and admissible inputs that lead
to transition of the state machine. In an error case, the server should attach an error
message to the last message and the communication should be closed.

3.4.3 Protocol Speci�cation

The main design goals have now be chosen. We will try now to describe the protocol
information. This includes state charts, commands, valid responses, communication
rules etc. Every state has a de�ned responsibility. Transitions between states are taken
based on the command of the client and the result of the server.

3.4.3.1 Protocol states

We will de�ne following states and assign responsibilities for each state:

1. IDLE - Handle real time check, database check, validity check, mode check.

2. SESSION - Create session dictionary, authenticate the vehicle.

3. PREDRIVE - Handle encryption con�guration, initialise environment (dictionary)
for new trip, validate environment based on data from the database, gather data.

4. SESSIONINITIALIZED - Validate the current model of the vehicle before the
control loop starts.

5. CONTROLLOOP - Exchange state and input information. Basically this is like a
classic control loop, where the vehicle sends the state and receives an input from
the server.

6. CRASH - Handle crash state, receive data, call 101.

7. SESSIONCLOSED - Close the connection, release all other resources.

3.4.3.2 Commands

In this subsection we will de�ne the protocol commands. Each command corresponds
to an action for the server. Not every command is admissible in each state.

1. CONN - Used to start the session with the server

52

3. Concept and implementation of a control protocol and an application for symbolic
control

2. AUTH - Used to start the authentication pattern with the server

3. INIT - Used to initialise the environment

4. ENDINIT - Used to signal the end of initialisation

5. ENC - Used to encrypt the stream

6. DRIVE - Used to start the control loop with the server

7. GETCTL - Used to get a control action from the server

8. DCONN - Used to close the current session

9. CRASH - Used to signal a crash event

10. DATA - Used to send data to the server for logging, debugging, testing etc.

11. ENDDRIVE - Used to end the control loop

3.4.3.3 Responses

In this subsection we will de�ne the protocol responses. Each command message has to
be followed by a response message that noti�es the client of the execution result of the
last command.

1. OK - Signals that the last command was successfully completed

2. NOK - Signals that there was an error with the last command

3. TRY - Used to signal that the last command needs more data in order to complete
The TRY response, is used to point out to the client that the command has not
been �nished yet and needs more data or time to be completed. The last command
that was sent to the server is �nished either by sending OK or NOK. If a TRY
response gets sent, it indicates that the command is still valid and something has
to be done until it is �nished. This depends on the current command and state.

3.4.3.4 Fields

In this subsection we will de�ne all �elds that are needed for a proper communication.

• CMD - Command of a message

• RES - Response of a message

• STATE - Current protocol state of the sending party

• CREDENTIALS - Credentials used for authentication

53

3. Concept and implementation of a control protocol and an application for symbolic
control

• IDLE

� CONN

� DCONN

• SESSION

� AUTH

� DCONN

• PREDRIVE

� INIT

� ENDINIT

� ENC

� DCONN

• SESSIONINITIALIZED

� DRIVE

� DCONN

• CONTROLLOOP

� GETCTL

� CRASH

� ENDDRIVE

• CRASH

� DATA

� DCONN

• SESSIONCLOSED

� No input

Figure 3.3: Admissible commands for every state

54

3. Concept and implementation of a control protocol and an application for symbolic
control

• VEHICLEID - The vehicle id of the client

• PLAIN - The plaintext message that will be used for authentication

• IV - The initial value, either used for authentication or encryption

• CHALLENGE - The object, that contains all information needed for authentica-
tion (PLAIN and IV)

• CHALLENGERESPONSE - The �eld, that contains all information needed to
validate a vehicle (CHALLENGE and CIPHER)

• CIPHER - The encrypted value of a plaintext (part of the CHALLENGERE-
SPONSE �eld)

• INITVALUES - Dictionary that contains key-value pairs that initialise the session
environment

• MODE - The protocol mode that will be used for the current session (part of the
CREDENTIALS)

• STATES - The current state of the vehicle

• OBSTACLES - List of rectangles that specify a bad state for the vehicle

• CONTROLINPUTS - List of inputs to be applied to the vehicle

• REALTIMECHECK - Field that holds all information regarding a possible real-
time check of the connection

• ADMISSIBLECOMMAND - List with admissible inputs (sent from the server in
case of non-admissible input)

• MISSING - Field that contains a list of keys that need to be initialised before the
control loop starts

• VEHICLEMODEL - Field that stores all information regarding the mathematical
model of the vehicle

• MODELSTATE - Field inside VEHICLEMODEL that contains a list with all state
names of the vehicle

• MODELINPUT - Field inside VEHICLEMODEL that contains a list with all input
names of the vehicle

• DIFFEQ - Field inside VEHICLEMODEL that contains a list with di�erential
equations with states named like MODELSTATES and inputs named like MOD-
ELINPUT

• ENCRYPTIONDATA - Stores all relevant data to encrypt the stream

55

3. Concept and implementation of a control protocol and an application for symbolic
control

• CIPHERMODE - Field inside ENCRYPTIONDATA that speci�ed the ciphermode
to be used

• PADDINGMODE - Field inside ENCRYPTIONDATA that speci�ed the padding-
mode to be used

• TARGET - A rectangle that speci�es the current target of the vehicle

3.4.3.5 Protocol state chart

In �gure 3.4 we can look at the OACP Connection State Chart. The main control loop
is in the state CONTROLLOOP. Until the distributed systems reach that state di�erent
checks take place to ensure a proper communication.

3.4.3.6 Communication rules and data streams

In this section we will analyse the data streams that take place during a typical protocol
session. We will analyse the semantics of each state and provide example communication
messages for clari�cation of possible misunderstanding.

Connection First, the server has to listen on some prede�ned endpoint. When a
vehicle connects to that endpoint, the communication is started and both systems are
in the state IDLE.

IDLE After that the vehicle should send a CONN command with the credentials,
which are constituted of the vehicle id and the protocol mode that will be used for the
current session. The server should then do the following:

1. Check if the vehicle with the protocol mode exists in the database and if so, query
data from the database

2. Do some real time check or connection check

3. If everything is �ne, the server sends an OK response and transitions into the
SESSION state

For the real time check, the server can choose among di�erent options. For this thesis,
only a real time check function is de�ned, in which the server measures the round trip
time of the communication by sending random string to the client, which the client has
to send back as fast as possible. This is done multiple times. Finally, the median is
chosen and checked against the maximum round trip time.

We can �nd an example communication extract for the IDLE state in 3.5: When the
server responds with OK and with the state SESSION, the vehicle can change state.

56

3. Concept and implementation of a control protocol and an application for symbolic
control

Figure 3.4: The OACP State Chart

57

3. Concept and implementation of a control protocol and an application for symbolic
control

1 Client:

2 {

3 "CMD": "CONN",

4 "STATE": "IDLE",

5 "CREDENTIALS": {

6 "VEHICLEID": "a0535dc5-338c-4b38-bcc4-9ea14676cd72",

7 "MODE": "LIVE"

8 }

9 Server:

10 {

11 "STATE": "IDLE",

12 "RES": "TRY",

13 "REALTIMECHECK": {

14 "Nonce": "827617669"

15 }

16 Client:

17 {

18 "CMD": "CONN",

19 "STATE": "IDLE",

20 "REALTIMECHECK": {

21 "Nonce": "827617669"

22 }

23 Server:

24 {

25 "STATE": "SESSION",

26 "RES": "OK"

27 }

Figure 3.5: Example listing of a communication in the IDLE state

58

3. Concept and implementation of a control protocol and an application for symbolic
control

SESSION When the systems are in the state SESSION, the client should try to au-
thenticate to the server. So the client should send an AUTH command.

The server should in response �rst get the secret key for the vehicle and the protocol
mode. After that it should generate a random byte array and an initial value (nonce)
and send back the AUTH command with a CHALLENGE �eld, which contains the
initial value and the random string base64 encoded.

The client should then send back a message with a CHALLENGERESPONSE �eld
that contains the CHALLENGE and a CIPHER �eld which contains the encrypted ver-
sion base 64 encoded. After that the server can encrypt the random value with the
secret key of the vehicle and validate that the two cipher are the same.

If the validation passes, the server should send back an OK response with the PREDRIVE
state.

We can �nd an example communication extract for the SESSION state in 3.6: When
the server responds with OK and with the state PREDRIVE, the vehicle can change
state.

PREDRIVE This state is the main state before the actual control happens. In the
state PREDRIVE the vehicle should initialise the session environment, and optionally
request the encryption of the communication stream for the new trip.

For the encryption, the client should send an ENC command with an ENCRYPTION-
DATA �eld, that contains all data that the server would need to encrypt the stream.
The server should implement many possible encryption schemes. In our implementation
we used AES-256 with Cipher Block Chaining and PKCS7 for the padding mode, and it
is the only accepted encryption scheme. The de�nition of possible encryption schemes,
depends on the service provider. This architecture allows the client to implement an
encryption function that suits for that particular vehicle or to possibly skip the encryp-
tion part if the vehicle is a simulator and a hacker has no possibility to do harm.

The server should respond with an OK response and an unchanged state. If the server
had an internal problem, it should respond NOK and the client could try another en-
cryption scheme.

If no other drive is going to happen, the client can close the session with the DCONN
command.

In �gure 3.7 we can look at an example of the encryption messages. For the initial-
isation, the user can specify what information should be passed to the server from
the vehicle in every session. For example the user can specify that before the control

59

3. Concept and implementation of a control protocol and an application for symbolic
control

1 Client:

2 {

3 "CMD": "AUTH",

4 "STATE": "SESSION"

5 }

6 Server:

7 {

8 "STATE": "SESSION",

9 "RES": "TRY",

10 "CHALLENGE": {

11 "PLAIN": "Ob1/45zPP9OKKEATondSh1/Ch5mlxcohG4ayTKg9kwM=",

12 "IV": "tZdTMWw8IfAYssBas0s+BQ=="

13 }

14 }

15 Client:

16 {

17 "CMD": "AUTH",

18 "STATE": "SESSION",

19 "CHALLENGERESPONSE": {

20 "CHALLENGE": {

21 "PLAIN": "Ob1/45zPP9OKKEATondSh1/Ch5mlxcohG4ayTKg9kwM

=",

22 "IV": "tZdTMWw8IfAYssBas0s+BQ=="

23 },

24 "CIPHER": "+A92izSetCko2VCEE4nwBF+mkijCy8itKdH6MaEKPR0="

25 }

26 }

27 Server:

28 {

29 "STATE": "PREDRIVE",

30 "RES": "OK"

31 }

Figure 3.6: Example listing of a communication in the SESSION state

60

3. Concept and implementation of a control protocol and an application for symbolic
control

1 Client:

2 {

3 "CMD": "ENC",

4 "STATE": "PREDRIVE",

5 "ENCRYPTIONDATA": {

6 "IV": "AAAAAAAAAAAAAAAAAAAAAA ==",

7 "CIPHERMODE": "CBC",

8 "PADDINGMODE": "PKCS7"

9 }

10 }

11 Server:

12 {

13 "STATE": "PREDRIVE",

14 "RES": "OK"

15 }

Figure 3.7: Example listing of the ENC command

loop, the vehicle should send some information regarding the errors that are at this
time recorded in the vehicle, or a humidity measurement. Based on that data, the en-
gineers could possibly test some application or analyse the data to develop new features.

The client can initialise the environment with the command INIT and the �eld INIT-
VALUES. The �eld INITVALUES is basically a dictionary, a collection of key-value
pairs. The client can send multiple INIT commands to the server. In case of the same
key in di�erent requests, the value of the last key should be applied.

In response to that the server should send an OK response and not change state.

When the client has �nished the initialisation, it should send an ENDINIT command.
The server should then validate that the required key-value pairs are created. If not,
the server should send an NOK response with a MISSING �eld, that is basically a list
with all of the keys that are not initialised but have to be initialised to start the control
loop. When the client then sends these keys and they pass the validation of the server
the server should send an OK response with the state SESSIONINITIALIZED.

We can �nd an example communication extract for the PREDRIVE state in 3.8. When
the server responds with OK and with the state SESSIONINITIALIZED, the vehicle
can change state.

SESSIONINITIALIZED In the SESSIONINITIALIZED state, the vehicle can send
the DRIVE command to �nally start the control loop. The vehicle has to provide the
mathematical model of it in the VEHICLEMODEL �eld, in order for the server to

61

3. Concept and implementation of a control protocol and an application for symbolic
control

1 Client:

2 {

3 "CMD": "INIT",

4 "STATE": "PREDRIVE",

5 "INITVALUES": {

6 "Position": "Munich",

7 "Target": "Augsburg"

8 }

9 }

10 Server:

11 {

12 "STATE": "PREDRIVE",

13 "RES": "OK"

14 }

15 Client:

16 {

17 "CMD": "ENDINIT",

18 "STATE": "PREDRIVE"

19 }

20 Server:

21 {

22 "STATE": "PREDRIVE",

23 "RES": "NOK",

24 "MISSING": [

25 "Humidity"

26]

27 }

28 Client:

29 {

30 "CMD": "INIT",

31 "STATE": "PREDRIVE",

32 "INITVALUES": {

33 "Humidity": 0.8

34 }

35 }

36 Server:

37 {

38 "STATE": "PREDRIVE",

39 "RES": "OK"

40 }

41 Client:

42 {

43 "CMD": "ENDINIT",

44 "STATE": "PREDRIVE"

45 }

46 Server:

47 {

48 "STATE": "SESSIONINITIALIZED",

49 "RES": "OK"

50 }

Figure 3.8: Example listing of a communication in the PREDRIVE state

62

3. Concept and implementation of a control protocol and an application for symbolic
control

1 Client:

2 {

3 "CMD": "DRIVE",

4 "STATE": "SESSIONINITIALIZED",

5 "VEHICLEMODEL": {

6 "MODELSTATES": [

7 "x1",

8 "x2",

9 "x3",

10 "x4"

11],

12 "MODELINPUT": [

13 "u1",

14 "u2"

15],

16 "DIFFEQ": [

17 "xx1=x2",

18 "xx2=x3",

19 "xx3=x4",

20 "xx4=x3+x2*3+u1+u2"

21]

22 }

23 }

24 Server:

25 {

26 "STATE": "CONTROLLOOP",

27 "RES": "OK"

28 }

Figure 3.9: Example listing of a communication in the SESSIONINITIALIZED state

validate that the mathematical model is the same like the engineer speci�ed in the
registration system. The VEHICLEMODEL �eld consists of three �elds. The MOD-
ELSTATES, the MODELINPUT and the DIFFEQ �elds. The model states and model
input �elds are variable names to use within the DIFFEQ �eld.

This makes sure that the control inputs sent from the server are valid for that vehi-
cle, and that no other model can be used from the user without registering it. The
server can respond with OK or NOK . In 3.9 we can see an example of the communica-
tion in the SESSIONINITIALIZED state. When the server responds with OK and with
the state CONTROLLOOP, the vehicle can change state.

63

3. Concept and implementation of a control protocol and an application for symbolic
control

CONTROLLOOP The state CONTROLLOOP is the main state of the protocol.
In this state the actual control of the vehicle gets executed. The vehicle should send a
GETCTL command with a STATES, OBSTACLES, OPT and a TARGET �eld.
The STATES �eld should contain the current state of the vehicle, like speci�ed in the
DIFFEQ �eld of the VEHICLEMODEL �eld.
The OBSTACLES �eld should contain a list with obstacle hyperrectangles which are
described by a lower and an upper bound coordinate for each state. This �eld speci�es
the hyperrectangles that are considered "bad states" for the vehicle to be.
The TARGET �eld should contain a hyperrectangle which is describes by a lower and
an upper bound coordinate for each state. The target speci�es the hyperset that the
vehicle should eventually reach.

The server should delegate the computation to a symbolic control platform and re-
ceive the valid input for the current state. After receiving the input sequence for the
current state, the server should �lter the input sequence to ful�ll the current optimisa-
tion function, like speci�ed in OPT.

The server should then send an OK response with a CONTROLINPUTS �eld, that
is a list of dictionaries, which specify for every sampling time of the actuator, which
inputs to apply. This is the main control loop of the protocol. In �gures 3.10 and 3.11
we can see a typical control loop. The protocol includes a CRASH command, which
noti�es the server that a crash happened. The server should then take appropriate ac-
tions to handle the situation, but it is not speci�ed what exactly. This also depends on
the current mode of the protocol.

When the vehicle �nally arrives at the destination, an ENDDRIVE command should be
sent. The server should respond with an OK response and a PREDRIVE state.

CRASHED In the CRASHED state, the server could be programmed to do a stan-
dard action or to gather data. This is left unspeci�ed.

SESSIONCLOSED In the SESSIONCLOSED state the server and the client should
just close the connection and release resources that were hold by the systems.

3.5 Implementation of the OACP

In the last section we wrote the speci�cation of the Open Automotive Control Protocol.
In this section we will discuss the implementation of a server and a client vehicle that
will use the protocol. We will also implement an OACPProtocol library, that handles
the message stream. We will use the C# programming language and .NET Core.

64

3. Concept and implementation of a control protocol and an application for symbolic
control

1 Client:

2 {

3 "CMD": "GETCTL",

4 "STATE": "CONTROLLOOP",

5 "STATES": {

6 "x1": "5",

7 "x2": "2.496886617366581",

8 "x3": "2.123372836753095"

9 },

10 "OBSTACLES": [

11 {

12 "x1_lb": "0.6501399766684627",

13 "x1_ub": "0.11321297686006215",

14 "x2_lb": "0.4400519980933788",

15 "x2_ub": "0.24529668741434751",

16 "x3_lb": "0.017646832155251313",

17 "x3_ub": "0.8623260048109105"

18 },

19 {

20 "x1_lb": "0.1154283012976608",

21 "x1_ub": "0.1269495662331369",

22 "x2_lb": "0.18270469854888738",

23 "x2_ub": "0.9389724770448382",

24 "x3_lb": "0.5601018202284388",

25 "x3_ub": "0.3445666182467304"

26 }

27],

28 "TARGET": {

29 "x1_lb": "0.28212875574445384",

30 "x1_ub": "0.7231408715554216",

31 "x2_lb": "0.3148305724603526",

32 "x2_ub": "0.10455548801250047",

33 "x3_lb": "0.38975663077371836",

34 "x3_ub": "0.732221383098693"

35 }

36 }

Figure 3.10: Example listing of the control loop clientside

65

3. Concept and implementation of a control protocol and an application for symbolic
control

1 Server:

2 {

3 "STATE": "CONTROLLOOP",

4 "RES": "OK",

5 "CONTROLINPUTS": [

6 {

7 "u1": "0.7",

8 "u2": "1.3"

9 },

10 {

11 "u1": "3.43",

12 "u2": "1.23"

13 },

14 {

15 "u1": "4.3",

16 "u2": "1.5"

17 }

18]

19 }

Figure 3.11: Example listing of the control loop serverside

3.5.1 The OACPProtocol library

The protocol library should contain functionality regarding the transmission of messages,
encryption of stream, the state, command and response objects and a message class
that models an OACP message. Ideally, in order for the server and the client to use the
library, the library should give us the capability to:

1. Read protocol �eld names

2. Create messages

3. Write messages to the stream

4. Read messages from the stream

5. Encrypt the stream

We will start with th creation of a .NET standard project.

First we will create static classes that contain constant strings which will be used for
the name of our protocol �elds. The classes which we will create are:

• OACPState

• OACPCommand

66

3. Concept and implementation of a control protocol and an application for symbolic
control

• OACPResponse

We will use these classes for convenience, in order to have the �eld names of the pro-
tocol in a centralised class, so that we do not have to use di�erent names for the same
object. For example to access the state PREDRIVE we will use the name OACP-
State.PREDRIVE.

Next we will create the OACPMessage class, which will be used to create a mes-
sage, and read the properties from it in a standardised way. The OACPMessage class,
should contain all possible �elds of the protocol. The value of a non-existent �eld
of a message should be null. We will attach public �elds to OACPMessage objects,
that map to the protocol �elds like speci�ed in the last section. We will also imple-
ment convenience response properties, like OACPMessage.OK or OACPMessage.NOK,
that create an empty OACPMessage response object and a Fluent API like interface
to create and add speci�c �elds to the message object. The functions will be named
Add<FieldOfProtocol> and return the current message object for a direct use after
the function. For example to create the connection message we could use: OACPMes-
sage().AddCommand(conn).AddCredentials(credentials).AddState(state). We will also
create a constructor, that accepts a string object in json format, deserialises the string
and returns the corresponding OACPMessage object.

Finally, we will create the class OACPStream, which abstracts away the sending and
reading of OACPMessages. The OACPStream class is responsible for the communica-
tion part. The constructor accepts a base stream, which is the stream that we will use as
an underlying communication layer and a function pointer to a function that accepts a
stream way argument and returns void. This function can be used for logging purposes.
Every time someone sends or receives a message, an event will be raised, notifying the
party that a communication event has happened. The corresponding event handler will
then be called, which can log the message.

The base stream has to use a reliable protocol. For this matter, we will use TCP/IP for
the network and transport layer. TCP/IP opens a bidirectional communication channel
between two endpoints. It can be thought as a stream of data.

The stream should accept a function pointer, which, when called, returns the current
state of the active party. This allows the client and server to focus on the message itself
instead of taking care of sending the current state every time. This function, will be
called when the party initiates a write request. The given OACPMessage will then be
appended with the current state of the sending party.

There are many details that have to be considered in network programming. For exam-
ple, the read function accepts a bu�er to �ll and an integer argument that speci�es the
maximum number of bytes to read from the stream. The received bytes can be smaller
than the maximum receivable bytes. In order to write messages, we need to tell the

67

3. Concept and implementation of a control protocol and an application for symbolic
control

stream how many bytes we should read in order to construct the whole message.

There are three di�erent approaches for size control of messages:

1. Fixed size messages

2. Control character ending of messages

3. Variable length messages with �xed header

We will use variable length messages with a �xed 4 byte header as an integer, that spec-
i�es the length of the message. The byte order should be network order (big endian).
The message follows immediately.

The stream has to support symmetric encryption. Di�erent algorithms can be used.
Most symmetric ciphers operate on blocks. In case of an encrypted stream, the �rst
four bytes represent still the unencrypted header. To build such a stream we will use
di�erent stream classes.

The input to our write function is the OACPMessage that needs to be sent through
the network. There are two di�erent paths that the message can follow.

Unencrypted stream Sender: First, we serialise the message object to a string.
Then, we convert the string to a byte array with ASCII. After that we calculate the
length of the byte array and send the header as integer. Finally, we send the whole byte
array after the header.

Client: First we read four bytes from the stream and compose the integer value n.
After that we read n bytes from the stream and decode the bytes in ASCII. Finally, we
call the constructor of the OACPMessage that accepts a json string to get the message
object.

Encrypted stream Sender: First, we serialise the message object to a string, like
in the unencrypted stream. Then we convert the string to a byte array. The byte ar-
ray gets fed into the cryptostream, that encrypts the whole byte array. Because of the
nature of block ciphers, we have to �ush the stream in case that the byte array is no
multiple of the block size. The padding scheme should be known to the stream, based
on the encryption parameters. The encrypted byte array gets saved into memory with
the memorystream class. After that, we calculate the length of the encrypted byte array
and send the header. Finally, we write each encrypted byte to the stream.

Client: Like in the unecrypted stream we �rst read the �rst four bytes and compose
the length of the message. The client knows that the stream is encrypted. After that
we read n bytes from the stream and save them into an internal bu�er. This bu�er gets
read by the cryptostream class, which decrypts the encrypted byte array. The decrypted

68

3. Concept and implementation of a control protocol and an application for symbolic
control

bytes are then decoded with ASCII. Finally, the string gets passed to the constructor
of the OACPMessage class, which creates a new OACPMessage object that we can use.
The stream should support di�erent encryption schemes. For our convenience we will
only implement AES 256.

The stream should throw exceptions in case of errors. We will set the read and write
timeout of the underlying socket to 10000 ms.

The structure of the main Read and Write functions of the stream are shown in �g-
ure 3.13.

3.5.2 The OACPServer

The OACPServer is the software application that will listen for incoming connections
and handle the communication between the client and the controller.

The server will reference the protocol library and use the classes and methods of that
library to communicate with the client.

The server should be able to accept multiple clients, to connect with the database and
query data about every vehicle, to connect with the symbolic controller and exchange
data, to log the messages of every session, to handle errors etc.

The entry point of our application is the OACPServer class. The OACPServer class
can be instantiated with a port and an optional logfolder. The port is used for the
endpoint creation in order to listen for incoming connections. The logfolder is used as a
directory, where OACP sessions are saved.

After the server object is created, the only public function that is supported id the
start method. The start method starts a tcp listener on the speci�ed endpoint. When a
new client connects to that endpoint, a new thread, that handles the session, is created.
The main thread can then accept another client and instantiate a new session.

An OACP session is modeled by the OACPServerSession class. The OACPServerS-
ession class accepts a stream, an optional logger, and a symbolic controller factory. The
logger will be called in every message event like speci�ed in the protocol library. We get
the stream from the TcpClient that connected to our server. The symbolic controller
factory is a class that implements the ISymbolicControllerFactory interface, that speci-
�es that every symbolic controller factory should have a method that returns a concrete
instance of that symbolic controller.

The OACPServerSession class models a session with the client. In a high level the
execution of the session is as follows:

69

3. Concept and implementation of a control protocol and an application for symbolic
control

Figure 3.12: Stream pipeline of the OACPStream class

70

3. Concept and implementation of a control protocol and an application for symbolic
control

Figure 3.13: Structure of the OACPStream class

71

3. Concept and implementation of a control protocol and an application for symbolic
control

1. Update session con�guration, based on �ags of the last run if not absent

2. Accept a request message

3. Handle the request, produce �ags, produce a response

4. Handle state transition

5. Send the response back

After creating a new OACPServerSession in the new thread, we call the Run() method
of that session. The run method is the execution loop of the OACP session, which
executes the steps that we previously de�ned.

The state machine is implemented as a dictionary. The key of the dictionary is the
current state of the session. The value of each key-value pair is an object of a class that
extends the base class StateHandler.

The class StateHandler is a base class that models the basic properties and methods of
each state of the protocol. The StateHandler class accepts a session parameter, which
should be the current session object. This object is used for communicating between
states, controlling the stream, setting encryption �ags etc. Basically it is used as a
communication mechanism between states and the session. The StateHandler class has
also a list of string with the admissible commands of the current state and a transi-
tion table which is a dictionary that accepts an OACPCommand string and returns a
function to handle the transition in the current state. Also, a DefaultHandle() method
is implemented, which when called, returns an OACPMessage with a list of admissible
commands, based on the admissible commands list of that class. Finally, convenience
functions are implemented, which allow a class to specify the state which they should
run, modify the underlying transition table and admissible command list, called Set-
State and AddTransition.

The session object, �rst checks for the current state and selects an object of the local
state machine dictionary that is of type StateHandler. After that, the session calls the
corresponding Handle() method of that object, and passes the current request message
as argument. Tha Handle() method is implemented in the StateHandler base class. The
handle method just checks the transition table for a key with the value of the command
of the current message. If present, it delegates work to the corresponding method. If
not, the DefaultHandle() method is called, which returns a list of admissible commands.

For every state, there is a corresponding <State>Handler class. The subclasses should
�rst set the right state for the current class. After that they should modify the transi-
tion table in order to function properly. For every admissible command, a corresponding
method should be implemented called <Command>Handle that accepts an OACPMes-
sage as parameter. Every Handle method returns a string-OACPMessage tuple, that

72

3. Concept and implementation of a control protocol and an application for symbolic
control

represent the next state, and the response to that message.

For example, let's take a look at the PreDriveHandler class. We �rst set the current
state to OACPState.PREDRIVE. After that we specify the transitions that are valid
in this class, and the corresponding command handlers, that handle the various com-
mands. Every handle function should be responsible for one and only one command.
The handle functions can read and modify the current OACPServerSession object. For
example, the InitializeHandle method reads the initialisation dictionary from the mes-
sage and updates the SessionDictionary property of the OACPServerSession object. If
the initialisation was successful, the method returns the current state, and an OK re-
sponse.
The EndInitHandle method, �rst checks if all keys that need to exist, are present in the
current SessionDictionary. If so, then the method returns the state SESSIONINITIAL-
IZED and an OK response. If not, the current state with a NOK response is returned
and an additional �eld MISSINGKEYS, speci�ying which keys need to be passed in
order to continue. Another important detail of the application is the registration of

Figure 3.14: Snippet of the StateHandler class

the currently running vehicles. The service should not accept connections with two
clients that have the same id. For that reason, we save the running vehicle ids in an
in-memory list. This threadsafe in-memory list is implement with the static ActiveSes-
sions class. The IdleHandler calls the function AddVehicleId of that class and when
the session �nishes, we call the RemoveVehicleId with the given vehicle id. We can call
the GetRunningSessions of that class, to get a string with the current running vehicle ids.

Another important class, is the OACPRepository class. The OACPRepository class
handles the communication with the registration system and the database. This static
class connects to the registration system with a http client, and the server credentials.
In the registration system, we already created a server user with some password, and
authorised the server to query every vehicle in the database. The IdleHandler, calls the

73

3. Concept and implementation of a control protocol and an application for symbolic
control

Figure 3.15: Snippet of the PreDriveHandler class

74

3. Concept and implementation of a control protocol and an application for symbolic
control

LoadVehicleData method of that class, and accepts a VehicleData object, which con-
tains information about the current vehicle, like the Id, the mathematical model, the
secret key of the current protocol mode and so on.

The last important part of this application is the symbolic controller family. We created
a ISymbolicControllerFactory interface, that has only one method GetSymbolicCon-
troller, that should return an object that implements the ISymbolicController interface.
This design pattern is called abstract factory pattern. The ISymbolicController inter-
face de�nes the GetControl method, that accepts the states of the vehicle, the obstacles
and a target, and returns a List of inputs to apply in order to reach the speci�ed tar-
get. With this abstract de�nition we can exchange our implementation of pfaces that
implements the ISymbolicController interface with another implementation easily. De-
tails of the pfaces connection are not important for this thesis, so we will omit the details.

Finally, the static Optimizer class, is responsible for optimising the received inputs
of the symbolic controller.

3.5.3 The OACPClient

The OACPClient is another software application, that should validate the function prin-
ciple of the protocol. It was built only for validation and test purposes.

The functionality is trivial and not worth mentioning. The OACPClientSession con-
tains the same state machine like the server does. The only di�erence is that the client
is initiating the communication and the commands.

What is worth mentioning is the vehicle interface. The OACPClient, should have a
connection with the client vehicle. In a real scenario, the communication task should
periodically run on an ECU on that vehicle and handle the communication with the
sensing and actuating ECUs, or even communicate with other tasks on the same ECU.
Our client application is just a dummy application, but it still marks the interface that
the vehicle should ful�ll in order to use the protocol.

In order to use the protocol, we need some static data, that doesn't change during
the lifetime of the vehicle, static data that does change during the lifetime of it but
remains static for a session and dynamic data, that is generated during the trip. Here
is a list with the data needed for the OACP:

• Vehicle ID - Static for the lifetime

• Protocolmode - Static for the lifetime

• SecretKey - Static for the lifetime

• Mathematical Model - Static for the lifetime

75

3. Concept and implementation of a control protocol and an application for symbolic
control

Figure 3.16: The structure of the OACPData type

• Initial value for encryption - Static during a session

• Ciphermode - Static during a session

• Paddingmode - Static during a session

• Initvalues - Static during a session

• Dynamical state - Dynamic, generated in runtime

• Obstacles - Dynamic, generated in runtime

• Target - Dynamic, generated in runtime

Instead of giving the vehicle the workload to do the protocol handling, we will revert the
responsibility and let the protocol stack call the desired functions and access the needed
data. In order to do so we also need some functions, that should be called from the
protocol stack, for example GetStates() or GetObstacles(). This idea, gives us the op-
portunity to de�ne a standardised protocol stack, that accepts as a parameter a pointer
to a memory section, where we can �nd the data and the functions that protocol has to
use in order to function properly.

It is typical for structured data to be represented as a struct in the C programming
language. Because ECUs are programmed with C and C++, we will de�ne such a
struct that fully describes the protocol data. In order to use the protocol, the engineer
have to de�ne a memory section "OACPDATA", and to calibrate that memory section
with the de�ned data. The �ash extract can be downloaded from the web interface.
The protocol stack should then use the data and functions when needed.

76

4

Conclusion and Outlook

In this chapter we will draw a conclusion and make a future outlook.

4.1 Conclusion

We are at the beginning of the connected world. With 5G technology knocking on our
doors, new technologies and ideas will take over the world. The dream of autonomous
cars is very close to ful�llment. In this thesis we proposed a protocol, for the remote
control of autonomous vehicles, the Open Automotive Control Protocol.

The OACP satis�es our requirements. It is easy to understand, the structure is clear,
there are very few keywords, the use of standardised communication patterns in text
format (JSON) make it extensible and easy to parse. Built-in authentication and en-
cryption services make sure that the users stay safe.

The developed enterprise application is a prototype and should be handled like that.
However, many problems were solved.

Now, there exists a standardised interface for remote control of vehicles. The proto-
col is easy to use and an API written in Python 3 and C# exists, with which servers
can be built.

The implementation supports logging, encryption and authentication. Multiple clients
can be connected concurrently. The server disposes clients that do not ful�ll the real
time check. With the database coupling and the role assignment, an easy to use archi-
tecture was introduced to ease the implementation of future applications. The database
acts as a central repository with which engineers can tweak their system to �t their
needs. Cumbersome and errorprone implementations of ECUs can be swapped out with
easy to use OACP interfaces. Dynamic data that could change for every driver or every
company should be stored in the database and validated against during the startup of
the protocol. This makes the protocol extensible and customisable.

77

4. Conclusion and Outlook

4.2 Outlook

The introduced speci�cation and implementation of the OACP works �ne. However,
there are various speci�cation topics that need to be analysed separately:

• How should the vehicle behave when the connection terminates?

• De�nition of various system modes and their role in the protocol

• Backup autonomous controller speci�cation and mode switch speci�cation

Also, a validation of the protocol and its performance should be performed including:

• Live test with a real vehicle or a simulation environment

• Time measuring of the protocol and performance analysis

• Stress test of OACP server and bandwidth analysis

Additionally, various improvements and extensions can be built upon this thesis:

• Design of a neural network that accepts a sequence of test data and builds the
model of the vehicle (Easier to use for automotive companies)

• Various function hooks that can be implemented serverside, to capture, log and
even modify the control input

• AUTOSAR speci�cation and implementation of a protocolstack

• Interface speci�cation of a remote controller to change controller implementation
on the �y

There are several topics and ideas that the interested reader could research on. The
only boundary is the human mind and imagination or as the famous Albert Einstein
once said:

"Imagination is more important than knowledge. For knowledge is limited to
all we now know and understand, whereas imagination embraces the entire
world, stimulating progress, giving birth to evolution."

78

Bibliography

[AKM] Matthias Altho�, Markus Koschi, and Stefanie Manzinger. Commonroad:
Composable benchmarks for motion planning on roads. pages 719�726.

[Beh] Behrisch, Michael & Bieker-Walz, Laura & Erdmann, Jakob & Krajzewicz,
Daniel. Sumo � simulation of urban mobility: An overview.

[BK08] Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT
Press, Cambridge, Mass., 2008.

[dGV13] Giuseppe de Giacomo and Moshe Vardi. Linear temporal logic and linear
dynamic logic on �nite traces. IJCAI International Joint Conference on

Arti�cial Intelligence, pages 854�860, 2013.

[Dil] Jochen Dilling. Fahrverhalten von kraftfahrzeugen auf kurvigen strecken.

[Dip] Dipl.-Ing. Dirk Ebersbach. Entwurfstechnische grundlagen für ein fahrerassis-
tenzsystem zur entwurfstechnische grundlagen für ein fahrerassistenzsystem
zur unterstützung des fahrers bei der wahl seiner geschwindigkeit wahl seiner
geschwindigkeit.

[DRC+] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and
Vladlen Koltun. Carla: An open urban driving simulator.

[GBH+] Maxime Gueriau, Romain Billot, Salima Hassas, Frederic Armetta, and
Nour-Eddin El Faouzi. An extension of movsim for multi-agent cooperative
vehicles modeling. pages 859�860.

[HHH] Sara Haddouch, Hanaa Hachimi, and Nabil Hmina. Modeling the �ow of
road tra�c with the sumo simulator. pages 1�5.

[HHL19] Héctor H González-Baños, David Hsu, and Jean-Claude Latombe. Motion
planning: Recent developments. 2019.

79

Bibliography

[HMMS] Kyle Hsu, Rupak Majumdar, Kaushik Mallik, and Anne-Kathrin Schmuck.
Multi-layered abstraction-based controller synthesis for continuous-time sys-
tems. pages 120�129.

[JK12] Jonathan A. Thompson and Kristofer Schlachter. An introduction to the
opencl programming model - semantic scholar, 2012.

[Joe] Joerg Krueger. Simulation of modern tra�c lights control systems using the
open source tra�c simulation sumo.

[JSRG] Johannes Hiltscher, S. V. N. Phanindra Akula, Robin Streiter, and Gerd
Wanielik. A �exible automotive systems architecture for next generation
adas.

[KZ] Mahmoud Khaled and Majid Zamani. pfaces. pages 252�257.

[LS17] Edward Ashford Lee and Sanjit Arunkumar Seshia. Introduction to embed-

ded systems: A cyber-physical systems approach. MIT Press, Cambridge,
Massachuetts and London, England, second edition edition, 2017.

[Mar18] Peter Marwedel. Embedded System Design: Embedded Systems, Foundations

of Cyber-Physical Systems, and the Internet of Things. Embedded Systems.
Springer International Publishing, Cham, 3rd edition 2018 edition, 2018.

[MDS95] Roger C. Mayer, James H. Davis, and F. David Schoorman. An integra-
tive model of organizational trust. The Academy of Management Review,
20(3):709, 1995.

[Mic] Michael Lazar. Current cloud computing statistics send strong signal of
what's ahead.

[MM] M. Khaled and M. Zamani. Cloud-ready acceleration of formal method tech-
niques for cyber-physical systems.

[Mor18] Moritz Lipp and Michael Schwarz and Daniel Gruss and Thomas Prescher
and Werner Haas and Anders Fogh and Jann Horn and Stefan Mangard and
Paul Kocher and Daniel Genkin and Yuval Yarom and Michael Hamburg.
[pdf] meltdown: Reading kernel memory from user space - semantic scholar,
2018.

[MPS] Oded Maler, Amir Pnueli, and Joseph Sifakis. On the synthesis of discrete
controllers for timed systems. volume 900, pages 229�242.

[OAD] Bogdan Oancea, Tudorel Andrei, and Raluca Mariana Dragoescu. Gpgpu
computing. Proceedings of the CKS International Conference.

80

Bibliography

[Pab] Pablo Alvarez Lopez, Michael Behrisch, Laura Bieker-Walz, Jakob Erdmann,
Yun-Pang Flotterod, Robert Hilbrich, Leonhard Lucken, Johannes Rummel,
Peter Wagner and Evamarie WieBner. Microscopic tra�c simulation using
sumo.

[PCY+16] Brian Paden, Michal Cap, Sze Zheng Yong, Dmitry Yershov, and Emilio
Frazzoli. A survey of motion planning and control techniques for self-driving
urban vehicles. IEEE Transactions on Intelligent Vehicles, 1(1):33�55, 2016.

[PS95] Angel Pasqual del Pobil and Miguel Angel Serna. Spatial representation and

motion planning, volume 1014 of Lecture notes in computer science. Springer,
Berlin, 1995.

[RH] G. Reichart and R. Haller. Mehr aktive sicherheit durch neue systeme für
fahrzeuge und straÿenverkehr.

[RWR17] Gunther Reissig, Alexander Weber, and Matthias Rungger. Feedback re�ne-
ment relations for the synthesis of symbolic controllers. IEEE Transactions

on Automatic Control, 62(4):1781�1796, 2017.

[RZ] Matthias Rungger and Majid Zamani. Scots. pages 99�104.

[SB18] Naresh Kumar Sehgal and Pramod Chandra P. Bhatt. Cloud Computing.
Springer International Publishing, Cham, 2018.

[SZL16] Sonja Stockert, Andreas Zimmermann, and Markus Lienkamp.
Mensch-maschine-interaktion für eine kraftsto�e�ziente, automatisierte
fahrzeuglängsführung. ATZextra, 21(S8):16�19, 2016.

[TA09] Paulo Tabuada and Rajeev Alur. Veri�cation and control of hybrid systems:

A symbolic approach. Springer, Dordrecht, 2009.

[TK13] Martin Treiber and Arne Kesting. Tra�c Flow Dynamics: Data, Models and

Simulation. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.

[Ton] Tonu Lehtla. Introduction to robotics.

[Uni15] Univ.-Prof. Dr.-Ing/ Univ. Tokio M. Buss. Regelungssysteme 1. Lehrstuhl
für Steuerungs- und Regelungstechnik, München, 2015.

[Ver] Verband der Automobilindustrie. Automatisierung: Von fahrerassistenzsys-
temen zum automatisierten fahren.

[W.] W. Fastenmeier. Mensch, maschine, umwelt.

81

