
1 
 

 
Control of a Rotary Inverted Pendulum  

using Symbolic Methods 

Scientific work to obtain the degree 
B.Sc. Engineering Science 
 
Munich School of Engineering  
Technische Universität München 
 
 

Supervised by             Prof.Dr.Majid.Zamani 

                                         Mr.Pushpak Jagtap,Mr.Mahmoud Khaled. 

                                         Assistant Professorship of Hybrid Control Systems 

Submitted by Feki Mohamed Amine 

                                          Matriculation Number: 03677907 

 

Filed on 28.01.2019 in München 



2 
 

Erklärung 

Ich versichere hiermit, dass ich die von mir eingereichte Abschlussarbeit selbstständig verfasst und 

keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe. 

 

Ort, Datum, Unterschrift 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3 
 

                                                                     Acknowledgments 

 

 

First, I would like to thank Prof.Zamani for offering me the chance to write my thesis under 

the supervision of his chair, and offering me a project that combines both theoretical and 

practical interesting aspects. 

I am very grateful for my Pushpak Jagtap, for his clear explanations, for the detailed answers 

to my questions and for his assistance during some technical issues. I would also like to 

thank Mahmoud Khaled, who has assisted me in the final stages of this project, and provided 

me with great advice. 

I should not forget to thank my family, particularly my parents, whose continuous support 

was not only of a financial order, but also moral during difficult phases of my studies. 

Without their contributions, I would never have made it so far. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



4 
 

Abstract 

 

Symbolic methods are among the emerging control techniques that have been drawing the 

attention in the control theory research community. Their main advantage resides in 

enabling the synthesis of a correct-by-construction controller that enforce complex 

specifications on a system. The classes of systems that mathematically admit a symbolic 

abstraction has been consistently growing, including nonlinear systems without stability 

assumption. 

In this thesis, we are interested in testing symbolic methods on a non-linear, unstable 

system. The choice went to the rotary inverted pendulum, for which we designed an 

abstract controller that ensures an invariance, also called safety, specification. Experiments 

were conducted on the real plant to test the performance of the refined controller. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



5 
 

Introduction 

 

Control theory is a powerful branch of mathematics, devoted to the study of dynamical 

systems with inputs, in order to derive adequate control strategies to obtain the desired 

behavior of a system. 

Control problems are omnipresent in an uncountable number of engineering applications 

and science fields. There has been a strong correlation between the industrial development 

and the rise of control theory. 

While control strategies for linear-time-invariant systems are mature and well-established, 

those related to non-linear systems, i.e. systems which do not obey the superposition 

principle, are still a current center of research effort. 

Since most real-world application, for example, applications within the field of robotics or 

aerospace, exhibits a non-linear response, non-linear control holds great importance to the 

industry. 

Some techniques, such as feedback linearization, could be sometimes deployed to a certain 

class of non-linear system, but they still lack generality. The need to resort to exhaustive 

numerical simulations of the plant is still indispensable to design a controller for many 

complex nonlinear systems, for instance, an airplane. 

In this thesis, we investigate an innovative control method, called the symbolic method, 

which possess a great potential to become the future solution for many advanced control 

problems, including the nonlinear ones. 

For the practical demonstration of the performance and efficiency of this method, we 

choose to work with a rotary inverted pendulum. This choice is well-founded, first, the 

dynamics of the pendulum is complex, rich, highly nonlinear and unstable. Thus this 

pendulum is representative of many real-world applications, for instance robots or drones.  

Second, the inverted pendulums are the gold standard in control theory community to 

validate emerging control strategies and test their performances, we wished to keep this 

tradition. 

The objectives of this thesis are to derive a dynamical model for the pendulum, choose the 

proper abstraction method for the implementation, and synthesize an abstract controller to 

enforce an invariance, alternatively called safety, specification. 

We finally verify the correctness of the approach by refining the abstract the controller to 

the real plant and conducting some experiments. 

 

 

 



6 
 

Outline: 

The plan followed in this thesis is similar to the order of steps we carried on in practice. The 

first two chapters deal about some generalities and serves to further motivate this thesis. 

The intermediate ones are concerned with important aspects of the theory. The last three 

chapters are devoted to the implementation and experiments. 

Chapter 1 introduces the concept of inverted pendulums, their main properties and the 

position they hold in both control theory education and research, as well as their relevance 

for the real-world applications. 

Chapter 2 deals with symbolic methods in a general manner, the idea behind them, and the 

main advantages they could offer. We also briefly introduce the concept of linear temporal 

logic (LTL) used to define complex specifications. 

Chapter 3 is concerned with the precise derivation of a mathematical model that describes 

the rotary inverted pendulum. We derive the mechanical equations with the Lagrangian 

formulation. We set all the equations in the useful state-space representation form and we 

define the electromechanical coupling between the pendulum and the Servo-base. 

In Chapter 4 we discuss the theoretical aspects of symbolic methods for the particular case 

of nonlinear systems without stability assumptions. The main focus lies on the mathematical 

construction of an abstraction of the real system. We present the two possible alternatives 

found in the literature, the first being based on the approximate alternating simulation 

relation, the second being founded on the feedback refinement relation. The purpose of 

introducing the two methods is to compare them from a practical point of view, we justify 

why the feedback refinement relation is better suited to implement a controller to the 

pendulum. 

In chapter 5 we introduce the implementation tool SCOTS. we illustrate the computational 

work-flow in this software. We define which parameters and entries are user-dependent in 

order to automatically synthesize the controller. We also carry on the basic implementation 

steps, for instance, the computation of growth bound. 

We dedicate chapter 6 to describe the main difficulties we encountered during the 

implementation in relation to the choice of design parameters and the curse of 

dimensionality. We describe the cause of those difficulties and the approaches we tried out. 

We justify why we had to consider a reduction of the dimension of the dynamics, which was 

possible and leads to find a controller. 

In chapter 7 we simulate the closed-loop behavior of the controller on Matlab. Then, we 

refine the abstract controller to the real plant that we have assembled. we verify the 

correctness of all the previous step we carried on and the performance of the implemented 

controller. 

 



7 
 

Chapter 1: Generalities about inverted 

pendulums. 

 

1)Definition of an inverted pendulum: 

the main distinction between a simple pendulum and an inverted pendulum is the position of 

the center of mass with respect to the pivot. Inverted pendulums are characterized through a 

center of mass located above the pivot. As a consequence, they are inherently unstable. This 

means that an inverted pendulum will fall down from the upwards position in the absence of 

a control signal. On the other hand, the simple pendulum is stable. 

 

2)Types of inverted pendulums: 

There are many variations of the inverted pendulum. Most classical examples include the cart 

inverted pendulum [fig 1.1], inertia wheel inverted pendulum, and rotary inverted pendulum 

that we will test in this thesis. 

There exist theoretically infinitely many geometrical configurations of inverted pendulums, 

which could be generated by adding an extra number of links and joint. The typical example is 

the double rotary inverted pendulum [fig 1.2]  

 

                   

             Figure 1.1: inverted pendulum on a cart                                                  Figure 1.2 rotary double inverted pendulum 

 

 

3) inverted pendulums and control theory: 

 3.1) an educational tool in control theory: 



8 
 

Inverted pendulums have been a classical, yet valuable example, to introduce students to 

some basic concepts of control theory in universities. Furthermore, many labs have been 

designed with the purpose of demonstrating this theory. In general, basic labs introduce 

simple control strategies such as state-feedback control and pole placement.  

3.2) Interesting properties of inverted pendulums: 

inverted pendulums exhibit a certain number of properties, that justify why they are relevant 

to control theory and robotics research. 

 Non-linear: in contrast to their simple geometrical configuration, inverted pendulums 

exhibits a complex, rich, highly nonlinear dynamics. This nonlinearity is explained 

physically by the action or inertial forces that act on the system, such as centrifugal 

and Coriolis forces. As a consequence, they are ideal research systems in the field of 

non-linear control theory. 

 Under-actuated: this means that the number of their degree of freedom is higher than 

the number of control actuators (generally there is a unique control input). this makes 

the control task harder, particularly for pendulums with multiple links. Under-actuated 

systems are interesting in robotics since we want to use the minimal number of 

actuators to reduce cost, as well as the system energy consumption and weight. 

 Potentially-perturbed: it is possible to add some stochastic parameters to the 

dynamics, for example, a perturbation torque. therefore, inverted pendulums could 

be studied in the field of stochastic control theory. 

Another interesting point is that we have the possibility to extend further the dimension of 

inverted pendulum state-space, by assembling further link and joint, and use this fact to study 

high dimensional systems. 

3.3) A benchmark for verification and performance analysis: 

Inverted pendulums are the gold standard for many control theorists to test and validate their 

algorithms and control strategies.it is also used to test the performance and effectiveness of 

unconventional and new control strategies. Because it is hard to make a full account of all the 

control strategies that have been tented on inverted pendulum, we only mention, for 

illustration purpose some of them, notably strategies that have emerged from the artificial 

intelligence field: Fuzzy logic control (Roose, SamerYahya, & Al-Rizzo, 2017) (Mladenov, 

Tsenov, Ekonomou, & Harkiolakis, 2009), neuronal networks control (Mladenov, Tsenov, 

Ekonomou, & Harkiolakis, 2009) and genetic algorithms (Metni, 2009) . 

4)inverted pendulums and real-world applications: 

Inverted pendulums are not only a mere theoretical tool for education and research, but also  

an inspiration source to many industrial applications, particularly those which shares similar 

dynamics with them. (Boubaker, 2014) 

Possibilities of applications field includes: 



9 
 

Robotics: the examples are numerous, but the most interesting case is the one when we are 

wishing to stabilize a humanoid robot. From a dynamical point of view, an inverted pendulum 

and a humanoid robot have the similar instability property and a similar form of the reigning 

differential equations. Thus the task of stabilizing a robot could be cast to the pendulum case. 

[fig 1.3] 

Aerospace: the problem of stabilizing a rocket at the launching moment is similar to stabilizing 

a pendulum. 

Transport: an example of a commercial application Is the Segway, which is a mobile wheeled 

inverted pendulum. [fig 1.4] 

 

 

 

 

Figure 1.3: inverted pendulum as a model for a walking robot. 

 

Figure 1.4: Segway an example of application inspired by inverted pendulums 

 

 

 

 



10 
 

Chapter 2: Generalities about symbolic 

methods 

1)the main idea of symbolic methods: 

Independently of which kind of systems we are dealing with, a symbolic method for control 

consists schematically of the following [fig 2.1]: 

Step 1: from the original control problem, composed of a system and a specification, we build 

an abstracted control problem. Abstraction could be understood as an equivalent 

mathematical description of the control problem, that is ideally more simple than the original 

one and offer much easier manipulation. In case of a space-continuous system, that has 

infinite and uncountable states, an abstraction of that system could be another system that 

has finite and countable states. Construction of abstractions is not easy from a mathematical 

point of view and will depend on the nature of that system. Intuitively, we are interested 

whether it is possible to exploit some convenient dynamical properties of the system so that 

it would be possible to represent some aggregates or collections of infinite and continuous 

states in one unique discrete state, called symbol. 

Step2: we solve an auxiliary control problem by synthesizing an abstract controller that 

enforces the abstract specification on the abstract system. This process is generally 

automated in practical implementations, and uses the advantage of the finite nature of the 

abstraction, to deploy techniques and algorithms that have been priory developed by 

computer-scientists and automata theorist for finite state machines. Finite state machines are 

very useful to model many phenomena and applications such as digital circuits. therefore, 

they have been extensively researched in the last century and a large number of algorithms 

has been developed, which symbolic methods could exploit at this level. 

Step3: Once an abstract controller is successfully obtained, the controller is refined into the 

original system, also called the plant. The refinement process will generally depend on the 

mathematical procedure used to construct the abstraction.  

 

Figure 2.1: general schemas of a symbolic method and the relation between the abstract and concrete domain 

 



11 
 

2)LTL specifications: 

By specification we mean the behavior that we want the system to exhibit, or the behavior it 

should not exhibit. There exist many different manners to express a specification. A simple 

kind of specification is to force all the trajectories of a system to converge to an equilibrium 

point (stability specification) or to follow a reference trajectory (reference-tracking 

specification). 

A more interesting, yet more complex, kind of specifications are those expressed in the form 

of linear-temporal-logic(LTL). LTL has been largely used in computer-science and software-

engineering. 

A basic example of LTL includes reachability specifications. For an atomic proposition which 

describes a system-state or a collection of system-states, basic LTL specifications include 

reachability denoted as ◊φ, and invariance denoted as □φ.  

Furthermore, it is possible to combine basic specifications with each other, and with the help 

of logical conjunctions (¬,⋀, ⋁) to form more complex specifications. For instance: 

 ¬ ◊φ: avoid specification. 

 □ ◊φ: reach and stay. 

Thus, LTL could be used to precisely formulate specifications for complex systems, for 

instance, a system that controls the autonomous-driving of a car, and ensures avoiding 

collisions, or to plan a complex motion of a robot in an environment with obstacles. [fig 2.2] 

 

Figure 2.2: an example of reach and avoid specification, the robot(green) should reach the red region while avoiding the 
obstacles(blue) 

. 

 

 
 



12 
 

3)Advantages of Symbolic methods: 

 

3.1) enforcing complex specifications in LTL: 

While classical control techniques are very well suited to enforce simple specifications such as 

reference tracking and stabilizing (PID controller), symbolic methods are naturally able to 

support highly complex specifications expressed in LTL. This advantage is inherent to the fact 

that symbolic methods are based on abstracting the system as a finite state machine, for which 

a well-developed theory by computer scientists and game-automata theorist already exists, and 

from which we could benefit to try to enforce those complex specifications. 

 

3.2) a correct-by-construction controller:  

Control problems are in the heart of many engineer’s tasks. The engineer is faced with the task 

to design a controller that enforces certain specifications or constraints on a system, which 

could be continuous, discrete or combination of both (hybrid). 

The difficulty to find a solution will depend both on the complexity of system dynamics and the 

complexity of the specifications. 

In order to guarantee the synthesis of a controller that reliably conform to the specification and 

work properly in safety-critical environments (example: a surgical robot), the engineer should 

resort to formal verification techniques. 

There exist two approaches, in the first one, the verification phase is executed after the 

modeling and the design phase of the controller. If the controller fails however to succeed the 

verifications, an iterative process should take place, the engineer should identify the problem 

and restart the modeling and design phase. The second approach consists of merging the 

design and verification phases in a single process, this is known as the correct-by-construction 

approach. 

In the context of cyber-physical systems, where the applications tend to be more sophisticated, 

with intricate dynamics and complex interactions between software and hardware components 

resulting in the need of highly complex specifications, resorting to the design-then-verification 

approach seems not appealing, since it will result in a very long iterative process and as a 

consequence higher design costs. On the other hand, a correct-by-construction approach is 

ideally suited for this task. 

Symbolic methods are among the methods that guarantee a correct-by construction controller, 

resulting in a smoother design process and saving tremendous costs. 

 

3.3) applicability to a large class of systems: 

Although symbolic methods are relatively recent concept, the class of systems admitting a 

symbolic method has been consistently growing, including linear systems, affine systems, 

affine switched systems, incrementally input-to-state-stable nonlinear system, non-linear 

systems without stability assumptions, stochastic systems to name few. 

This applicability of symbolic methods to many systems, in particular, those which frequently 

are modeled in real-life applications make them interesting from an industrial point of view. 

 

3.4) robustness under uncertainties: 



13 
 

Symbolic methods could be adapted to tolerate uncertainties in the system, such as those due 

to perturbations or measurement errors (Reissig, Rungger, & Alexander, 2015). this is very 

relevant since models used in engineer practice are frequently prone to uncertainties. 

 

4) Comments: 

In this thesis, we deal only with deterministic non-linear, unstable systems, through the 

example of the rotary inverted pendulum, therefore we will not be able to verify all the above-

mentioned advantages. We will only check the correctness-by-construction property and the 

enforcement of an LTL-specifications. 

Possible LTL-specifications for a rotary inverted pendulum could be invariance (stabilize the 

pendulum upwards), reachability(swing-up) and reach and stay (swing-up then stabilize).it is 

not easy to imagine more complex specifications because of the simple geometry of the plant. 

We choose mainly to deal with invariance specification, the procedure is similar for the other 

ones but will need eventually higher computation and memory performance than what we 

could access to. 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 



14 
 

Chapter 3: Dynamics of the rotary 

inverted pendulum. 

1) Overview: 

In this part, we want to derive a model that mathematically describes the rotary inverted 

pendulum and its base [fig 3.1]. we preferred to make the least possible assumptions and 

simplifications while deriving the model, in order to reduce modeling uncertainties with 

respect to the real plant. 

For mechanical systems, different techniques that yields the equation of motions exists, the 

most two well-known are Newton-Euler and Lagrange formulation. Although both will lead to 

the exact same result under identical assumptions, we preferred to follow the latter since it is 

more powerful when dealing with systems composed of links and joints, such as robot arm-

manipulators, but also pendulums. Lagrange formulation could also be used by some 

software to automatically derive the equations of motion for the general case of a system 

with n link and joints, for example, a n-rotary inverted pendulum (Sarnovsky & Jadlovska, 

2013). 

 

 

Figure 3.1 rotary inverted pendulum with servo rotary base 

 



15 
 

2) Lagrange formulation: 

Given a system with n degree of rotation freedoms, composed of n joints and links, with no 

translation motion. lk is the distance between the  kth –joint and the center of mass of  kth –

link ,whereas Lk is the full link length. we denote mk its mass, rk ,vk ,ωk respectively the 

position, translation velocity and angular velocity vectors of its center of mass, Jk the 

corresponding inertia tensor,bk the viscous-damping coefficient and τ k the torque acting on 

it.[fig 3.2] 

 

Figure 3.2 rotary n-inverted pendulum 

The total kinetic energy, resulting from the motion of all the links is denoted as Ƭ. 

Ƭ =∑ ( 
𝐧

𝐤=𝟏
𝟏

𝟐
𝐦𝐤𝐯𝐤

𝐭𝐯𝐤 +
𝟏

𝟐
𝛚𝐤
𝐭 𝐉𝐤𝛚𝐤)    (3.1) 

The total potential energy Ʋ is given by: 

                Ʋ =−∑ 𝐦𝐤𝐫𝐤 𝐠
𝐧
𝐤=𝟏                 (3.2) 

Where 𝐠 is the gravity acceleration vector. 

The Lagrangian, which expresses the total energy of the system and serves to derive the n set 

of differential equations, is defined as: 

𝓛 = Ƭ – Ʋ 

This derivation is achieved by solving n time the following equations (3.3): 

ⅆ

ⅆ𝐭

𝛛𝓛

𝛛𝜽 ̇ 𝐤
−
𝛛𝓛

𝛛𝜽 𝐤
= 𝛕𝐤 − 𝐛𝐤𝜽̇𝐤 

With 𝜽 = (𝜽𝟏 𝜽𝟐… . 𝜽𝒌……𝜽𝒏) denotes the general coordinates vector, describing the rotation 

angles of the system. We can see how general this approach to derive equations for any high 

dimensional multiple links joint systems. Next, we only consider the case n=2 of our rotary simple 

inverted pendulum. 



16 
 

3) Kinematics: 

Now we are interested in developing the expression of the Lagrangian as a function of the 

general coordinates. For the purpose, we have first to equip each link with a reference 

framework (xn , yk , zk) for k=1,2.we also define the reference (x0 , y0 , z0) fixed to the base. 

The direction of references is defined according to the Denavit-Hartenberg convention. 

Since we need to relate different references to each other, we have to define the change of 

coordinates matrices, which are in this case rotations matrices 𝑅10 and 𝑅21. 

𝑅10=(
   cos (𝜽𝟏)
−sin (𝜽𝟏)

0

    sin (𝜽𝟏)
    cos (𝜽𝟏)

0

     0
     0
     1

)                   𝑅21=(
   0
   0
   1

    sin (θ2)
    cos (𝜽𝟐)

0

    −cos (𝜽𝟐)
      sin (𝜽𝟐)
     0

) 

we obtain the following relations between the references: 

(x0 , y0 , z0) 
𝑅10
→  (x1 , y1 , z1)  

𝑅21
→  (x2 , y2 , z2) 

 

Now we want the expression of  v1, v2, ω1, ω2. 

ω1 =(0   0  𝜃̇2)t 

ω2 =(0   0  𝜃̇2)t+ 𝑅21ω1=(−cos (θ2)𝜃̇1 sin (θ2)𝜃̇1 𝜃̇2)
t 

 

v1=ω1 ×( l1   0   0)t= (0 l1𝜃̇1 0)t 

v2=ω2 ×( l2   0   0)t+ 𝑅21( ω1 ×( L1   0   0) t)= (L1𝑠𝑖𝑛 (θ2)𝜃̇1 L1cos (θ2)𝜃̇1 + l2 𝜃̇2 −𝜃̇1l2 𝑠𝑖𝑛(θ2) )
t 

The next tables summarize the kinematics expressions needed to derive the equations of motion 

Table 1 kinematics expressions 

velocities Expression 

 
ω1 

 

 
(0 0 𝜃̇1)

t 

 

ω2 
 

 

(−cos (θ2)𝜃̇1 sin (θ2)𝜃̇1 𝜃̇2)
t 

 
v1 

 

 
(0 l1𝜃̇1 0)t 

 
v2 

 
(L1𝑠𝑖𝑛 (θ2)𝜃̇1 L1cos (θ2)𝜃̇1 + l2 𝜃̇2 −𝜃̇1l2 𝑠𝑖𝑛(θ2) )

t 

 

 

 

4)mechanical equations of motions: 



17 
 

4.1) inertial tensor assumptions: 

since the reference axis coincides with the principle axis of each link, the inertial tensor  𝐉𝐤 

has a diagonal form: 

𝐉𝐤 = (

Jkxx 0 0
0 Jkyy 0

0 0 Jkzz

) 

The only simplifications we took in the whole derivation is to consider that Jkxx=0 , which is 

physically a reasonable approximation, furthermore by a symmetry argument 𝐉𝐤 could be 

written as: 

𝐉𝐤 = (
0 0 0
0 Jk 0
0 0 Jk

) 

4.2) coupled equations of motion: 

Using equation (3.1) and (3.2) we obtain: 

Ƭ=
1

2
𝜃̇1
2

(m1l1
2+J1 +m2L2

2 + sin(θ2)
2 (m2l2

2 + J2) ) +
1

2
𝜃̇2
2
(m2l2

2 + J2) + m2l2L1 cos(θ2) 𝜃̇1𝜃̇2 

Ʋ=gm2l2(1 − cos(θ2)) 

A careful employ of (3.3) will result in the following expressions: 

𝜃̈1(J1 + m1l1
2 +m2L2

2 + sin(θ2)
2 (m2l2

2 + J
2
) )+ 𝜃̈2m2l2L1 cos(θ2) −m2l2L1 sin(θ2) 𝜃̇2

2
+

sin(2θ2) 𝜃̇1𝜃̇2(m2l2
2 + J2)= τ1-b1𝜃̇1   (3.4) 

𝜃̈1m2l2L1 cos(θ2) + 𝜃̈2(m2l2
2 + J

2
) −

1

2
(m2l2

2 + J
2
) sin(2θ2) 𝜃̇1

2
+gm2l2 sin(θ2)=τ2-b2𝜃̇2 (3.5) 

We are interested in having the most compact form of those equations to ease the implementations 

later, we could obtain a slightly better expression by introducing the following variables, which could 

be interpreted as the inertia terms with respect to the pivots (Steiner’s theorem) 

𝐽1 = J1 +m1l1
2 

                                                                             𝐽2 = J2 +m2l2
2 

We further define: 

𝐽0 = 𝐽1 +m2L2
2 

  c = m2l2L1 

equations (3.4) and (3.5) could be written as a shorter form as: 

 

 

 

 

𝜃̈1(𝐽̂0 + sin(θ2)
2 𝐽̂2 )+c ∙ cos(θ2)𝜃̈2 − c ∙ sin(θ2) 𝜃̇2

2
+ 𝐽2sin(2θ2) 𝜃̇1𝜃̇2= τ1-b1𝜃̇1 

𝜃̈1c ∙ cos(θ2) + 𝜃̈2𝐽̂2 −
1

2
𝐽̂2 sin(2θ2) 𝜃̇1

2
+gm2l2 sin(θ2)=τ2-b2𝜃̇2 

 



18 
 

4.3) Matrix form: 

it is possible to write the above equations in a matrix form, this form has two advantages, it 

enables us to better understand the dynamics and interpret how the non-linearity appears, 

second, it will help us to decouple the equations to obtain the needed state-space 

representation form. 

we note τ = (τ1 τ2) , θ = (θ1 θ2), 𝜃̇ = (𝜃̇1 𝜃̇2), 𝜃̈ = (𝜃̈1 𝜃̈2), and introduces the matrix 

and vector functions: 

𝑀(θ, θ̇)=(
𝐽̂0 + sin(θ2)

2 𝐽̂2 c ∙ cos(θ2)

c ∙ cos(θ2) 𝐽̂2
) 

𝐶(θ, θ̇)=(
b1 + 𝐽̂2sin(2θ2) 𝜃̇2 −c ∙ sin(θ2) 𝜃̇2

2

−
1

2
𝐽̂2 sin(2θ2) 𝜃̇1 b2

) 

𝐵(θ) = (0 gm2l2 sin(θ2)) 

 

An elegant representation of equations of motions in an oscillator form is: 

𝑀(θ, θ̇)𝜃̈ + 𝐶(θ, θ̇) 𝜃̇+ 𝐵(θ)= τ 

This equation has a physical interpretation and accounts for the sources of nonlinearities in 

the equations. 𝑀(θ, θ̇) is a symmetrical matrix  called the mass matrix and accounts for the 

inertial terms, 𝐶(θ, θ̇) is the matrix that describes frictions as well as Coriolis and centrifugal 

forces, the  𝐵(θ)  summarize the effect of potential and gravitational forces. 

 

4.4) Uncoupled equations of motion: 

the equation that has been derived so far are still in a coupled form, but since we will later 

need a state-space representation of the equations, we need to uncouple them. 

We could do that with Symbolic Math Toolbox™ but a more elegant approach is to use the 

matrix form, which will result in less lengthy expressions. 

We have det(𝑀(θ, θ̇))= 𝐽0𝐽2 +𝐽2
2
sin(θ2)

2 − c2 cos(θ2)
2 

We assume it will never be zero, then 𝑀(θ, θ̇) is invertible. 

𝜃̈ = 𝑀−1(θ, θ̇)(τ −  𝐶(θ, θ̇)𝜃̇ −  𝐵(θ)) 

 

 

 

 



19 
 

 

After some computations, we arrive to the separated form: 

𝜃̈1=
−𝐽2̂𝑏1𝜃̇1+𝑐 cos(𝜃2) 𝑏2𝜃̇2−𝐽2

2̂ sin(2𝜃2)𝜃̇1𝜃̇2−(1 2⁄ )𝐽2̂𝑐 cos(𝜃2) sin(2𝜃2)𝜃1
2̇̂

𝐽0𝐽2 +𝐽2
2
sin(θ2)

2−c2 cos(θ2)
2

 + 

𝐽2̂𝑐 sin(𝜃2)𝜃̇2
2+𝐽2̂𝜏1−𝑐 cos(𝜃2)𝜏2+(1 2⁄ )𝑚2

2𝑙2
2𝐿1 sin(2𝜃2)g

𝐽0𝐽2 +𝐽2
2
sin(θ2)

2−c2 cos(θ2)
2

    

 

𝜃̈2=
𝑐 cos(𝜃2)𝑏1𝜃̇1−𝑏2( 𝐽0̂+𝐽2̂  sin

2(𝜃2)) 𝜃̇2+𝑐 𝐽2̂cos(𝜃2) sin(2𝜃2)𝜃̇1𝜃̇2−(1 2⁄ ) sin(2𝜃2)[𝐽0̂𝐽2̂+𝐽2
2sin2(𝜃2)]𝜃̇1

2

𝐽0𝐽2 +𝐽2
2
sin(θ2)

2−c2 cos(θ2)
2

 

+ 
(𝐽0̂+𝐽2̂ sin

2(𝜃2)𝜏2−𝑚2𝑙2sin(𝜃2)(𝐽0̂+𝐽2̂sin
2(𝜃2))g−(1 2⁄ )𝑐

2 sin(2𝜃2)𝜃̇2
2−𝑐 cos(𝜃2)𝜏1

𝐽0𝐽2 +𝐽2
2
sin(θ2)

2−c2 cos(θ2)
2

 

 

5) State-space representation: 

From the last two equations it is straightforward to write all the system dynamics in a state-space 

representation form: 

𝜉̇(𝑡) = 𝑓(𝜉(𝑡), 𝛕)   (3.8) 

Where 𝜉(𝑡) = (θ1 θ2 𝜃̇1 𝜃̇2) with 𝑓: ℝ4 × ℝ2 → ℝ4. 

 

Now, we need to discuss the inputs. In the case of the plant we are working on, there exist 

only one torque acting on the system, because the pendulum is underactuated, so we have 

either to consider  τ2 = 0, or to model τ2 as a perturbation torque, so we can treat the 

system as non-deterministic. Our choice here was to not bring any perturbation on the model 

we will work on, although symbolic methods could handle this. 

Another point is related to  τ1.in the real plant we cannot control the system directly through 

a torque, but rather through a voltage or a current. The expression for  τ1 is given by the 

manufacturer (Quanser), in this case: 

τ1 =
𝜂𝑔 𝐾𝑔 𝜂𝑚 𝑘 𝑡(𝑉𝑚 −𝐾𝑔 𝑘 𝑚 𝜃̇1)

𝑅𝑚
   (3.9) 

So that our concrete control input is 𝑉𝑚 . 

Injecting the equation (3.9) in (3.8) gives us a slightly different form, that we are going to use 

in SCOTS: 

𝜉̇(𝑡) = 𝑓(𝜉(𝑡), 𝑉𝑚)      (3.9) 

with 𝑓: ℝ4 × ℝ → ℝ4 . 

 

 



20 
 

Chapter 4: Symbolic methods for 

deterministic non-linear systems without 

stability assumptions 

 

1) Overview: 

The theory behind Symbolic methods is very profound and is based on results from different 

disciplines, essentially control theory and computer science. Therefore, a full account of this 

theory is beyond the scope of this thesis. We will rather focus on aspects that could be helpful 

for the practical implementation and to solve our problem. In this context, we are dealing 

with a non-linear, unstable, control system. Thus, it will be convenient to only focus on 

Symbolic methods for non-linear systems, where no stability condition (like incremental input 

–to-state stability (δ-ISS)), is required. The greatest attention will be centered on the 

procedure constructing a finite-state abstraction from the original continuous system. Once 

an abstraction is correctly constructed, the rest of steps, for instance solving the control 

problem on the abstract domain, is standard, straightforward and fully automated in most 

Software. Refining the abstract controller to the real plant is also unproblematic, and is 

granted to work if the abstraction is correctly constructed.  

To sum up, we will only concentrate on mathematically generating an abstraction, also called 

symbolic model, for very general non-linear, unperturbed systems. 

Checking the literature, we found two approaches compatible with our situation. The first 

approach is based on Approximate(-alternating-) simulation relations, and requires only the 

very mild assumption of the incremental forward completeness δ-FC, which is very relaxed 

condition compared to δ-ISS, and is verified by many physical systems including the pendulum 

(Zamani, Pola, Mazo JR, & Tabuada, 2011). The second approach relies on a different type of 

relation, called feedback refinement relation, and is inspired by the idea of over-

approximating the attainable sets (reachable sets) by computing a growth bound (Reissig, 

Rungger, & Alexander, 2015). 

before we mention globally how those approaches work, we want to cite the foundation that 

allows us mathematically, not only to describe the same control problem in different manners 

but also to relate those different descriptions to each other. 

2) A versatile mathematical description of control systems: 

2.1) Definition of a transition system: 

In order to construct mathematical relations between different descriptions of the same 

dynamical phenomena, we need a versatile mathematical description that could 



21 
 

be used to uniformly treat both the finite-state and the infinite state cases. this is allowed by 

the definition of transition systems.    

Definition 1: (Tabuada, 2009) A transition system S is a sextuple ( Χ , Χ0, 𝑈 ,  →  , 𝑌 , 𝐻 ) 

consisting of:  

 A set of finite or infinite state alphabets Χ; 

• A set of initial states Χ0 ⊆  X; 

• A set of inputs 𝑈; 

• A transition relation  →   ⊆  Χ  ×  𝑈 ×  Χ; 

• A set of output 𝑌; 

• An output map 𝐻 :  Χ → 𝑌; 

this definition is very general, we could adopt a simpler one that is also applicable to many 

control problems, in which the outputs and internal states coincides and no initial states are 

considered. 

      Definition 2: A simple transition system 𝑆′ is a triple ( Χ , 𝑈 , → ) consisting of::  

• A set of infinite or finite states Χ; 

• A set of inputs 𝑈; 

• A transition relation  →  ⊆ Χ × 𝑈 × Χ; 

Remark:  the transitions could be alternatively described through a map valued function 

 𝐹 : Χ × 𝑈 ⇉ Χ. 

We can see that the definition of a transition system is intuitive in the case of the discrete, 

finite states systems, where they could be thought as finite state machines. A graphical 

representation is also possible, if we know the set of states, inputs and transitions [Figure 

4.1]. More intriguing however, is how this definition applicable to continuous control system. 

 

Figure 4.1: a possible graphical representation of finite-states transition system 



22 
 

 

2.2) Continuous control systems as transition systems: 

2.2.1) Definition of a continuous control system: 

Definition 3: (Tabuada, 2009) A continuous control system is a triplet 𝛴 = (ℝ𝑛 , 𝒰 , 𝑓) 

consisting of:  

• The state space ℝ𝑛. 

• A set of input curve 𝒰 ,whose elements are essentially bounded piecewise . 

• A smooth continuous map 𝑓 : ℝ𝑛 × ℝ𝑚 → ℝ𝑛 

 

A continuously differentiable curve 𝜉 : ]𝑎, 𝑏[ → ℝ𝑛 is said to be to be trajectory or solution of  

𝛴 if there is 𝑢 𝜖 𝒰 so that  
𝑑

𝑑𝑡
 𝜉 = 𝑓(𝜉,𝑢) holds for almost every t 𝜖 ]𝑎, 𝑏[. 

2.2.2) Interpretation of continuous control system as a transition 

system: 

We could interpret a time-space continuous system as a transition system in the following way: 

(Tabuada, 2009) Given a system 𝛴 = (ℝ𝑛 , 𝒰 , 𝑓) ,it is possible to describe 𝛴 by a transition 

system 𝑆 = (Χ,𝒰,→),where: 

• Χ = ℝ𝑛 

• U = 𝒰 

• 𝑥 
𝑣
→ 𝑥′ if there exists  𝑣 ∈ 𝒰 :[0, 𝜏] → ℝ𝑚 and 𝜉𝑥𝑣 ∶ [0, 𝜏] → ℝ𝑛  

       Satisfying  
𝑑

𝑑𝑡
 𝜉𝑥𝑣   = 𝑓(𝜉,𝑣) with 𝜉𝑥𝑣(0) = 𝑥 And 𝜉𝑥𝑣(𝜏) = 𝑥

′,𝜏 ∈ ℝ+. 

 

𝛴 is therefore described by a transition system with infinite, uncountable state and input sets. 

In this context, transitions highlights the dynamical evolution of the system trajectories that 

starting at a given initial condition and evolve under some input signal and for some time 

horizon 𝜏. A transition depends therefore on both input and time. 

2.2.3) Interpretation of a Sampled system as a transition system: 

a sampled control system is the time-discrete, space-continuous version of a time-continuous, 

space-continuous control system. 

(Tabuada, 2009) For a fixed 𝜏 ∈ ℝ+, and a continuous control system 𝛴 = (ℝ𝑛 , 𝒰 , 𝑓) we  

define the sampled transition system 𝑆𝜏 = (Χ𝜏 , 𝒰𝜏 ,
𝜏
→) associated with 𝛴 as: 

 Χ𝜏 = ℝ
𝑛 

 𝒰𝜏 = {𝒳 ∈ 𝐶 | 𝑑𝑜𝑚𝒳 = [0, 𝜏] } 



23 
 

 𝑥
𝒳
→ 𝑥′ if there exist  𝒳 ∈ 𝒰𝜏 ,and a trajectory 𝜉𝑥𝒳 : [0, 𝜏] of 𝛴 Satisfying 

𝑑

𝑑𝑡
 𝜉𝑥𝒳  = 

𝑓(𝜉𝑥𝒳 ,𝒳) ,with 𝜉𝑥𝒳(𝜏) = 𝑥
′ and  𝜉𝑥𝒳(0) = 𝑥. 

2.2.4) Comments: 

 The main difference between 2.2.2 and 2.2.3, is that in case of a sampled system, the 

time horizon 𝜏 is fixed. In a practical context, 𝜏 could correspond to the rate or the 

clock frequency, at which the controller is applying a new different control signal each 

time. 

 We can see the clear advantage of the definition of a transition system, which allows 

us to describe both time-space continuous control system and time-discrete space-

continuous control systems (and eventually time-discrete, space-discrete control 

systems). This unifying mathematical framework enables us also to define 

mathematical relations between different descriptions of the systems, example of 

such relations are Approximate (alternating) simulation relation and feedback 

refinement relation that we will define in next parts. 

 Thank to such relations it could be possible to substitute a control problem on an 

infinite time-space continuous domain, with an auxiliary, more simple control problem 

on a finite discrete space (equivalent to a finite-state). 

3) Abstraction for non-linear systems based on approximate 

simulation relations: 

3.1) Approximate simulation relations: 

Definition 4: (Tabuada, 2009) let 𝑆𝑎 = (𝑋𝑎 , 𝑈𝑎 ,
𝑎
→ ) and 𝑆𝑏 = (𝑋𝑏 , 𝑈𝑏  ,

𝑏
→ ) be metric systems 

equipped with a metric d, with 𝑋𝑎 = 𝑋𝑏 , consider a precision 𝜀  ∈ ℝ+. 

A relation 𝑅 ⊆  𝑋𝑎 × 𝑋𝑏 is said to be 𝜀-approximate simulation relation from 𝑆𝑎 to 𝑆𝑏 to if all 

those conditions are satisfied. 

(i) ∀ 𝑥𝑎 ∈ 𝑋𝑎, ∃ 𝑥𝑏 ∈ 𝑋𝑏 with (𝑥𝑎 , 𝑥𝑏) ∈ 𝑅 , 

(ii) ∀ (𝑥𝑎 , 𝑥𝑏) ∈ ℝ , 𝑑(𝑥𝑎 , 𝑥𝑏) ≤ 𝜀 

(iii) ∀ (𝑥𝑎 , 𝑥𝑏) ∈ ℝ , 𝑥𝑎
𝑢𝑎
→ 𝑥𝑎

′  ⇒ ∃ 𝑢𝑏 , 𝑥𝑏
𝑢𝑏
→ 𝑥𝑏

′  ∧  (𝑥𝑎
′  , 𝑥𝑏

′ )  ∈ 𝑅 

 

We say that 𝑆𝑎 is approximately simulated by 𝑆𝑏 or that 𝑆𝑏 approximately simulate 𝑆𝑎 

denoted by : 

𝑆𝑎 ≤𝐴𝑆
𝜀  𝑆𝑏 if there exists an 𝜀-approximate simulation relation from 𝑆𝑎 to 𝑆𝑏 . 

Intuitively, this relation means that for every state 𝑥𝑎 in 𝑆𝑎, we could attach to it a state 𝑥𝑏 in 

𝑆𝑏,where those two states should be close enough to each other ( up to 𝜀-precision  ) .if from 

this state 𝑥𝑎 , there is an input 𝑢𝑎 that drive the trajectory to a point 𝑥𝑎
′ , the system 𝑏 has to 

find an input 𝑢𝑏 which drive the trajectory starting from 𝑥𝑏 to a position 𝑥𝑏
′   that is close 

enough to the position 𝑥𝑎
′  (up to 𝜀- precision) . Therefore, 𝑆𝑏 should always be able to 



24 
 

reproduce or simulate the behavior of system 𝑆𝑎. In terms of precision, this simulation  is not 

exact or perfect, but subject to an error 𝜀. Thus, we call this relation approximate simulation. 

Remark: approximate alternate simulation relation is a more general variant than 

approximate simulation, which applies to nondeterministic system. the notation is: 𝑆𝑎 ≤𝐴𝐴𝑆
𝜀  

𝑆𝑏 

3.2) Incremental forward completeness and lyapunov characterization  

3.2.1) Definition and a simple example: 

3.2.1.1) Definition of incremental forward completeness. 

Definition 4: (Zamani, Pola, Mazo JR, & Tabuada, 2011) A control system is  incrementally 

forward complete (δ-FC ) if it is forward complete and there exist continuous function B : 

ℝ0
+ × ℝ0

+ → ℝ0
+ and Y : ℝ0

+ × ℝ0
+ → ℝ0

+  such that for every 𝑠 ∈ ℝ+, the functions 𝐵( ∙ , 𝑠 ) 

and 𝑌( ∙ , 𝑠 ) belong to the function class 𝜅∞ ,that for any 𝑥, 𝑥′ ∈ ℝ𝑛, any 𝜏 ∈ ℝ+, and any 

𝑣, 𝑣′ , where 𝑣, 𝑣′: [0, 𝜏[→ 𝑈 the following condition is satisfied for all 𝑡 ∈ [0, 𝜏]. 

‖𝜉𝑥𝑣(𝑡) − 𝜉𝑥′𝑣′(𝑡)‖ ≤ 𝐵(‖𝑥 − 𝑥
′‖, 𝑡) + 𝑌(‖𝑣 − 𝑣′‖∞, 𝑡) 

 

The intuitive interpretation of this definition is that for any two arbitrary trajectories, one that 

starts in 𝑥 and evolve under an input 𝑣(𝑡), and the second starts in 𝑥′ and evolve under 𝑣′(𝑡), 

the distance between the instantaneous position of both trajectory at any arbitrary time 𝑡 ∈

[0, 𝜏[ is bounded by two functions, one function captures the deviation or mismatch between 

the  initial conditions and the second describes the mismatch in terms of inputs. Through this 

definition we require that trajectories which start close to each other and evolve under close 

input signal should remain to a certain degree close to each other. 

3.2.1.1) A simple example for linear-time-invariant systems: 

a particular simple example for could be taken for an LTI control system in the form of: 

𝜉̇ = 𝐴𝜉 + 𝐵𝜉 , 𝜉(𝑡) ∈ ℝ𝑛 , 𝑣(𝑡) ∈ 𝑈 ⊆ ℝ𝑚 

This system admit as a solution for the initial condition  𝑥0 ∈ ℝ
𝑛 and input 𝑣0(𝑡) ∈ 𝑈 the 

trajectory 𝜉𝑥0𝑣0  given as: 

𝜉𝑥0𝑣0(𝑡) = 𝑒
𝐴𝑡𝑥0 +∫ 𝑒

𝐴(𝑡−𝑍)
𝑡

0

𝐵𝑣0(𝑍)𝑑𝑍 = 𝑒
𝐴𝑡𝑥0 +∫ 𝑒

𝐴𝑡
𝑡

0

𝐵𝑣0(𝑍 − 𝑡)𝑑𝑍 

If we take two different trajectories 𝜉𝑥𝑣 , 𝜉𝑥′𝑣′starting from different initial positons  𝑥, 𝑥′and 

that evolve under different input signals  𝑣, 𝑣′, we could compute the distance between them 

as: 

  ‖𝜉𝑥𝑣(𝑡) − 𝜉𝑥′𝑣′(𝑡)‖ = ‖𝑒
𝐴𝑡𝑥 + ∫ 𝑒𝐴(𝑡−𝑍)

𝑡

0
𝐵𝑣(𝑍)𝑑𝑍 − 𝑒𝐴𝑡𝑥′ + ∫ 𝑒𝐴(𝑡−𝑍)

𝑡

0
𝐵𝑣′𝑑𝑍‖ 

By applying the triangular inequality, then considering norms and integrals inequalities, we 

deduce, 



25 
 

‖𝜉𝑥𝑣(𝑡) − 𝜉𝑥′𝑣′(𝑡)‖ ≤ ‖𝑒
𝐴𝑡(𝑥 − 𝑥′)‖ + ‖∫ 𝑒𝐴𝑡

𝑡

0

𝐵(𝑣(𝑍 − 𝑡) − 𝑣′(𝑍 − 𝑡)𝑑𝑍‖

≤ ‖𝑒𝐴𝑡‖‖𝑥0 − 𝑥
′‖ + (∫ ‖𝑒𝐴𝑍𝐵‖𝑑𝑍)

𝑡

0

‖𝑣 − 𝑣′‖∞ 

The choice of 𝐵( 𝑟, 𝑡 ) = ‖𝑒𝐴𝑡‖ 𝑟 and 𝑌( 𝑟, 𝑡 ) = ∫ (‖𝑒𝐴𝑠𝐵‖ 𝑑𝑠) 𝑟
𝑡

0
 satisfies definition 5 and 

the system is  δ-FC 

3.2.2) Characterization of δ-FC in term of Lyapunov function: 

Definition 6: (Zamani, Pola, Mazo JR, & Tabuada, 2011) consider a control system 𝛴 =

(ℝ𝑛 , 𝒰 , 𝑓)   and a smooth function  𝑉 ∶  ℝ𝑛 × ℝ𝑛 → ℝ0
+. Function 𝑉 is called a δ-FC 

Lyapunov function for 𝛴 if there exist 𝜅∞  functions 𝛼, 𝛼 , 𝜎 and 𝑘 ∈ ℝ such that:  

(i) for any 𝑥, 𝑥′ ∈  ℝ𝑛 , 𝛼(‖𝑥 − 𝑥′‖ ≤   𝑉(𝑥 − 𝑥′) ≤ 𝛼 (‖𝑥 − 𝑥′‖); 

(ii) for any 𝑥, 𝑥′ ∈  ℝ𝑛and for any 𝑢, 𝑢′ ∈ 𝑈 
𝜕 𝑉

𝜕𝑥
𝑓(𝑥, 𝑢) +

𝜕 𝑉

𝜕𝑥′
𝑓(𝑥′, 𝑢′) ≤  𝑘. 𝑉(𝑥, 𝑥′) + 𝜎(‖𝑢 − 𝑢′‖) 

 

Intuitively 𝑉(𝑥, 𝑥′) could be though as an energy dissipation function, and has a close 

definition to Lyapunov functions used to investigate stability of Dynamical systems. 

It could be proven  that a system 𝛴  is a  δ-FC, if it admit a δ-FC Lyapanov function. Moreover 

the functions 𝐵 and 𝑌 in definition 5 could be analytically given as: 

𝐵(𝑟, 𝑡) = 𝛼−1(2𝑒𝑘𝑡 𝛼 (𝑟)), 𝑌(𝑟, 𝑡) = 𝛼−1(2 (
𝑒𝑘𝑡 − 1

𝑘
)𝜎(𝑟)) 

3.3) Symbolic Models for a δ-FC control system: 

Definition of a grid cover: for a compact set 𝐴 ⊆ ℝ𝑛, 𝐴 = ∏ [𝑐𝑖, 𝑑𝑖]
𝑛
𝑖=1 with 𝑐𝑖 ≤,𝑑𝑖  .and for  a 

positive constant 𝜂 ≤ 𝜂̂  where 𝜂̂ = min{|𝑑1 − 𝑐1|, …… |𝑑𝑛 − 𝑐𝑛|} we define as a grid cover 

to 𝐴  the set [𝐴]𝜂 expressed as: 

[𝐴]𝜂 = {𝑎 ∈ 𝐴 | 𝑎𝑖 = 𝑘𝑖𝜂, 𝑘𝑖 ∈ ℤ, 𝑖 = 1,…… , 𝑛}                                                                                                

Now consider δ-FC continuous control system 𝛴 = (ℝ𝑛 , 𝒰 , 𝑓) with a compact input set  𝑈 =
∏ [𝑎𝑖 , 𝑏𝑖]
𝑚
𝑖=1   ⊆  ℝ𝑚                            

Given a sapling time 𝜏 ∈ ℝ+ ,we define  𝑆𝜏(𝛴) = (Χ𝜏 , 𝑈𝜏  ,
𝜏
→) as a transition system 

associated 𝛴 : 

 Χ𝜏 = ℝ
𝑛 

 𝑈𝜏 = { 𝑣𝜏 ∶ [0, 𝜏[ → 𝑈 | 𝑣𝜏(𝑡) = 𝑣𝜏(0) ∈ 𝑈, ∀ 𝑡 ∈ [0, 𝜏[ } 

 𝑥𝜏
𝑣𝜏
→ 𝑥 𝜏

′  if there is a trajectory 𝜉𝑥𝜏𝑣𝜏: [0, 𝜏] → ℝ
𝑛 Satisfying  

𝑑

𝑑𝑡
 𝜉𝑥𝜏𝑣𝜏 = 𝑓(𝜉𝑥𝜏𝑣𝜏,𝑣𝜏) with  

𝜉𝑥𝜏𝑣𝜏(𝜏) = 𝑥 𝜏
′  and 𝜉𝑥𝜏𝑣𝜏(0) = 𝑥𝜏 



26 
 

𝑆𝜏(𝛴) describes therefore the sampled behavior of control system 𝛴 under a sequence of 

piecewise constant inputs. 

For a quadruple of positive parameters  𝑞 = {𝜏, 𝜂, 𝜇, 𝜃} We define the system 𝑆𝑞(𝛴) =

(𝑋𝑞, 𝑈𝑞,
𝑞
→) as 

 𝑋𝑞 = [ℝ
𝑛]𝜂 ; 

 𝑈𝑞 = [𝑈𝜏]𝜇 ; 

 𝑥𝑞
𝑢𝑞
→ 𝑥 𝑞

′  if ‖𝜉𝑥𝑞𝑢𝑞(𝜏) − 𝑥𝑞
′‖ ≤ 𝐵(𝜃, 𝜏) + 𝑌(𝜇, 𝜏) + 𝜂 ,  𝜉𝑥𝑞𝑢𝑞: [0, 𝜏] → ℝ

𝑛 Satisfying  

 
𝑑

𝑑𝑡
 𝜉𝑥𝑞𝑢𝑞  = 𝑓(𝜉𝑥𝑞𝑢𝑞 , 𝑢𝑞) with  𝜉𝑥𝑞𝑢𝑞(𝜏) = 𝑥 𝑞

′  and 𝜉𝑥𝑞𝑢𝑞(0) = 𝑥𝑞 . 

Theorem 1: (Zamani, Pola, Mazo JR, & Tabuada, 2011) Let 𝛴 = (ℝ𝑛 , 𝒰 , 𝑓)  be a δ-FC control 

system with a compact input set 𝑈 = ∏ [𝑎𝑖, 𝑏𝑖]
𝑚
𝑖=1   ⊆  ℝ𝑚. For any precision choice 𝜀 ∈ ℝ+, 

any choice 𝑞 = {𝜏, 𝜂, 𝜇, 𝜃} of quantization parameters satisfying: 

 𝜇 ≤ 𝜇̂ , 𝜇̂ = min(|𝑏1 − 𝑎1|, …… . |𝑏𝑛 − 𝑎𝑛|) 

 𝜂 ≤ 𝜀 ≤ 𝜃         

we have 𝑆𝜏(𝛴)  ≤𝐴𝑆
𝜀 𝑆𝑞(𝛴) 

 

comments: theorem 1 enables us to construct an abstraction 𝑆𝑞(𝛴) which approximately 

simulate 𝑆𝜏(𝛴). In contrast to 𝑆𝜏(𝛴), 𝑆𝑞(𝛴) has discrete, countable states ,which is a desired 

property for any  practical implementation, yet 𝑆𝑞(𝛴) still has an infinite number of states, 

which represent an inconvenient. this problem is inherent to the fact that we are considering 

an unbounded state-space domain [ℝ𝑛]𝜂 . Fortunately, many physical systems (including the 

pendulum) gives the possibility of restricting the state space to a compact bounded domain. 

In this case it would be possible to construct an abstraction with countable and finite number 

of state. the procedure, however, is slightly different than what we have described in this 

part, and uses the more general variant of approximate simulation relation, which is the 

approximate alternate simulation relation (ASS). 

In practice to construct an abstraction, we need to define a bounded domain 𝐷 of our 

physical variables, choose a proper precision 𝜀 and suitable discretization parameters 𝑞 =

{𝜏, 𝜂, 𝜇, 𝜃} which respect the conditions of theorem 1. We generate space-state symbols by 

determining the grid points contained inside the domain 𝐷, and the input symbols by 

determining the grid points inside 𝑈.  

Then we should compute all the possible transitions of the system, as described above. for 

the computation of transitions, we need an analytical expression the functions 𝐵(𝑠, 𝑡) and 

𝑌(𝑠, 𝑡) obtained either directly, or through a δ-FC Lyapunov candidate function. 

While this is very easy for LTI system as we showed in example 3.2.1.1, determining the 

expression of 𝐵(𝑠, 𝑡) and 𝑌(𝑠, 𝑡) is a burden task for complex non-linear system, particularly 

in the case of our rotatory inverted pendulum (unless we consider a linearized version of the 

dynamics). 



27 
 

This shows some limitation of this type of abstraction, because it is not easy to express 𝐵(𝑠, 𝑡) 

and 𝑌(𝑠, 𝑡) analytically or to find a good candidate δ-FC Lyapanov function in the most 

general case. 

 

4) Abstraction for non-linear systems based on feedback refinement 

relation: 

In this part, we use the alternative notation of a simple transition system 𝑆 ,  𝑆 = (𝑋, 𝑈, 𝐹) 

instead of the notation 𝑆 = (𝑋,𝑈,→) , where 𝐹 : Χ × 𝑈 ⇉ Χ is a map-valued function, which 

for each state and input associate the set of the future states. 

We note 𝑈𝑆(𝑥) = {𝑢 ∈ 𝑈 | 𝐹(𝑥, 𝑢) ≠ ∅} as the set of admissible inputs for a state 𝑥 . 

We define 𝜑(𝑡, 𝑥0, 𝑢) ,called nominal solution, as the unique trajectory that solve the initial 

value problem  𝑥 = 𝑓(𝑥, 𝑢), 𝑥(0) = 𝑥0 under constant input 𝑢. 

4.1) Definition of feedback refinement relationship: 

(Reissig, Rungger, & Alexander, 2015)let 𝑆1 and 𝑆2 be simple systems, 𝑆𝑖 = (𝑋𝑖 , 𝑈𝑖  , 𝐹𝑖), 𝑖 =

{1,2} and assume 𝑈1 ⊆ 𝑈2. 

a strict relation  𝑄 ⊆ 𝑋1 × 𝑋2 is a feedback refinement relation from 𝑆1 to 𝑆2 if the following 

holds for all (𝑥1, 𝑥2) ∈  𝑄 

(i) 𝑈𝑆2(𝑥2) ⊆ 𝑈𝑆1(𝑥1) ; 

(ii) 𝑢 ∈ 𝑈𝑆2(𝑥2) ⇒ 𝑄(𝐹1(𝑥1, 𝑢)) ⊆ 𝐹2(𝑥2, 𝑢) 

 

In this case, we note 𝑆1 ≤𝑄 𝑆2  

4.2) Definition of growth bound: 

(Reissig, Rungger, & Alexander, 2015) Let 𝛴 = (ℝ𝑛 , 𝒰 , 𝑓) be a continuous control system 

with input set 𝑈, Consider the sets 𝐾 ⊆  ℝ𝑛 , 𝑈′ ⊆ 𝑈 and the sampling  𝜏 > 0 . A map 𝛽 ∶

ℝ+
𝑛  ×  𝑈′  →   ℝ+

𝑛   is a growth bound on 𝐾, 𝑈′associated with 𝜏 if the following hold 

(i) 𝛽(𝑟, 𝑢) ≥ 𝛽(𝑟′, 𝑢) wherever 𝑟 ≥ 𝑟′ and 𝑢 ∈ 𝑈′ . 

(ii) [0, 𝜏] × 𝐾 × 𝑈′ ⊆ 𝑑𝑜𝑚 𝜑 ,and if 𝜉 is a solution of  
𝑑

𝑑𝑡
 𝜉 = 𝑓(𝜉 , 𝑢 

On [0, 𝜏] with input 𝑢 ∈ 𝑈′ , initial condition 𝜉(0) =  𝜉0, 𝑎𝑛𝑑 𝑝 ∈ 𝐾 then: 

|𝜉(𝜏) − 𝜑(𝜏, 𝑝, 𝑢)| ≤ 𝛽(| 𝜉0 − 𝑝|, 𝑢) holds. 

 

 

Remark: it should be stressed out that  ≤ and ≥ are vector component comparators in this 

definition. 

Roughly speaking, 𝛽 quantifies the effect of a mismatch between two different initial 

conditions on the distance of their corresponding trajectory after a simulation time of 𝜏. Since 

𝛽 is an increasing map with respect to the distance argument, a bigger mismatch in initial 



28 
 

conditions, should result in a more conservative, larger estimation of the deviation of the 

solutions.  

 

4.3) Analytical expression of growth bound: 

it is possible to find an analytical expression of the growth bound defined above, by using a 

Lipchitz–type estimation. We consider the expression of the growth bound for a non-linear, 

unperturbed systems. 

(Reissig, Rungger, & Alexander, 2015) For  𝛴 = (ℝ𝑛 , 𝒰 , 𝑓) , Let τ > 0, 𝑈′ ⊆ 𝑈 and assume in 

addition that 𝑓(⋅, 𝑢) is continuously differentiable for every 𝑢 ∈ 𝑈′. Furthermore, let 

𝐾 ⊆ 𝐾′ ⊆ ℝ𝑛 with 𝐾′ being convex, so that for any 𝑢 ∈ 𝑈′, any 𝜏′ ∈ [0, 𝜏] and any solution 𝜉 

on [0, 𝜏] of 𝛴 with input  𝑢 and 𝜉(0) ∈ 𝐾′ ,for all 𝜏 ∈ [0, 𝜏′] 𝑤𝑒 ℎ𝑎𝑣𝑒, 𝜉(𝑡) ∈  𝐾′ 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈

 [0, 𝜏′]. Lastly, let the parametrized matrix: 𝐿: 𝑈′ → ℝ𝑛×𝑛  satify  

𝐿𝑖,𝑗(𝑢) ≥ {
𝐷𝑖𝑓𝑖(𝑥, 𝑢),           𝑖𝑓 𝑖 = 𝑗  

 
|𝐷𝑖𝑓𝑖(𝑥, 𝑢)|,      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 

For all 𝑥 ∈ 𝐾′ and all 𝑢 ∈ 𝑈′. the map 𝛽 given by 𝛽(𝑟, 𝑢) = 𝑒𝐿(𝑢)𝜏𝑟 Is a growth bound on 

𝐾, 𝑈′ associated with 𝜏 and 𝛴 . 

Remark: we could see that 𝛽 is the solution of the differential equation 

 𝑟̇ =  𝐿(𝑢)𝑟 

This will give us the practical possibility to compute 𝛽 with numerical schemes (like Rungga-

Kutta method), if the direct evaluation of the matrix exponential turns out to be 

computationally more expansive. 

4.4) Construction of an abstraction based on feedback refinement relation: 

a control system 𝛴 (ℝ𝑛 , 𝒰 , 𝑓) ,and let  𝑆1 = (𝑋1 , 𝑈1 , 𝐹1) be the corresponding sampled 

system.  

We consider a system  𝑆2 = (𝑋2 , 𝑈2 , 𝐹2), which state alphabets 𝑋2 are defined as a cover of 

the state alphabet 𝑋1 . The elements of this  cover are non-empty, closed unbounded hyper 

intervals i.e.: 

 ∀ 𝑥2 ∈ 𝑋2 ⇒ 𝑥2 = [[𝑎, 𝑏]] ,for  𝑎, 𝑏 ∈ (ℝ ∪ {±∞})𝑛 , 𝑎 ≤ 𝑏 . 

we work with a set 𝑋̃2  ⊆ 𝑋2 of compact bound cells. 𝑋̃2 are called real quantize symbols, 

Whereas 𝑋2 ∖ 𝑋̃2 are called overflow symbols. 

We call 𝑆2 an abstraction of 𝑆1 based on 𝑋̃2 and 𝛽 if : 

(i) 𝑋2 is a cover of 𝑋1 by no empty, closed by  hyper intervals   and every element 

𝑥2 ∈ 𝑋̃2 is compact 

(ii) 𝑈2 ⊆ 𝑈1  

(iii) For 𝑥2 ∈ 𝑋̃2, 𝑥2
′ ∈ 𝑋2 and 𝑢 ∈ 𝑈2 we have  



29 
 

(𝜑(τ, 𝑐, 𝑢)) + [[𝑟′, 𝑟′]]) ∩ 𝑥2
′ ≠ ∅ ⇒ 𝑥2

′ ∈ 𝐹2(𝑢2, 𝑢) 

Where [[𝑎, 𝑏]]  = 𝑥2, 𝑐 =
𝑏+𝑎

2
.  𝑟 =

𝑏−𝑎

2
 and 𝑟′ = 𝛽(𝑟, 𝑢); 

 

(iv) 𝐹2(𝑥2, 𝑢) where 𝑥2 ∈ 𝑋2 ∖ 𝑋̃2 , 𝑢 ∈ 𝑈2 

 

(Reissig, Rungger, & Alexander, 2015)Theorem: 𝑖𝑓  𝛽  is a growth-bound, then 

𝑄: {(𝑥1, 𝑥2) | 𝑥1 ∈ 𝑥2}  is feedback refinement relation between 𝑆1 𝑎𝑛𝑑 𝑆2,denoted 𝑆1 ≤𝑄 𝑆2. 

Remarks:  

 In practice, 𝑋̃2 are characterized through a uniform grid 𝜂ℤ𝑛={𝑐 ∈ ℝ𝑛 | ∃ k ∈

ℤ𝑛 , ∀ 𝑖 ∈ [1; n], 𝑐𝑖 = k𝑖𝜂𝑖} with grid discretization parameter 𝜼 ∈ ℝ+
𝑛  

 We could interpret 𝑐 the old cell center, 𝑟 the old cell radius, 𝜑(τ, 𝑐, 𝑢) the new cell 

center, and 𝑟′ as the new cell center.it is possible to visualize transitions for two 

dimensional case in [figure 4.1]. 

 

 

 

Figure 4.1 visualization of transitions in the abstract domain. From an original cell with center c and radius r, we compute 
the new center and new radius and determine the intersections to determine the transitions. 

5) Comparisons and discussion: 

We have presented two strategies from the literature to construct valid abstraction or 

symbolic models, based on different mathematical relations. Details and rigorous proofs 

concerning δ-FC systems and their abstractions could be found in (Zamani, Pola, Mazo JR, & 

Tabuada, 2011), those concerning feedback relations are exhaustively presented in (Reissig, 

Rungger, & Alexander, 2015): 

Our ultimate goal behind this chapter is not only to have a global description of abstractions, 

but to guide the choice of the method to be used for the coming practical implementation  

Although both approaches share a lot of similarities, employing them in practical context will 

result in a different implementation difficulty level. We summarize the most important 

distinctions between the two approaches from a practical point of view. 

 

 



30 
 

 approximate simulation relation 
based abstraction 

Feedback refinement based 
abstraction 

Space discretization parameters 𝜂 𝜂1,𝜂2 ,…, 𝜂𝑛 

Influence of system dimension on 
the number Space discretization 
parameters 
 

 
No influence 

 
Grows up with higher 

dimension 

Computation of transition 
function 

Allowed directly  through two 
function 𝐵 and 𝑌,or indirectly 

through one  δ-FC Lyapunov 
function. 

 

Allowed through a growth 
bound 𝛽 

Analytical expressions of the  
Characterizing functions 

Does not exist in the general 
case, we needs to try many 

candidate functions 

Exist, and is possible through 
a  Lipchitz matrix estimation 

 

It turns out, that although feedback refinement relation will result in more design parameters 

for high dimensional system(since we need to make an independent space discretization step 

in each direction), It is still more advantageous because an analytical expression for the 

growth bound 𝛽 does exist and is straightforward to compute. On the other side 

characterizing analytically the functions 𝐵 and 𝑌 ,or finding a δ-FC Lyapunov function is 

generally  a complicated task and has no success guarantees. 

Based on this argument, we chose to adapt the feedback refinement relation for our future 

implementation. 

another argument that further motivate the choice of feedback refinement based 

implementation: 

is related to the abstract controller refinement step, which is very simple and uses only a 

static quantizer. 

. 

 

 

 

 

 



31 
 

Chapter 5: Basic implementations in 

SCOTS 

1) Overview: 

In this thesis, we are aiming at designing a controller to enforce a safety specification on a rotatory 

inverted pendulum. First, we have derived the dynamics, which turns out to be highly nonlinear, then 

we diseased the two possible abstraction approaches found in the literature. We ended by choosing 

the feedback refinement relation based abstractions the implementation. The best accessible free 

tool that we could use in this case was SCOTS. 

2) Presentation of SCOTS: 

SCOTS is an open source software, developed by the professorship of hybrid control systems and is 

addressed to researches in the area of formal method of cyber physical systems. SCOTS provides a 

basic implementation for the construction of discrete abstraction of non-linear, possibly perturbed, 

and prone to measurement-errors systems according to a feedback refinement relation. 

Furthermore, this tool contains tow algorithms (minimal and maximal fixed point) that serves for the 

synthesis of controller, mainly subject to invariance or reachability specifications. However, it still 

possible to extend it with other external tools to enforce more complex specification. (Rungger, 

2017) 

SCOTS code is implemented in 𝐶++ ,in a header-only style, and provide additionally a Matlab 

interface to simulate the close loop of the controller. It comes up with various examples to be tested 

and simulated. 

There exists two version of scots, based on different data structures. SCOTSv01 uses a Binary decision 

diagram (BDD) while SCOTSv02 is based on sparse matrices. Because sparse matrices offer faster 

computation, we chose to work with SCOTSv02. 

3) Control problem formulation: 

We are interested in designing a controller that enforce an invariance specification to stabilize the 

pendulum in the upward, unstable position.  

In chapter 3 we have derived the ODE describing the pendulum and formulate the in a state-space 

representation: 

𝜉(𝑡) = 𝑓(𝜉(𝑡), 𝑢)  (1) 

Where 𝑓:ℝ4 × 𝑈 → ℝ4 and 𝑈 ⊆ ℝ 

Given a time horizon 𝜏, we define a solution  of (1) on [0, 𝜏] under constant input 𝑢 ∈ 𝑈 as the 

absolutely continuous function 𝜉: [0, 𝜏] → ℝ4 that satisfies (1). 

The sampled behavior of the pendulum could be casted as a simple system 

𝑆1 ≔ (𝑋1, 𝑈1, 𝐹1) 

With state alphabet 𝑋1:= ℝ
4 , 𝑈1 ≔ 𝑈 and the transition function  𝐹1(𝑥, 𝑢) ≔ { 𝑥′| ∃𝜉 is a solution 

of (1) with  𝜉(0) = 𝑥 ∧ 𝜉(𝜏)=𝑥′  . } 



32 
 

Because 𝑓(∙, 𝑢) is smooth map, a solution does always exist, so that 𝐹1(x,𝑢) contains exactly one 

element (deterministic). 

We define (𝑋1)
∞ ≔ 𝑈𝑇∈𝑍≥0∪{∞}𝑋1

[0,𝑇[ as the sequence of all possible output sequences.                       

An invariance specification associated with Ζ1 ⊆ 𝑋1 for the system 𝑆1 is given as 

𝛴1 ≔ {x1 ∈ 𝑋1
∞ | ∀[0,∞[: x(t) ∈ 𝑍1} 

Together (𝑆1 , 𝛴1) constitutes a control problem. 

The basic idea in SCOTS is to substitute the original control problem with an abstract system 

(𝑆2, 𝛴2),then solve it as an auxiliary control problem by finding a controller C, and finally refine the 

abstract controller to the real plant.  

The enabling theorem that ensures the correctness of this procedure in SCOTS is the following: 

(Reissig, Rungger, & Alexander, 2015) Given two control problem (𝑆𝑖 , 𝛴𝑖), 𝑖 ∈  {1,2}  . Suppose that 𝑄 

is a feedback refiment relation from  𝑆1 to 𝑆2 and 𝛴2 is an abstract specification of 𝛴1 .if 𝐶 solves the 

control problem ( 𝑆2, 𝛴2), then C o 𝑄 solves the control problem. 

 

4) SCOTS algorithmic flow and user-dependent parameters: 

Understanding the work flow of SCOTS might be helpful for a successful implementation of a 

controller, but more important is to figure out the user-dependent design parameters, and where to 

include them in the code. Figure 5.1 summarize the software work-flow and the user-dependent 

parameters. 

 

Figure 5.1 algorithmic work-flow in SCOTS and user-dependent entries 

In practice, our task will resume to the following three steps: 

 Enter the ODE, with the numerical values of physical parameters. 

 Compact a Growth bond in terms of a Lipchitz matrix 𝐿(x, u).  



33 
 

 Estimate different domains and discretization parameters. 

 

While the first two steps are relatively straightforward, the main difficulty lies within the third one. 

Since we are dealing with 4-dimensional system, the number of parameters we need to estimate is 

relatively-high: 

 We have to select 8 variables describing the compact set 𝑍 ⊆ ℝ4 that defines an invariance 

specification. Although a specification is normally set to be freely chosen, we still need to 

select one that is physically achievable. If we go for a very tight and strict specification, this 

could result in no solution, on the other hand, a specification defined on a large domain is 

not very interesting in practice.  

 Another 8 variables which stand for the compact set 𝑋 ⊆ ℝ4 describing the space-state 

domain, we have also to be careful with that choice, we have to choose a sufficiently large 

domain a solution could exists, but avoid the choice of excessively large domain which could 

lead to computational problems. 

  4 parameters related to the discretization of the state space domain. Here, a careful choice 

is also needed because large discretization could result in finding no controller while fine 

discretization could lead to an extreme computational effort.  

 determine a suitable compact interval 𝑈 ⊆ ℝ  that describes the input and a suitable input 

discretization 𝜇 . 

 Finally set a good time horizon τ, that is compatible with the reactivity of the system. This 

choice is also critical, very large time horizon τ could result in an insolvable control problem, 

whereas ,small time horizon requires a choice of a fine space discretization.(there exist a 

trade-off between space discretization and time discretization) 

 

In total, we have to estimate 24 parameters, which should be suitable to solve the control problem 

with a reasonable computational time and without exceeding the memory limitations. 

Because of the complex balance we have to set while choosing 23 parameters, and the existence of a 

trade-off between certain parameters like sampling time and space discretization. The task of finding 

a controller is similar to optimization task under constraints. 

But what makes the task a real challenge is the absence of a well-established theory to guide the 

choice of parameters in the general case. Therefore, there is need to count on some intuition and 

self-initiative. 

For example, based on a simple symmetry argument related to the geometry of the pendulum, we 

could think of a possible reduction of design parameters to 15, by taking Ζ, and 𝑋  and 𝑈 to be 

symmetrical hyper-intervals around some origin point. 

Since the estimation of parameters was the hardest part in this thesis, we have devoted a full chapter 

for that purpose. In the rest of this chapter, we will focus on basic and straightforward steps of the 

implementation. 

5) Basic implementation steps: 

5.1) Inserting the dynamics into SCOTS: 



34 
 

 First we precise the dimension of the state-space and the input space [fig 5.2].  

 

Then we add the ODE in the code [fig 5.3], and the numerical values of physical parameters [fig 5.4]. 

/* parameters for system dynamics */ 

const double g=9.81;   const double jj1=9.982910141666664*0.0001;const double j2=0.001198730801458; 

const double m1=0.2570;const double m2=0.127;  const double L1=0.2159000;const double L2=0.336550;  

 const double l1=0.061912500000000; 

const double l2=0.155575000000000;  const double b1=0.002400000000000;const double b2=0.002400000000000;  

const double Rm=2.600000000000000; const double Ng=0.900000000000000;  

const doubleNm=0.690000000000000;const double Kg=70; const double Kt=0.007682969729280;        

const double Km=0.007677634454753; const double q1=Ng*Kg*Nm*Kt/Rm; 

const double q2=Ng*Kg*Kg*Km*Nm*Kt/Rm; const double J1=jj1+m1*l1*l1; 

const double J2=j2+m2*l2*l2;const double J0=J1+m2*L1*L1;const double c=m2*L1*l2; 

 

auto system_post = [](state_type &x, const input_type &u) noexcept { 

  /* the ode describing the pendulum */ 

  auto rhs =[](state_type& xx,  const state_type &x, const input_type &u) 

noexcept { 

 

      const double det=J0*J2+J2*J2*sin(x[1])*sin(x[1])-

c*cos(x[1])*c*cos(x[1]); 

      xx[0]=x[2]; 

      xx[1]=x[3]; 

      xx[2]=(1/det)*(-J2*b1*x[2]+c*cos(x[1])*b2*x[3]-

J2*J2*sin(2*x[1])*x[2]*x[3]-

0.5*J2*c*cos(x[1])*sin(2*x[1])*x[2]*x[2]+J2*c*sin(x[1])*x[3]*x[3] 

              +g*0.5*c*c*sin(2*x[1])/L1+J2*(q1*u[0]-q2*x[2])); 

      xx[3]=(1/det)*(x[2]*c*cos(x[1])*b1-

x[3]*b2*(J0+J2*sin(x[1])*sin(x[1]))+x[2]*x[3]*c*J2*cos(x[1])*sin(2*x[1])-

0.5*x[2]*x[2]*sin(2*x[1])*(J0*J2+J2*J2*sin(x[1])*sin(x[1]))- 

              0.5*x[3]*x[3]*c*c*sin(2*x[1])-

g*m2*l2*sin(x[1])*(J0+J2*sin(x[1])*sin(x[1]))-c*cos(x[1])*(q1*u[0]-q2*x[2])); 

     

 }; 

  scots::runge_kutta_fixed4(rhs,x,u,state_dim,tau,5); 

}; 

 

/* state space dim */ 

const int state_dim=4; 

/* input space dim */ 

const int input_dim=1; 

 

Figure 5.2 code fragment for precising the dimension dimensions 

fig 5.4 numerical values of the physical parameters of the pendulum 

Figure 5.3 the ODE describing the pendulum 



35 
 

 

5.2) Computation of the growth-bound:  

 We have to determine the growth bond defined in 4.2, and whose analytical expressions is given in 

4.3. This step, though not hard, should be carried with a lot of attention if the derivations are done 

manually. Alternatively, we could deploy Symbolic Math Toolbox™. 

We have  manually computed 𝐿11(x, u) = |𝐷1𝑓1(𝑥, 𝑢)|,… . ,  𝐿44(x, u) = 𝐷4𝑓4(x, u). 

Since the resulting expression are so lengthy, we preferred to insert them directly in lambda reserved 

the computation of growth bound in SCOTS [figure 5.6]  

We provide also the general form of the resulting L matrix. 

 

(

0 0 1 0
0 0 0 1
0 𝐿32(x, u) 𝐿33(x, u) 𝐿34(x, u)

0 𝐿42(x, u) 𝐿43(x, u) 𝐿44(x, u)

) 

 

The expressions obtained for  𝐿𝑖𝑗 are still however a function of x and 𝑢, whereas in definition, it is 

required to only depend on 𝑢.to  achieve this we need to determine a priori-enclosure  𝐾′ ⊆ ℝ4, 

then every term  𝐿𝑖𝑗 (x, u) should be maximized over 𝐾′ with respect to x. A solution would be to 

resort to some interval arithmetic tool like vnode-lp. 

However, we encountered difficulties while trying to install those tools. Fortunately, my supervisors 

suggested that is possible to skip the computation of the a priori-enclosure and use the advantages 

that  SCOTSv02 offers by allowing the Lipchitz matrix to depend also on the variable x [figure 5.5] 

This alternative will even result in a less conservative over approximation of the attainable sets, 

because an adapted growth-bond for each cell will be computed.as consequence, we obtain less 

transitions in the abstraction and this will reduce the use of memory. 

However, a drawback of this alternative is computational, because instead of determining once a 

unique growth bound that will work for all the cells, the computation, through the Rungga-Kutta 

scheme, should be carried for every cell within the abstract domain. 

     

auto radius_post = [](state_type &r, const state_type&x, const 

input_type &u) noexcept { 

  /* the ode for the growth bound */ 

  auto rhs =[x](state_type& rr,  const state_type &r, const input_type 

&u) noexcept { 

 

Figure 5.5: dependence of the growth bound lambda on the cell center x in scotsv02 



36 
 

 

auto radius_post = [](state_type &r, const state_type&x, const input_type 

&u) noexcept { 

  /* the ode for the growth bound */ 

  auto rhs =[x](state_type& rr,  const state_type &r, const input_type 

&u) noexcept { 

 

const double detr=J0*J2+J2*J2*sin(x[1])*sin(x[1])-

c*cos(x[1])*c*cos(x[1]); 

const double f3=-J2*b1*x[2]+c*cos(x[1])*b2*x[3]-

J2*J2*sin(2*x[1])*x[2]*x[3]-

0.5*J2*c*cos(x[1])*sin(2*x[1])*x[2]*x[2]+J2*c*sin(x[1])*x[3]*x[3] 

+g*0.5*c*c*sin(2*x[1])/L1+J2*(q1*u[0]-q2*x[2]); 

const double f4=x[2]*c*cos(x[1])*b1-

x[3]*b2*(J0+J2*sin(x[1])*sin(x[1]))+x[2]*x[3]*c*J2*cos(x[1])*sin(2*x[1])-

0.5*x[2]*x[2]*sin(2*x[1])*(J0*J2+J2*J2*sin(x[1])*sin(x[1]))- 

               0.5*x[3]*x[3]*c*c*sin(2*x[1])-

g*m2*l2*sin(x[1])*(J0+J2*sin(x[1])*sin(x[1]))-c*cos(x[1])*(q1*u[0]-

q2*x[2]); 

 

const double  L32=abs((1/detr*detr)*(detr*(-c*sin(x[1])*b2*x[3]-

2*J2*J2*cos(2*x[1])*x[2]*x[3]+0.5*J2*c*sin(x[1])*sin(2*x[1])*x[2]*x[2]-

J2*c*cos(x[1])*cos(2*x[1])*x[2]*x[2] 

+J2*c*sin(x[1])*x[3]*x[3]+g*c*c*cos(2*x[1])/L1)-

f3*(2*J2*J2*cos(x[1])*sin(x[1])+2*c*cos(x[1])*c*sin(x[1])))); 

const double  L33=(1/detr)*(-J2*b1-J2*J2*sin(2*x[1])*x[3]-

2*c*cos(x[1])*sin(2*x[1])*x[2]-J2*q2); 

const double  L34=abs((1/detr)*(c*cos(x[1])*b2-

J2*J2*sin(2*x[1])*x[2]+2*J2*c*sin(x[1])*x[3])); 

const double  L42=abs((1/detr*detr)*(f4*(2*J2*J2*cos(x[1])*sin(x[1])+ 

2*c*cos(x[1])*c*sin(x[1]))+detr*(-x[2]*c*c*sin(x[1])*b1-

2*r[3]*b2*J2*cos(x[1])*sin(x[1])-x[2]*x[3]*c*J2*sin(x[1])*sin(2*x[1]) 

+2*x[2]*x[3]*c*J2*cos(x[1])*cos(2*x[1])-

x[2]*x[2]*cos(2*x[1])*(J0*J2+J2*J2*sin(x[1])*sin(x[1]))-

0.5*x[2]*x[2]*sin(2*x[1])*(2*J2*J2*cos(x[1])*sin(x[1]))-

x[3]*x[3]*c*c*cos(2*x[1])+c*sin(x[1])*(q1*u[0]-q2*x[2]) 

              -g*m2*l2*cos(x[1])*(J0+J2*sin(x[1])*sin(x[1]))-

g*m2*l2*sin(x[1])*2*J2*cos(x[1])*sin(x[1])))); 

 

const double   L43=abs((1/detr)*(c*cos(x[1])*b1+ 

x[3]*c*J2*cos(x[1])*sin(2*x[1])-

x[2]*sin(2*x[1])*(J0*J2+J2*J2*sin(x[1])*sin(x[1])+c*cos(x[1])*q2))); 

const double   L44=(1/detr)*(b2*(J0+J2*sin(x[1])*sin(x[1])) 

+x[2]*c*J2*cos(x[1])*sin(2*x[1])-x[3]*c*c*sin(2*x[1])); 

 

      rr[0]=r[2]; 

      rr[1]=r[3]; 

 

      rr[2]=L32*r[2]+L33*r[3]+L34*r[4]; 

      rr[3]=L42*r[2]+L43*r[3]+L44*r[4]; 

 

 }; 

  scots::runge_kutta_fixed4(rhs,r,u,state_dim,tau,5); 

}; 

 
Figure 5.6 code fragment for the computation of the growth bound and the expressions of the L matrix terms 

 



37 
 

Chapter 6: estimation of design 

parameters in SCOTS. 

 

1) Overview: 

The theory for symbolic methods is mathematically well established. As a result, many steps 

in controller synthesis could be fully automated, for example computing the transitions, or 

solving the auxiliary control problem with Algorithms like minimal and maximal fixed point. 

However, this does not mean that finding a controller is a mere press-bottom task. In fact, to 

guarantee the existence of a controller, the execution of Computations within a reasonable 

time lapse, and the respect of hardware resource limitations as memory, the engineer or the 

designer has to choose carefully and wisely some parameters, for instance, the sampling time, 

the state-space domain and space discretization. If this choice might be easy for systems with 

simple dynamics or low dimensions, it becomes more challenging for system with complex, 

highly reactive dynamics, or those with a high state-space dimension. 

In our case we seek to determine a good and balanced choice of: 

• 𝜏 : the sampling time  

• z⃗ = ( z1, z2, z3, z4 ) ∈ ℝ+
4  , which describes  hyper-interval   

[π −  z1, π +  z1] × [− z2,  z2  ] × [ − z3,  z3 ] × [ − z4,  z4 ]  expressing a reasonable, 

physically achievable invariance specification that maintains the pendulum near the 

upwards origin position (π, 0,0,0) 

• 𝑥⃗ = (𝑥1, 𝑥2, 𝑥3, 𝑥4) ∈ ℝ+ 
4 , which expresses a compact bounded symmetrical state 

space domain [π −  𝑥1,  π + 𝑥1] × [− 𝑥2,  𝑥2  ] × [ − 𝑥3,  𝑥3 ] × [ − 𝑥4, 𝑥 4]  ,and 𝑢 

which expresses  a symmetrical input interval [−𝑢, 𝑢] 

• η⃗⃗ = ( η1, η2, η3, η4 ) ∈ ℝ+ 
4 , related to space discretization parameters ,and 𝜇 ∈

ℝ+  which stands for the  input discretization. 

 

The step of finding the right parameters was one of hardest and most time-consuming phase 

in this project. the difficulty we faced is mainly inherent to: 

• The high number of parameters to be estimated, due the four-dimensional nature of 

the dynamics. 

• The non-existence of a general, standard procedure to guide the choice 

• The curse of dimensionality, resulting in an exponential time complexity that we have 

to manage with limited processor and memory performance. 



38 
 

To overcome this hurdle, and guarantee finding a controller, we had to rely on some intuition, 

a lot of try and error, and an exhaustive numerical simulation of the ODE. We had also to 

consider whether a reduction of the dynamins dimension is possible. 

2) Time complexity analysis in SCOTS: 

We want carry on a rough time complexity analysis. By trying various examples available in 

SCOTS, we figured out that computing the abstraction is the costliest computational part 

(dominate the synthesis step). Within this step itself, the computation of transitions is the a 

very time-consuming phase, and depends generally on the number of state alphabets, the 

number of input state alphabets and the execution time of Rungga-kutta algorithm,          

If we denote 𝑊 the execution time of SCOTS and let it depend on 𝑥⃗ , η⃗⃗, 𝜏, 𝜇, 𝑢 , after a careful 

analysis of the code used to compute the transitions, it is possible to find a lower bound 𝑊 in 

the form of: 

𝑊(𝑥⃗ , 𝜂, 𝑢, 𝜇, 𝜏) ≥
𝑢𝜏

𝜇ℎ
𝑡𝑜𝑝∏(

2𝑥𝑖
𝜂𝑖
) 

4

𝑖=1

 

Where ℎ is the integration time step used by  Rungga -kutta , and 𝑡𝑜𝑝 the single cost of one 

iteration within the numerical integration scheme . 

Since ∏ (
2𝑥𝑖

𝜂𝑖
) 4

𝑖=1 = 𝑒
∑ (

2𝑥𝑖
𝜂𝑖
)4

𝑖=1  we obtain an alternative representation form of the lower-

bound:  

𝑊(𝑥⃗ , 𝜂, 𝑢, 𝜇, 𝜏) ≥
𝑢𝜏

𝜇ℎ
𝑡𝑜𝑝𝑒

∑ (
2𝑥𝑖
𝜂𝑖
)4

𝑖=1  

This form elucidates the exponential time-complexity of scots. This complexity is responsible 

for what we call the curse of dimensionality, which is a common feature in many gridded-

based abstraction methods. A similar argumentation will show that the exponential 

complexity issue applies also to the memory use. 

The curse of dimensionality is one of the cause that makes finding a controller a hard task, 

especially if we have to choose fine discretization or large state domains. The choice of 

optimal parameters, which at the same time ensures finding a controller and respects 

hardware limitation, is a delicate task, for which there is no success guarantee.  

3) Solution strategies for the four-dimensional model 

3.1) Brute force strategy: 

One of the possibility would be to resort to writing a code that test all the possible 

combinations of the 15 parameters, but since there is uncountable many combinations, and 

because of the exponential time-complexity of SCOTS, this strategy could take an infinite 

amount of time to executed, and is therefore unrealistic. 

3.2) A try-and-error strategy: 



39 
 

Since a brute-force strategy is not possible, we thought instead to test heuristically a finite 

number of possible combination, and hope that one of them could lead to finding a 

controller. We tried tens of combination of parameters. Unfortunately, no one of them could 

solve the problem. During those trials We experienced two different situations: 

 In case we used small domains, or large discretization, the computation in SCOTS 

could be achieved fast. But always leads to an empty winning domain, which mean 

that no controller was found. It was also difficult to say which parameters are culpable 

of not finding a controller, so we do not have a way of adjusting them. 

 In case we preferred the used of large domains, or small discretization parameters, 

the computation will take hours and eventually breaks down since the memory could 

not store all the transitions. 

After a long series of tries, we thought it should be better to make some conjectures or 

assumptions based on our intuition to the dynamics of the pendulum, because a rigorous 

analysis or a valid strategy could not be developed: 

 We remarked that the pendulum is highly reactive in the upwards positive, which 

means that it moves and falls very fast. Therefore, it is more probable that the correct 

choice of the sampling time corresponds to small sampling values (in the range of 

milliseconds.) 

 because of the trade-off between the sampling time and space discretization 

parameters, the choice of small sampling time will force us to choose also small space 

discretization parameters. As a consequence, we stipulate that selecting fine 

discretization parameters is a more plausible choice to enhance the chance of finding 

a controller, but on the other side will lead to a consequent computational effort and 

high memory requirements. At this level we could not judge the achievability of our 

task on the computers we had access. However, we had to believe in the existence of 

solution and try harder to find some optimal choice of parameters that could reconcile 

this conflict. 

Finally, we had to consider some order while trying different parameters, to create a simple 

heuristic algorithm. By intuition, we think this order could be a good one: 

▪ first we fix a specification z⃗ that we assume physically achievable. 

▪ Then we fix a state domain 𝑥⃗ that is large enough to cover the specification. 

▪ we chose a small sampling time 𝜏. 

▪ We choose an input 𝑢 within the range of the voltage the real plant, and a good 𝜇 to 

allow a reasonable number of input alphabet(not unnecessary big but rather big 

enough to give sufficient control possibilities at each state) 

▪ We try to find the best possible discretization parameters 𝜂  that could enable a 

solution but avoid the exploding of state-space alphabet. 



40 
 

▪ If we fail, we have to reiterate by selecting a new specification. 

We apply this heuristic algorithm in the next part, with support of an exhaustive numerical 

simulation at each step, particularly at the level of choosing 𝜂  . 

3.3) Simulation-based strategy: 

To ease the choice of parameters, we decided to build a Simulink model for our pendulum, 

which simulates the behavior its governing ODE. 

We designed this model by transforming the terms of ODE in many Simulink blocks. The visual 

complexity of the model mirrors the complexity and the high-nonlinearities linearity of the 

ODE. [figure 6.1]. 

To simplify the Simulink model visually we could merge many blocks with each other [figure 

6.2] 

We had to work with the Simulink model for a long time, and measure the response of the 

pendulum, for different initial conditions, different inputs, and different simulation time. After 

exhaustive simulation we formulate the approximate choice of parameters as: 

• Specification:[π −
2π

35
, π +

2π

35
] × [−π, π  ] × [ −π, π ] × [ −π, π ] 

• State-space: [π −
π

5
, π +

π

5
] × [−π, π  ] × [ −π, π ] × [ −π, π ] 

• Sampling time:0.05 

• Input-space: [−4,4] 

Figure 6.1 Simulink model with blocks and connections depicting the complexity of the ODE 

 



41 
 

• Input-discretization: 0.5 

• Space-discretization: { 
π

100
, 
π

50
, 
π

50
, 
π

50
} 

 

 

We include those parameters in SCOTS, and compiled the files, we had to wait for a long time 

for the execution, unfortunately the computations could not be finished because at a certain 

point, the memory of the pc would be fully allocated and no more transitions could be further 

stored. 

 

Although we have done an effort on simulation, we still could not verify the result of our 

predictions, unless we can get access to a more performant computers (like super-

computers). Since we had not this possibility, the only alternative we can still think of is to 

investigate whether it is possible to reduce the dimension model, which in the positive case, 

will result in a better chance of finding a controller because the curse of dimensionality in less 

pronounced in lower dimensions. 

 

 

Figure 6.2 Figure 6.2 Simulink model after merging some blocks 

 



42 
 

4) Comtroller for the reduced-dimension model: 

We could remark, that the ODE of our system has the following form:  

𝜉̇(𝑡) =

[
 
 
 
 
𝜃̇1
𝜃̇2
𝜃̈1
𝜃̈2]
 
 
 
 

=

[
 
 
 
 

𝑓1(𝜃1)

𝑓2(𝜃̇1, 𝜃̇2, 𝜃2)

𝑓3(𝜃̇1, 𝜃̇2, 𝜃2)

𝑓4(𝜃̇1, 𝜃̇2, 𝜃2)]
 
 
 
 

 

this form suggest that the angle 𝜃1 is not directly influencing the dynamics of the other 

variable 𝜃1̈  , 𝜃2̈ and 𝜃2̇we have also checked the linearized version of the ODE. The matrix A, 

of the linearized version has as null column in its first column, the same applies to the matrix L 

of the grouch bound we computed in this chapter. We could make the same observation also 

on the level of Simulink , in fact any choice of the value  𝜃1 in the initial condition will not 

affect the rest of dynamics. 

Based on all those arguments, it is possible to use a reduced 3 dimensional state-space 

version of the ODE, and this by not incorporating 𝜃1  in the Dynamics.  

The new state-space model sums up to 

[

𝜃̈1
𝜃̇2
𝜃̈2

] = [

𝑓2(𝜃̇1, 𝜃̇2, 𝜃2)

𝑓3(𝜃̇1, 𝜃̇2, 𝜃2)

𝑓4(𝜃̇1, 𝜃̇2, 𝜃2)

] 

Fortunately, we had not to restart any previous implementation steps for the new model 

(Growth bound compilation…), All we had to do is to bring some slight modifications into the 

previous SCCOTS, mainly by shifting variables indices. 

In addition, we had not to start again simulation on Simulink, and used advantage of the 

knowledge that we have previously gained from simulating the 4-dimensional model. 

Our first guess of parameters: 

• Specification:[π −
2π

35
, π +

2π

35
] × [−π, π  ] × [ −π, π ] 

• State-space: [π −
π

5
, π +

π

5
] × [−π, π  ] × [ −π, π ] 

• Sampling time:0.05 

• Input-space: [−4,4] 

• Input-discretization: 0.5 

• Space-discretization: [ 
π

100
, 
π

50
, 
π

50
] 

Which is obtained simply by projecting the old specification through a projection map. 

We insert our choice of parameters in SCOTS, and finally we could end up fast in finding a 

controller with no empty wining domain. [fig 6.3]. The 3 dimensional Model has proven itself 

efficient to overcome the curse of dimensionality we have suffered from within the 3 

dimensional one. 



43 
 

 

Figure 6.4 controller synthesis with parameters, memory and computational details. 

The obtained controller has a winning domain size of 42 074, from a total number of 418 241, 

which represent a ratio 𝜌 ≈10%, defined as the quotient of winning domain to state-space-

domain. 

We tried further to adjust all the parameters, in an attempt to find a better ratio 𝜌 . However 

most of the modifications will result either in finding no controller, or in a very long 

computation time. After several experiments, the best we could figure out in order obtain a 

slightly larger winning domain was to opt a finer input discretization step while keeping the 

rest of parameters unchanged, finally we decided to set 𝜇 = 0.25 instead of 0.5. 

Upon finishing the compilation and the synthesis of the controller, a file controller.scs is generated 

containing the abstract controller. [fig 6.5] 

each line of controlle.scs contains an identifier corresponding to a cell within the winning domain, 

followed by a list of identifiers standing for the admissible inputs at each cell. Some states (example 

state 4202) admit a bench of possible inputs, while others admit only one (example state 4568) 

The full c++ SCOTS code, that was used to find the abstract controller could be found in Annex A. 

#SCOTS:i (state) j_0 ... j_n (valid inputs) 

#MATRIX:DATA 

#BEGIN:418241 33 

 

4201 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31  

4202 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30  

   . 

   . 

   . 

4568 29  

4569 26 27 28 29 30  

4570 23 24 25 26 27 28 29 30 

   . 

   . 

  

 

 

Figure 6.6 text fragment from controller.scs containing the abstract controller 

 



44 
 

 Chapter 7: simulation and Validation of the 

abstract controller. 

1)overview: 

So far, we have generated an abstract controller to enforce an invariance specification on the 

pendulum, maintaining it near the instable upwards position. Although we know from the 

theory that the controller is correct-by-construction, we are still interested in verifying that is 

functioning correctly in practice, to ensure for example that we did not commit any mistakes 

while deriving the model dynamics, or computing the growth bound.to test our controller, we 

have two possibilities: 

• Simulate the controller on a pc, and check whether the specification is respected. 

• Refine the controller to a real plant, and verify the good functioning of the plant, 

which should conform to the specifications.  

In the next steps, we are going to both simulate the controller on a pc and test it on a real 

pendulum. 

For the simulation, we have two possibilities offered by SCOTS: 

• Use a simulation c++ file, that we should modify according to our example. Then 

simulate the behavior of the controller given an initial condition, and a fixed 

simulation time. The behavior of the pendulum will be visualized on the terminal 

console. The only problem is that we still need to compare values by ourselves for 

every simulation step to verify that the behavior of the pendulum corresponds to the 

specifications. 

• Use a matlab simulation file, which allows us to visualize the abstract domain, the 

specification, and the sampled behavior of the system(trajectories) 

Given an initial state and a simulation time horizon. This visualization option is very 

convenient for tow dimensional state-space models, but is harder for higher 

dimension, where we have to visualize all 2-D projections of the state-space 

separately. 

However, the best way to simulate and validate the controller is still to test it on a real 

pendulum. For the purpose we installed a pendulum on a lab and conducted experiments to 

check the correctness of all our work. 

2) Controller simulation on computer: 

2.1) Simulation of the closed-loop on the terminal-console: 

in order to do that we had to modify an existing c++ simulation files, by adding the dynamics 

of the pendulum, choosing an initial state, and the number of simulation steps. We have also 

to verify the initial state is within the winning domain. We can for example set an initial state 

𝑥0 = (𝜋 0 0) which corresponds to the upward position without initial angular velocities, 

and we simulate the closed loop for 100 time steps[figure 7.1] 

the full c++ code for simulation is provided in Annex B. 



45 
 

the problem with this simulation approach is that we have to check every line in the terminal-

console and compare the values with the specification, to ensure it is respected. 

 

2.2) simulation of the closed-loop on Matlab: 

SCOTS provides the option, through a Matlab interface, to simulate the synthesized 

controller, visualize the abstract domain, specification domain, and the sampled evolution of 

the trajectories. For the purpose we have to modify a Matlab file by inserting the ODE, a 

certain care should be paid to indices because 𝐶++ and Matlab use different indexing rules.as 

in the previous case, we have to select an initial state, an a simulation time horizon. In order 

to visualize results through plots,we have to consider 2-d projections of the state-space, then 

we could check if the trajectories lies within the safe domain[Figure 7.2].the full Matlab code 

for simulation is provided in Annex C. 

 

Figure 7.2 an example of a plot obtained by Matlab simulation, the blue lines corresponds to the invariance specifications 
while the orange lines to a trajectory, we can check that for a trajectory starting within the safe domain, it will remain 

within it 

  std::cout << "\nSimulation:\n "; 

  /* initial state */ 

  state_type x={{M_PI,0 0}}; 

   

    /* iterate */ 

  for(int i=0; i<100; i++) { 

    std::vector<input_type> u = 

con.get_control<state_type,input_type>(x); 

    std::cout << x[0] <<  " "  << x[1] << " " <<  x[2] << "\n"; 

    system_post(x,u[0]); 

  } 

 

Figure 7.1 code fragment from the c++ simulation file to fix simulation parameters. 



46 
 

Remark: although the designed controller is based on a reduced three dimensional model, we 

still have the option to either simulate the 3-dimensional or 4 dimensional one. In fact ,the 

angle 𝜃1  that we did not include in state-space domain in the reduced model, could be 

reconstituted during the simulation by a simple integrator. 

3) Controller simulation on a real pendulum: 

3.1) Installation of the experimental setup: 

For the real experiments, we used a simple rotatory inverted pendulum manufactured by 

Quanser®, and we had to carry all the Hardware and Software installations by ourselves. 

⁃ First we installed Quarck, a Software provided with Quanser ®to connect the 

Hardware components with the PC. We had also to install some further tools 

required for the proper functioning of Quarck. 

⁃ We installed a VoltPAQ-X1 Amplifier [figure 7.4], a Q8-USB Data Acquisition Device 

[figure 7.5]and a SRV02 Rotary Servo Base Unit  [figure 7.6],. 

⁃ we mounted the simple rotatory pendulum module [figure 7.8] on the Servo base  

 

 

 

Figure 7. 4 VoltPAQ-X1 Amplifier 

 

 

 

 

 

 

 

 

Figure 7.5 Q8-USB Data Acquisition Device 

 

Figure 7.6 SRV02 Rotary Servo Base Unit   

 

Figure 7.7 simple rotatory pendulum module 

 



47 
 

we wanted to test the correctness of the installation by running a state-feedback controller 

provided by Quanser ® to stabilize the pendulum. We encountered however many difficulties 

while running this controller. We had to test all the components separately to identify the 

problem. After many tests, we could figure out that the problem was due to some 

malfunctioning cables. We had to replace them and test the controller again, finally we could 

check that everything was working properly. 

3.2) loading the abstract controller in Matlab: 

SCOTS generates a controller.scs file that contains the abstract controller. We tried to load 

this file to Matlab directly, but we failed because of some incompatibilities. 

As an alternative, it was suggested to load the controller through a text file, that we could 

generate by modifying the c++ simulation file [figure 7.8] in the code, we had to resort to try 

and catch command, because if the try to read an input value from a non-winning domain 

cell in the, we will get a compilation error. 

 

 

After compiling the modified c++ simulation file, a text.cc file will be generated. This text files 

is composed of 418 241 lines, every line corresponds to a state alphabet. Within each line 

there 4 entries, the first three entries are integers that describes the cell position in the 

space-state domain, the fourth value corresponds to a possible admissible input value if the 

cell is within the winning domain, and the value 10 otherwise (the choice of 10 is arbitrary, 

just to indicate that there is no possible input value for this state). A fragment of the text file 

is depicted in figure 7.9. 

  /* iterate */ 

  std::ofstream myfile; 

  std::vector<input_type> u ; 

  myfile.open ("lookup.txt"); 

for(int i=0; i<41; i++) { 

    for(int j=0; j<101; j++){  

for(int k=0; k<101; k++){  

 x={{M_PI-M_PI/5+i*M_PI/100,-M_PI+j*M_PI/50,-M_PI+k*M_PI/50}}; 

try { 

     u = con.get_control<state_type,input_type>(x); 

 

            myfile << i << ","<<j << ","<<k<<","<< u[0][0] << "\n"; 

 

 

 } catch (...) { 

     myfile << i << ","<<j << ","<<k<<","<<10<< "\n"; 

    continue; 

 

 } 

 

 

 

 

 

  }}} 

myfile.close(); 

  return 1; 

} 

 

Figure 7.8 code fragment to generate an abstract controller as a text file 



48 
 

then we import this text file to Matlab, and convert it to a four dimensional table the obtained 

table table could be interpreted  as look-up table, which for each cell, described by the triplet 

(𝑖, 𝑗, 𝑘),associates one corresponding admissible input value if the cell lies within the winning 

domain, and the value 10 otherwise. 

Because manipulating such a table is not easy in Matlab and Simulink, we thought it be better 

to convert this table into a vector. This is possible, since we can describe each cell with a 

unique identifier instead of a triplet (𝑖, 𝑗, 𝑘), This is done by constructing a linear, injective 

map. 

                                                                                  𝜚 ∶ ℝ3 → ℝ 

(𝑖, 𝑗, 𝑘) → 101.101. (𝑖 − 1) + 101 ∗ (𝑗 − 1) + 𝑘 

we implemented a Matlab function that convert the lookup-table to a vector K.[figure 7.10] 

18,95,74,10 

18,95,75,0.75 

18,95,76,0.5 

18,95,77,0.25 

18,95,78,0.25 

18,95,79,0 

18,95,80,-1.25 

18,95,81,-1.5 

18,95,82,-1.75 

18,95,83,-2 

18,95,84,-2.5 

18,95,85,-3 

18,95,86,-3.25 

18,95,87,-3.75 

18,95,88,-3.75 

18,95,89,-3.75 

18,95,90,-3.75 

18,95,91,-4 

18,95,92,-4 

 
Figure 7.9 fragment of the text file containing the abstract controller 

 

d=1; 

R=zeros(1,41*101*101); 

for i = 1:41 

    for j = 1:101 

        for k = 1:101 

          R(1,d)=lookup.u(d); 

           d=d+1; 

        end 

    end 

end 

 

d=101*101*(i-1)+101*(j-1)+k; 

 

Figure 7.10 Matlab code to generate a vector K from the look-up table 



49 
 

 

3.3) Controller refinement to the real plant: 

One of the advantage of that feedback refinement relation offers is the smoothness the 

refinement process, which could easily be obtained through a serial composition of a static 

quantizer with the abstract controller C o 𝑄 .[figure 7.11] 

 

Figure 7.11 refinement process of the abstract controller 

To obtain a refined controller we do the following steps: 

1)First we build a Simulink model, obtained by modifying an already-existing state-feedback based 

controller provided by Quanser. [figure 7.12] 

2)We load the vector Which contains the abstract controler from Matlab variables-workspace. 

 

Figure 7.12 Simulink model used to control the real pendulum 



50 
 

3)We construct a Matlab function [figure 7.13] which contains a static quantize. for every 

measurement values obtained from the sensor, this functions associate the corresponding symbol or 

cell through a quantizer, check whether this cell lies within the winning domain, and finally looks for 

the correct input voltage from the data (vector K). The input value will be returned to the amplifier, 

which will apply a voltage on the servo motor. 

 

3.4) results of the experiments: 

After we finished building the Simulink model, we compile it, connect it to the target, then 

run it. We bring the pendulum near to the upwards position, once the pendulum lies within 

the winning domain, the controller starts to work and the pendulum is robustly stabilized in 

the upward positive. The only minor problem we faced is that the rotatory arm started to spin 

around so fast in one direction. The controller still enforces the right specification, but the 

result is visually not nice.[figure 7.14] 

 

Figure 7.14 result of the first experiment, the pendulum is stabilized but the rotatory arms ins spinning around 

 

 

 

function y = fcn(data, u) 
y=0; 
i=round((u(2)-(pi-pi/5))*(100/pi))+1; 
j=round((u(3)-(-pi))*(50/pi))+1; 
k=round((u(4)-(-pi))*(50/pi))+1; 
if((i<42)&&(i>0)) 
   if((j<102)&&(j>0))  
       if((k<102)&&(k>0)) 
       d=101*101*(i-1)+101*(j-1)+k; 
       if(data(d,1)<5) 
             y=data(d,1); 
              else 
           y=0; 
       end 
       end 
   end 
end 

     

  

 

 

figure 7.13 Matlab main function in the Simulink Model 

 



51 
 

We had to think why this was happening, later we figured that problem is due to the manner 

we chose the inputs while generating the test file contain thee abstract controller. In fact 

,we have picked for each cells always the first admissible input .by this ways, we have 

favored input signals or voltages that tend to rotate the arm in a biased direction. 

To cure this inconvenience, we tried to modify again c++ simulation file either by: 

• Choose for every symbol in the winning domain a random input from the set of the 

admissible one [figure 7.15]. 

• choose the first input for one cell and alternate for the next cell by choosing the last 

input from the list. 

 

 

We tried the two possibilities, which both leads to a better visual results the problem. We 

could now obtain the balance of the pendulum in the upwards positive, while keeping the 

rotatory arm centered around an oscillating position. 

Considering the results, we obtain from the experiments, we could verify the correctness of 

the controller and the steps we have carried so far.  

 

 

 

 

 

int w=0; 

int p=0; 

 

for(int i=0; i<41; i++) { 

for(int j=0; j<101; j++){ 

for(int k=0; k<101; k++){ 

 

x={{M_PI-M_PI/5+i*M_PI/100,-M_PI+j*M_PI/50,-M_PI+k*M_PI/50}}; 

 

try { 

 

u = con.get_control<state_type,input_type>(x); 

 

p=u.size(); 

w=rand()%p; 

 

 

 

myfile << i << ","<<j << ","<<u[0][w]<<","<< v << "\n"; 

 

} 

 

Figure 7.15 code fragment for generating a file text of an abstract controller with random choice from  the admissible input 



52 
 

 

Conclusions and outlooks: 

The aim of this thesis was to automatically generate a correct-by-construction controller for a 

rotatory inverted pendulum, which enforces an invariance specification. For the 

implementation, we used SCOTS, a tool for the synthesis of symbolic controller based on the 

feedback refinement relation. We simulated the closed-loop behavior on Matlab, then refined 

the abstract controller to the real plant. We conducted some experiments, and we checked 

the correctness of our work. 

the greatest challenge we faced was to find the optimal choice of parameters in SCOTS, that 

would result in finding a controller, while respecting some computational and memory 

performance limits. We had to rely on exhaustive simulation, and some intuition in attempt to 

estimate those parameters, however we failed to a find a controller with the four-

dimensional model, due to the explosive exponential memory and time complexity, inherent 

to the curse of dimensionality of gridded-based abstractions. To overcome this curse, we had 

to consider a possible reduction of the model dimension, which turns out to be feasible in our 

case, we helped us to obtain the desired controller. 

It would be interesting if the future research on symbolic methods focus on finding 

techniques to cure the curse of dimensionality, both on a theoretical and algorithmic level. 

On a theatrical level, we could for example investigate the possibility of constructing a state-

space discretization-free abstraction, like the one developed for δ-ISS systems (Zamani & 

Jagtap, QUEST: A tool for state-space quantization-free synthesis of symbolic controllers., 

2017). On the algorithmic level, we could try to optimize the time complexity of the 

execution, for example by parallelizing the computation of transitions  

Another approach would be to resort to Super-computers while synthesizing abstract 

controllers for sophisticated real-word applications. 

 

 

 

 

 

 

 

 

 

 

 



53 
 

 

 

Bibliographies 

Boubaker, O. (2014). The inverted Pendulum: A fundamental Benchmark in Control Theory and 

Robotics.  

Majid Zamani, M. R. (n.d.). SCOTS: A Tool for the Synthesis of Symbolic Controllers.  

Metni, N. (2009). Neuro-control of an inverted pendulum using Genetic Algorithm.  

Mladenov, V., Tsenov, G., Ekonomou, L., & Harkiolakis, N. (2009). Neural network control of an 

inverted pendulum on a cart.  

Prime, B. S. (2011). On the Dynamics of the Furuta Pendulum.  

Quanser. (n.d.). User Manual Inverted Pendulum Experiment.  

Reissig, G., Rungger, M., & Alexander, W. (2015). Feedback Refinement Relations for the Synthesis of 

Symbolic Controller.  

Roose, A. I., SamerYahya, & Al-Rizzo, H. (2017). Fuzzy-logic control of an inverted pendulum on a cart.  

Rungger, M. (2017). SCOTS (0.2) – USER MANUAL.  

Sarnovsky, S., & Jadlovska, J. (2013). Modelling of Classical and Rotatory Inverted Pendulum Systems 

– A Generalized Approach.  

Tabuada, P. ( 2009). Verification and Control of Hybrid Systems.  

Zamani, M., & Jagtap, P. (2017). QUEST: A tool for state-space quantization-free synthesis of symbolic 

controllers.  

Zamani, M., Pola, G., Mazo JR, M., & Tabuada, P. (2011). Symbolic Models for Nonlinear Control 

Systems Without Stability Assumptions.  

 

 

 

 

 

 

 

 

 

 

 



54 
 

 

 

 

 

 

 

 

Annex A: SCOTS c++ code for generating a controller 

/* 

 * pendulum.cc 

 * 

 *  created: november 2018 

 */ 

 

#include <iostream> 

#include <array> 

#include <cmath> 

 

/* SCOTS header */ 

#include "scots.hh" 

/* ode solver */ 

#include "RungeKutta4.hh" 

 

 

/* time profiling */ 

#include "TicToc.hh" 

/* memory profiling */ 

#include <sys/time.h> 

#include <sys/resource.h> 

struct rusage usage; 

 

 

/* state space dim */ 

const int state_dim=3; 

/* input space dim */ 

const int input_dim=1; 

/* sampling time */ 

const double tau = 0.05; 

 

/* 

 * data types for the elements of the state space  

 * and input space used by the ODE solver 

 */ 

using state_type = std::array<double,state_dim>; 

using input_type = std::array<double,input_dim>; 

 

/* abbrev of the type for abstract states and inputs */ 

using abs_type = scots::abs_type; 

 

/* parameters for system dynamics */ 

const double g=9.81; 



55 
 

const double jj1=9.982910141666664*0.0001; 

const double j2=0.001198730801458; 

const double m1=0.2570; 

const double m2=0.127; 

const double L1=0.2159000; 

const double L2=0.336550; 

const double l1=0.061912500000000; 

const double l2=0.155575000000000; 

const double b1=0.002400000000000; 

const double b2=0.002400000000000; 

const double Rm=2.600000000000000; 

const double Ng=0.900000000000000; 

const double Nm=0.690000000000000; 

const double Kg=70; 

const double Kt=0.007682969729280;        

const double Km=0.007677634454753; 

const double q1=Ng*Kg*Nm*Kt/Rm; 

const double q2=Ng*Kg*Kg*Km*Nm*Kt/Rm; 

const double J1=jj1+m1*l1*l1; 

const double J2=j2+m2*l2*l2; 

const double J0=J1+m2*L1*L1; 

const double c=m2*L1*l2; 

/* parameters for radius calculation */ 

const double mu=std::sqrt(2); 

/* we integrate the pendulum ode by 0.05 sec (the result is stored in x)  

*/ 

auto system_post = [](state_type &x, const input_type &u) noexcept { 

  /* the ode describing the dcdc converter */ 

  auto rhs =[](state_type& xx,  const state_type &x, const input_type &u) 

noexcept { 

 

      const double det=J0*J2+J2*J2*sin(x[0])*sin(x[0])-

c*cos(x[0])*c*cos(x[0]); 

 

      xx[0]=x[2]; 

      xx[1]=(1/det)*(-J2*b1*x[1]+c*cos(x[0])*b2*x[2]-

J2*J2*sin(2*x[0])*x[1]*x[2]-

0.5*J2*c*cos(x[0])*sin(2*x[0])*x[1]*x[1]+J2*c*sin(x[0])*x[2]*x[2] 

              +g*0.5*c*c*sin(2*x[0])/L1+J2*(q1*u[0]-q2*x[1])); 

      xx[2]=(1/det)*(x[1]*c*cos(x[0])*b1-

x[2]*b2*(J0+J2*sin(x[0])*sin(x[0]))+x[1]*x[2]*c*J2*cos(x[0])*sin(2*x[0])-

0.5*x[1]*x[1]*sin(2*x[0])*(J0*J2+J2*J2*sin(x[0])*sin(x[0]))- 

              0.5*x[2]*x[2]*c*c*sin(2*x[0])-

g*m2*l2*sin(x[0])*(J0+J2*sin(x[0])*sin(x[0]))-c*cos(x[0])*(q1*u[0]-

q2*x[1])); 

     

 }; 

  scots::runge_kutta_fixed4(rhs,x,u,state_dim,tau,5); 

}; 

/* we integrate the growth bound by 0.05 sec (the result is stored in r)  

*/ 

auto radius_post = [](state_type &r, const state_type&x, const input_type 

&u) noexcept { 

  /* the ode for the growth bound */ 

  auto rhs =[x](state_type& rr,  const state_type &r, const input_type &u) 

noexcept { 

 

      const double det=J0*J2+J2*J2*sin(x[0])*sin(x[0])-

c*cos(x[0])*c*cos(x[0]); 

      const double 

detd=2*J2*J2*sin(x[0])*cos(x[0])+2*c*sin(x[0])*c*cos(x[0]); 



56 
 

      const double f3=-J2*b1*x[1]+c*cos(x[0])*b2*x[2]-

J2*J2*sin(2*x[0])*x[1]*x[2]-

0.5*J2*c*cos(x[0])*sin(2*x[0])*x[1]*x[1]+J2*c*sin(x[0])*x[2]*x[2] 

              +g*0.5*c*c*sin(2*x[0])/L1+J2*(q1*u[0]-q2*x[1]); 

       const double f4=x[1]*c*cos(x[0])*b1-

x[2]*b2*(J0+J2*sin(x[0])*sin(x[0]))+x[1]*x[2]*c*J2*cos(x[0])*sin(2*x[0])-

0.5*x[1]*x[1]*sin(2*x[0])*(J0*J2+J2*J2*sin(x[0])*sin(x[0]))- 

               0.5*x[2]*x[2]*c*c*sin(2*x[0])-

g*m2*l2*sin(x[0])*(J0+J2*sin(x[0])*sin(x[0]))-c*cos(x[0])*(q1*u[0]-

q2*x[1]); 

      const double  L21=fabs((1/(det*det))*(-f3*detd+det*(-

c*sin(x[0])*b2*x[2]-

2*J2*J2*cos(2*x[0])*x[1]*x[2]+0.5*J2*c*sin(x[0])*sin(2*x[0])*x[1]*x[1]-

J2*c*cos(x[0])*cos(2*x[0])*x[1]*x[1]+g*c*c*cos(2*x[0])/L1))); 

      const double  L22=abs((1/det)*(-J2*b1-J2*J2*sin(2*x[0])*x[2]-

J2*c*cos(x[0])*sin(2*x[0])*x[1]-J2*q2)); 

      const double  L23=fabs((1/det)*( c*cos(x[0])*b2-

J2*J2*sin(2*x[0])*x[1]+2*J2*c*sin(x[0])*x[2])); 

      const double  L31=fabs((1/(det*det))*(-f4*detd+det*(-

x[1]*c*cos(x[0])*b1-x[2]*b2*2*J2*sin(x[0])*cos(x[0])-

x[1]*x[2]*c*J2*sin(x[0])*sin(2*x[0])+2*x[1]*x[2]*c*J2*cos(x[0])*cos(2*x[0])

-x[1]*x[1]*cos(2*x[0])*(J0*J2+J2*J2*sin(x[0])*sin(x[0]))-

x[1]*x[1]*sin(2*x[0])*J2*J2*cos(x[0])*sin(x[0])-x[2]*x[2]*c*c*cos(2*x[0]) 

              +c*cos(x[0])*(q1*u[0]-q2*x[1])-

g*m2*l2*cos(x[0])*(J0+J2*sin(x[0])*sin(x[0]))-

g*m2*l2*sin(x[0])*(2*J2*cos(x[0])*sin(x[0]))))); 

      const double  

L32=fabs((1/det)*(c*cos(x[0])*b1+x[2]*c*J2*cos(x[0])*sin(2*x[0])-

x[1]*sin(2*x[0])*(J0*J2+J2*J2*sin(x[0])*sin(x[0]))+c*cos(x[0])*q2)); 

      const double  L33=abs((1/det)*(-

b2*(J0+J2*sin(x[0])*sin(x[0]))+x[1]*c*J2*cos(x[0])*sin(2*x[0])-

x[2]*c*c*sin(2*x[0]))); 

 

      rr[0]=r[2]; 

      rr[1]=L21*r[0]*L22*r[1]+L23*r[2]; 

      rr[2]=L31*r[0]*L32*r[1]+L33*r[2]; 

 

 }; 

  scots::runge_kutta_fixed4(rhs,r,u,state_dim,tau,5); 

}; 

 

int main() { 

  /* to measure time */ 

  TicToc tt; 

 

  /* setup the workspace of the synthesis problem and the uniform grid */ 

   /* grid node distance diameter */ 

  state_type eta={{M_PI/100,M_PI/50,M_PI/50}}; 

 /* lower bounds of the hyper-rectangle */ 

  state_type lb={{M_PI-M_PI/5,-M_PI,-M_PI}}; 

  /* upper bounds of the hyper-rectangle */ 

  state_type ub={{M_PI+M_PI/5,M_PI,M_PI}}; 

 

  scots::UniformGrid ss(state_dim,lb,ub,eta); 

  std::cout << "Uniform grid details:\n"; 

  ss.print_info(); 

 

  /* construct grid for the input alphabet */ 

  /* hyper-rectangle [1,2] with grid node distance 1 */ 

 

  /* construct grid for the input space */ 



57 
 

  /* lower bounds of the hyper rectangle */ 

  input_type i_lb={{-4}}; 

  /* upper bounds of the hyper rectangle */ 

  input_type i_ub={{4}}; 

  /* grid node distance diameter */ 

  input_type i_eta={{0.25}}; 

  scots::UniformGrid is(input_dim,i_lb,i_ub,i_eta); 

  is.print_info(); 

 

  /* compute transition function of symbolic model */ 

  std::cout << "Computing the transition function:\n"; 

  /* transition function of symbolic model */ 

  scots::TransitionFunction tf; 

  scots::Abstraction<state_type,input_type> abs(ss,is); 

 

 

  tt.tic(); 

  abs.compute_gb(tf,system_post, radius_post); 

  tt.toc(); 

  std::cout << "Number of transitions: " << tf.get_no_transitions() <<"\n"; 

 

  if(!getrusage(RUSAGE_SELF, &usage)) 

    std::cout << "Memory per transition: " << 

usage.ru_maxrss/(double)tf.get_no_transitions() << "\n"; 

 

  /* continue with synthesis */ 

  /* define function to check if the cell is in the safe set  */ 

  auto safeset = [&lb, &ub, &ss, &eta](const scots::abs_type& idx) noexcept 

{ 

    state_type x; 

    ss.itox(idx,x); 

    /* function returns 1 if cell associated with x is in target set  */ 

    if (lb[0]+M_PI/7<= (x[0]-eta[0]/2.0) && (x[0]+eta[0]/2.0)<= ub[0]-

M_PI/7 && 

        lb[1] <= (x[1]-eta[1]/2.0) && (x[1]+eta[1]/2.0) <= ub[1] && 

        lb[2] <= (x[2]-eta[2]/2.0) && (x[2]+eta[2]/2.0)<= ub[2]) 

      return true; 

    return false; 

  }; 

  /* compute winning domain (contains also valid inputs) */ 

  std::cout << "\nSynthesis: \n"; 

  tt.tic(); 

  scots::WinningDomain win = scots::solve_invariance_game(tf,safeset); 

  tt.toc(); 

  std::cout << "Winning domain size: " << win.get_size() << "\n"; 

 

  std::cout << "\nWrite controller to controller.scs \n"; 

  

if(write_to_file(scots::StaticController(ss,is,std::move(win)),"controller"

)) 

    std::cout << "Done. \n"; 

 

  return 1; 

} 

 

 

 

 

 



58 
 

 

 

 

 

 

 

 

 

Annex B: SCOTS c++ code for simulating the controller . 

/* 

 * simulate.cc 

 * 

 *  created: November 2018 

*/ 

#include <iostream> 

#include <array> 

#include <fstream> 

 

/* SCOTS header */ 

#include "scots.hh" 

/* ode solver */ 

#include "RungeKutta4.hh" 

 

/* state space dim */ 

const int state_dim=3; 

/* input space dim */ 

const int input_dim=1; 

/* sampling time */ 

const double tau = 0.05; 

 

/* 

 * data types for the elements of the state space 

 * and input space used by the ODE solver 

 */ 

using state_type = std::array<double,state_dim>; 

using input_type = std::array<double,input_dim>; 

 

/* parameters for system dynamics */ 

const double g=9.81; 

const double jj1=9.982910141666664*0.0001; 

const double j2=0.001198730801458; 

const double m1=0.2570; 

const double m2=0.127; 

const double L1=0.2159000; 

const double L2=0.336550; 

const double l1=0.061912500000000; 

const double l2=0.155575000000000; 

const double b1=0.002400000000000; 

const double b2=0.002400000000000; 



59 
 

const double Rm=2.600000000000000; 

const double Ng=0.900000000000000; 

const double Nm=0.690000000000000; 

const double Kg=70; 

const double Kt=0.007682969729280; 

const double Km=0.007677634454753; 

const double q1=Ng*Kg*Nm*Kt/Rm; 

const double q2=Ng*Kg*Kg*Km*Nm*Kt/Rm; 

const double J1=jj1+m1*l1*l1; 

const double J2=j2+m2*l2*l2; 

const double J0=J1+m2*L1*L1; 

const double c=m2*L1*l2; 

/* parameters for radius calculation */ 

const double mu=std::sqrt(2); 

 

/* we integrate the penmdulum ode by 0.05 sec (the result is stored 

in x)  */ 

auto system_post = [](state_type &x, const input_type &u) noexcept { 

  /* the ode describing the dcdc converter */ 

  auto rhs =[](state_type& xx,  const state_type &x, const 

input_type &u) noexcept { 

      const double det=J0*J2+J2*J2*sin(x[0])*sin(x[0])-

c*cos(x[0])*c*cos(x[0]); 

 

      xx[0]=x[2]; 

      xx[1]=(1/det)*(-J2*b1*x[1]+c*cos(x[0])*b2*x[2]-

J2*J2*sin(2*x[0])*x[1]*x[2]-

0.5*J2*c*cos(x[0])*sin(2*x[0])*x[1]*x[1]+J2*c*sin(x[0])*x[2]*x[2] 

              +g*0.5*c*c*sin(2*x[0])/L1+J2*(q1*u[0]-q2*x[1])); 

      xx[2]=(1/det)*(x[1]*c*cos(x[0])*b1-

x[2]*b2*(J0+J2*sin(x[0])*sin(x[0]))+x[1]*x[2]*c*J2*cos(x[0])*sin(2*x

[0])-0.5*x[1]*x[1]*sin(2*x[0])*(J0*J2+J2*J2*sin(x[0])*sin(x[0]))- 

              0.5*x[2]*x[2]*c*c*sin(2*x[0])-

g*m2*l2*sin(x[0])*(J0+J2*sin(x[0])*sin(x[0]))-c*cos(x[0])*(q1*u[0]-

q2*x[1])); 

 

        }; 

  scots::runge_kutta_fixed4(rhs,x,u,state_dim,tau); 

}; 

 

 

int main() { 

  /* read controller from file */ 

  scots::StaticController con; 

  if(!read_from_file(con,"controller")) { 

    std::cout << "Could not read controller from controller.scs\n"; 

    return 0; 

  } 

 

  std::cout << "\nSimulation:\n "; 

  /* initial state */ 

  state_type x={{M_PI,0 0}}; 

   

    /* iterate */ 

  for(int i=0; i<100; i++) { 



60 
 

    std::vector<input_type> u = 

con.get_control<state_type,input_type>(x); 

    std::cout << x[0] <<  " "  << x[1] << " " <<  x[2] << "\n"; 

    system_post(x,u[0]); 

  } 

 

  return 1; 

 

Annex C: Matlab code for simulating the controller . 

% 

% pendulum.m 

% 

% created: novemebr 2017 

% 

% you need to 1. have the mexfiles compiled  

%             2. run the ./pendulum binary first  

% 

% so that the file: controller.scs is created 

% 

 

function pendulum 

clear set 

close all 

 

%% simulation 

 

% initial state 

x0=[pi 0 0 0]; 

tau_s=0.05; 

 

% load controller from file 

controller=StaticController('controller'); 

 

% simulate closed loop system 

y=x0; 

v=[]; 

loop=100; 

while(loop>0) 

 loop=loop-1; 

 

  u=controller.control(y(end,:)); 

   

  %-------------here choose your controller input-------------% 

  %in=u(end,:); 

  in=u(end,:); 

   

  %-----------------------------------------------------------% 

   

  v=[v; in]; 

  [t x]=ode45(@unicycle_ode,[0 tau_s], y(end,:), odeset('abstol',1e-

10,'reltol',1e-10),in'); 

 

  y=[y; x(end,:)]; 

 



61 
 

  

end 

%% plot the state domain 

% colors 

colors=get(groot,'DefaultAxesColorOrder'); 

 

% plot controller domain 

dom=controller.domain; 

 

 

% plot initial state  and trajectory 

plot(y(:,1),y(:,4),'x') 

hold on 

 

 

%set(gcf,'paperunits','centimeters','paperposition',[0 0 2 

2],'papersize',[3 3]) 

 

% plot safe set 

 

v=[pi-pi/5+pi/7 -pi;... 

   pi+pi/5-pi/7  -pi;... 

   pi-pi/5+pi/7  pi;... 

   pi+pi/5-pi/7  pi ]; 

patch('vertices',v,'faces',[1 2 4 

3],'facecolor','none','edgec',colors(2,:),'linew',1) 

hold on 

 

box on 

 

 

 

 

end 

 

function dxdt = unicycle_ode(t,x,u) 

    % parameter initialization 

 g=9.81; 

jj1=9.982910141666664*0.0001; 

j2=0.001198730801458; 

 m1=0.2570; 

 m2=0.127; 

 L1=0.2159000; 

 L2=0.336550; 

 l1=0.061912500000000; 

l2=0.155575000000000; 

 b1=0.002400000000000; 

 b2=0.002400000000000; 

Rm=2.600000000000000; 

 Ng=0.900000000000000; 

 Nm=0.690000000000000; 

 Kg=70; 

 Kt=0.007682969729280;        

 Km=0.007677634454753; 

q1=Ng*Kg*Nm*Kt/Rm; 

 q2=Ng*Kg*Kg*Km*Nm*Kt/Rm; 



62 
 

 J1=jj1+m1*l1*l1; 

 J2=j2+m2*l2*l2; 

 J0=J1+m2*L1*L1; 

 c=m2*L1*l2; 

 det=J0*J2+J2*J2*sin(x(1))*sin(x(1))-c*cos(x(1))*c*cos(x(1)); 

    dxdt = zeros(3,1); 

    

            dxdt(1)=x(3); 

            dxdt(2)=(1/det)*(-J2*b1*x(2)+c*cos(x(1))*b2*x(3)-

J2*J2*sin(2*x(1))*x(2)*x(3)-

0.5*J2*c*cos(x(1))*sin(2*x(1))*x(2)*x(2)+J2*c*sin(x(1))*x(3)*x(3)+g*

0.5*c*c*sin(2*x(1))/L1+J2*(q1*u-q2*x(2))); 

            dxdt(3)=(1/det)*(x(2)*c*cos(x(1))*b1-

x(3)*b2*(J0+J2*sin(x(1))*sin(x(1)))+x(2)*x(3)*c*J2*cos(x(1))*sin(2*x

(1))-0.5*x(2)*x(2)*sin(2*x(1))*(J0*J2+J2*J2*sin(x(1))*sin(x(1)))-

0.5*x(3)*x(3)*c*c*sin(2*x(1))-

g*m2*l2*sin(x(1))*(J0+J2*sin(x(1))*sin(x(1)))-c*cos(x(1))*(q1*u-

q2*x(2))); 

            dxdt(4)=x(2); 

end 

 

 

 

 

 


	Erklärung
	Bibliographies

