
Technische Universität München
Department of Electrical Engineering and Information Technology
Assistant Professorship of Hybrid Control Systems

Adaptive path planning for autonomous vehicles

Master’s Thesis

Author: Yassine Hamza

Technische Universität München
Department of Electrical Engineering and Information Technology
Assistant Professorship of Hybrid Control Systems

Adaptive path planning for autonomous vehicles

Master’s Thesis

Author: Yassine Hamza
Supervisor: M.Sc. Mahmoud Khaled
Advisor: Prof. Dr. Majid Zamani
Submission date: 07.01.2019

I confirm that this master’s thesis is my own work and I have documented all sources and
material used.

Munich, 07.01.2019 Yassine Hamza

Acknowledgments

I would first like to thank my thesis advisor Phd student Mahmoud Khaled of the
Assistant Professorship of Hybrid Control Systems. His door to office was always open
whenever I ran into a trouble spot or had a question about my research or writing. I
would also like to thank Prof. Dr. Majid Zamani who was involved in the validation of
this thesis. Without their passionate participation and input, the validation survey could
not have been successfully conducted.
Finally, I must express my very profound gratitude to my parents and to my friends

for providing me with unfailing support and continuous encouragement throughout my
years of study and through the process of researching and writing this thesis. This
accomplishment would not have been possible without them.

Thank you
Yassine Hamza

Abstract

The introduction of self-driving vehicles in the automotive market raises many concerns
regarding safety. This is due to the black-box behaviour of the deep learning systems,
which are used to control these vehicles. The aim of this master’s thesis is to make a
contribution towards providing safety guarantees for such systems using formal methods.
In order to accomplish this, a deep-learning based system along with the symbolic
controller synthesis tool, scots, is integrated into a highway traffic simulation. The
deep-learning based system is used for the path planning of a vehicle while scots and
a hard-coded safety shield are used to provide safety guarantees by modifying biased
outputs. The results shows that using scots and this safety shield for monitoring the deep
learning based system was successful. However, this is only a proof of concept. Indeed,
many adjustments need to be performed to make this contribution relevant for real life
settings.

iv

Contents

Acknowledgments iii

Abstract iv

1 Introduction 1

2 Controller synthesis 2
2.1 Why synthesis? . 2
2.2 Linear Temporal Logic (LTL) . 3
2.3 Formal synthesis . 5

2.3.1 Overall concept . 5
2.3.2 GR(1) synthesis . 6

3 SCOTS: A Tool for the Synthesis of Symbolic Controllers 7
3.1 Overall concept . 7
3.2 Matlab simulation . 10

4 Tool integration in the highway traffic simulation 11
4.1 Udacity traffic simulation . 11
4.2 Frenét coordinates . 15
4.3 Use cases . 17
4.4 Symbolic sets parameters . 20

5 Artificial Intelligence (AI) for path planning 21
5.1 LSTM cell . 22
5.2 Recurrent neural networks . 23

5.2.1 Data collection . 24
5.2.2 Data visualization . 24
5.2.3 Training . 28
5.2.4 Tools and frameworks . 29

6 Methodology and results 30
6.1 Work process . 30
6.2 Final model . 31
6.3 Simulation runs . 32

v

Contents

7 Future work and limitations 34
7.1 SCOTS limitations . 34
7.2 Simulation limitations . 35

Bibliography 36

vi

1 Introduction

Fully autonomous vehicles are expected to have a significant impact on several markets
and industries [11]. The recent findings in the fields such as Artificial Intelligence (AI),
measurement systems and sensor technologies made such predictions conceivable [4,
20]. However, deep learning-based designs for self-driving vehicles do not provide safety
guarantees. Indeed, the black box behaviour of these systems makes them hard to formally
verify and, hence, they can not be certified [19, 7]. In order to make a contribution
towards increasing demand for safety guarantees, SCOTS, a tool for the synthesis of
symbolic controllers, along with an AI-based design were successfully integrated into a
3D-highway traffic simulator [5].

One feasible solution is to deploy formally verified designs along with the AI-based
prototypes. These designs would either monitor the output generated by the faulty
prototype (AI design in this case) as it is done in [34], or to be used as a majority-vote
system, as in [21]. In this thesis, the monitoring methodology is implemented. Indeed, the
purpose of this work is to increase the robustness of autonomous vehicles in the absence
of a proper methodology for certifying AI-based systems.

In a previous study, a method using reachability analysis for online verification of an
autonomous vehicle was implemented in order provide more safety guarantees [1]. Despite
the fact that the results of this study is conducive to the field, the high computational
costs of such approach makes it difficult to be implemented in a real-life setting [29].
To overcome this issue, first, a synthesis tool, namely SCOTS, is used to determine the
safest path to reach a predetermined target while avoiding obstacles (e.g., other cars).
Afterwards, two recurrent neural network are trained to achieve the same requirement.
Finally, the AI design is integrated into the simulation for delivering the path, which is
monitored by a formal-safety shield. Here, the hard-coded shield decides if the trajectory
suggested by the neural networks is safe. If this is not the case, SCOTS’s synthesized
path is taken instead. The results show that the vehicle drives autonomously without
violating any safety requirements using the formal planner alone or the formal planner
and the AI design combined.

This thesis is structured as follows. First, the controller synthesis method is intro-
duced. Second, the work process of the symbolic controller synthesis tool SCOTS is
discussed. Then, the integration of SCOTS in the highway traffic simulation is explained
in details. Then, an introduction to recurrent neural networks as well as their integration
in the simulation is presented. Furthermore, the results of the thesis and an overview
of the work methodology are presented. Finally, some perspectives regarding potential
improvements for future work are discussed.

1

2 Controller synthesis

In this chapter the controller synthesis method is presented. First, the advantages and
the drawback of this method are discussed. Second, the Linear Temporal Logic (LTL) is
introduced as a mean of describing formal requirements. Finally, two different approaches
to the controller synthesis are introduced.

2.1 Why synthesis?

Constructing correct systems by manually writing control software for a safety-critical
application is a difficult task. It requires translating abstract requirements into code.
Afterwards, the code will need to be verified against safety requirements. Both steps
are repeated in a close loop process in order to fix potential bugs. This translates to an
expensive and time-consuming design phase.

To overcome above mentioned issues, an automated controller synthesis method
is introduced. Here, given some formal specifications, the control code is generated
automatically and the formal verification process is already embedded in the synthesis.
Indeed, if the controller synthesis fails, then the specifications, which are encoded in LTL,
would need to be refined [24].

However, translating requirements into LTL requires also expertise and intensive
training. This is due to the shift in the level of abstraction i.e. from writing code to
writing formal specification [8]. An additional drawback is the computational complexity
of generating controllers using state-of-the-art LTL synthesis algorithms, which is of a
time-complexity of 2-EXP-time [25].

Requirements Formal specifications

Verification

ImplementationManual Synthesis

Manual

Figure 2.1: Controller synthesis

2

2 Controller synthesis

2.2 Linear Temporal Logic (LTL)

Linear Temporal Logic (LTL) is a model for writing formal specification. It is then
used for formal verification and checking of embedded systems whose specifications are
given as LTL formulae. LTL has logical and temporal operators, which makes it a useful
formalism for indicating and confirming properties of reactive systems. Hence, one can
translate properties which are written using the natural languages into a formula ϕ by
using the LTL syntax [24]. For a better understanding of the LTL syntax, these logical
and temporal operators are listed below:

Logical operators:

∧ : AND operator

∨ : OR operator

¬ : NOT operator

→: IMPLIES operator

Temporal operators:

X : NEXT

U : UNTIL

G : ALWAYS

F : EVENTUALLY

In order to comprehend the usage of these operators, some examples of self driving
requirements specified in LTL are shown below:

ϕ = G (¬(Speed > 80 km/h)) (The speed limitation of 80 km/h is never violated)

Speed < 80 km/h Speed < 80 km/h Speed < 80 km/h Speed < 80 km/h

ϕ = F G (Car reaches target) (Eventually, the car always reaches the target)

arbitrarily arbitrarily Car reaches target Car reaches target

ϕ = G (Red light → Stop) (If "Red light", then th "Car stops" is true)

arbitrarily

Red light

Car stops

Red light

Car stops arbitrarily

3

2 Controller synthesis

ϕ = G (Orange light → X (Stop)) (If "Orange light", then the Car will stop)

arbitrarily Orange light Car stops arbitrarily

ϕ = G ¬(Front car ∧ Car accelerates) (Never accelerate when "Car in the front")

Car accelerates Car accelerates Car in the front Car in the front

4

2 Controller synthesis

2.3 Formal synthesis

2.3.1 Overall concept

In order to synthesize a controller, one needs a set of input atomic propositions API ,
output atomic proposition APO, and an LTL formula ϕ over API

⊎
APO. The purpose

is to find a Mealy or a Moore automaton reading API and writing APO that satisfies ϕ
i.e. is there a finite state system which ensures that the specifications are not violated?.
If such system exists, then the controller is said to be realizable. In order to achieve
this, the synthesis is considered as a game with two players. In this game, the inputs
are determined by the environment, the output by the system, and the playground is
represented by a finite state graph with the possibility of infinite plays. To win this game,
the player needs to find a strategy, which plays fulfill ϕ. Since only one player can make
a move at a time, this game is characterized as a turn based game.

Summary:

– Player 1 controls API and player 2 controls APO

– Set of states: Q with initial state: q0
– Transition function: δ : Q × I ×O → Q

– Player 1 selects ik , Player 2 selects ok , where qk+1 = δ(ik ,ok)

– Winning condition: objective over F ⊆ Q

– Strategy: Q × I → O ⇒ Choose the winning strategy such that all resulting
plays fulfill ϕ

– Reachability game: A certain set of states are eventually reached by each play.

– Safety game: Only states safe states are visited by all plays.

– LTL \Parity game: A certain set of states that are visited infinitely often.

– and more..

5

2 Controller synthesis

2.3.2 GR(1) synthesis

As mentioned in section (2.1), synthesizing the full LTL cannot be considered due the
high complexity of the approach. In order to overcome this issue, one approach would
be to enforce determinism. This is done by enforcing deterministic Büchi automata for
specifying both environment and system and it is called Generalized Reactivity of the
Rank 1 or GR(1) [27]. Using this approach, only LTL specifications of the form (2.1) are
accepted.

(G F ϕ1 ∧ . . . G F ϕ2 ∧ . . .G F ϕn) → (G F ψ1 ∧ . . . G F ψ2 ∧ . . .G F ψn) (2.1)

The complexity of synthesis is then decreased to a polynomial time symbolic-synthesis
problem [23, 3]. For better understanding of the difference between full LTL and GR(1)
synthesis, the table shows the divergence between these two approaches

Synthesis
approach

Specifications Obtain the game Solve game

Full LTL
synthesis

LTL Formula

• Get the non-deterministic
Büchi Automaton (time
complexity: 2n)[33]

• Determinize the Automaton
in order to get the game
(time complexity: 22

n)[28,
22]

Solve parity game
(time complexity:
22

n)[23]

GR(1)
synthesis

Specifications of
the form (2.1)

Nothing has to be done[23]
Solve GR(1) game
(Polynomial time)[23]

6

3 SCOTS: A Tool for the Synthesis of
Symbolic Controllers

3.1 Overall concept

As shown in the previous section, a good approach to avoid the complexity issue is to focus
on simpler specifications. Following this methodology, the tool SCOTS is designed to
synthesize controllers it accepts only reachability (reach spec) and invariance specifications
(reachAvoid spec) [27].

F (Reach target) (3.1)

F(Reach target) ∧ G (Avoid obstacles) (3.2)

Despite the limitation in terms of LTL specifications, this tool supports the computation
of abstractions of nonlinear control systems. SCOTS considers dynamical systems of the
form:

ξ̇(t) ∈ f(ξ(t), u) + �−w,w� (3.3)

• Where f(., u) is continuously differentiable for every u ∈ U

• The set U is non-empty and U ⊆ R

• The vector w = [w1 . . .wn] ∈ Rn+ is a perturbation bound and �−w,w� denotes the
hyper-interval [−w1,w1] × · · · × [−wn,wn]

Moreover, the solution ξ and the simple system S1 := (X1, U1, F1), which is constructed
for implementing the desired behavior of the closed loop with respect to a sampling time
τ , are defined [26].
Furthermore, the transition function F1 is defined as:

F1(x,u) := {x′|ξ(0) = x∧ ξ(τ) = x′} (3.4)

with respect to the state alphabet X1 := Rn, state input U1 := U , and sampling time τ

7

3 SCOTS: A Tool for the Synthesis of Symbolic Controllers

In order to synthesize the controller, the following need to be specified:

• The Ordinary Differential Equation (ODE) that describes the vehicle’s dynamics.

ẋ(t) = f(x(t), u, t) (3.5)

• The growth bound

r(t) = g(r(t), u, t) (3.6)

• An ODE solver with n number of intermediate steps and with sampling time τ

SCOTS constructs the symbolic model S2 of S1 = (X1, U1, F1), which is an over-
approximation of attainable sets. The growth bound function 3.6 specifies the extent to
which initial state-sets of S1 diverges form the exact solution ϕ i.e. r(0) = 0 → ξ(0) = ϕ.

• Specify the input space: input space quantization η (node distance) as well as the
lower and upper bound (lb and ub).

u ∈ [lb1, ub1] × · · · × [lbn, ubn]

Quantization: [η1, . . . , ηn]

• Specify the state space: state space quantization η (node distance) as well as the
lower and upper bound (lb and ub).

x ∈ [lb1, ub1] × · · · × [lbn, ubn]

Quantization: [η1, . . . , ηn]

• Create a symbolic set of post variables by the symbolic set of the state space i.e.
posterior state space

• Instantiate the symbolic model with the input and state space as well as the posterior
state space

• Compute the transition relation F1 of the symbolic model with respect to the ODE
and growth bound

• Setup a fixed point from the symbolic model after computing the transition relation
F1

• For specifying obstacles, SCOTS provides two different options to model them:

– Polytopes: { y ∈ Rn | Hx ≤ h} parameterized by H ∈ Rq×n and h ∈ Rq

– Ellipsoids: { y ∈ Rn | |L(x − y)|2 ≤ 1} parameterized by H ∈ Rn×n and
y ∈ Rn

8

3 SCOTS: A Tool for the Synthesis of Symbolic Controllers

• For specifying the target, polytopes and ellipsoids are also applied.

• In the case of reach (3.1) specification, then only the target space need to be specified.
In case of reachAvoid (3.2), then not only the target but also the obstacle space
need to specified.

SCOTS

The input space parameters

The state space parameters

Formal model

The Target space
The Obstacle space

Controller

ODE
ẋ(t) = f(x(t), u, t)

Growth bound
r(t) = g(r(t), u, t)

ODE solver

Figure 3.1: Simplified illustration of SCOTS’ work process [27]

After specifying all of the above, a controller can be synthesized in the form of a symbolic
set. The synthesized controller takes the vehicle’s state x as an input and a set of inputs
U1 as outputs. For each u1 ∈ U1 and x1(t) ∈X1, we have safe(f(x1(t), u1, t)) = True. The
size of U1 depends not only on the realizability of the problem but also on the growth
bound.

9

3 SCOTS: A Tool for the Synthesis of Symbolic Controllers

3.2 Matlab simulation

Figure 3.2: SCOTS vehicle example [27]

For a better understanding of the tool’s output, a simple example is presented. Figure 3.2
shows a green point at the left side. This is the starting point of the vehicle. The blue
objects represents the obstacles to be avoided. As for the orange area, it represents
the target that the vehicle needs to reach. Finally, the line represents one safe path for
the vehicle to reach the target. However, the ego vehicle is always modeled as a point.
Therefore, if the moving object is, for example, a vehicle, then the vehicle’s width needs to
be taken into account. Unfortunately, SCOTS does not provide the possibility to specify
the moving object dimensions. In this case, two workarounds can be considered. The first
is to make all obstacles bigger such as collisions can be avoided. The second one is to
choose points from the synthesized controller that hold a safety distance between the
moving object and all obstacles.

10

4 Tool integration in the highway traffic
simulation

4.1 Udacity traffic simulation

Figure 4.1: Udacity high way simulation [5]

The high way traffic simulation used in this thesis is developed by Udacity as a part of
a paid program called nanodegree [5]. The propose of this course is to teach students
how to train cars to drive autonomously. The simulation has two modes: the manual and
the autonomous one. If the autonomous mode is chosen, then the simulation sends the
sensor fusion outputs as well as the ego vehicle location and speed to the control code in
a json format. The initial project, in which the control the car should be implemented,
is provided in [31]. In order to enable the communication between the simulation and
the control code, the websocket protocol is used. The websocket protocol enables the
communication between a client (the control code in our case), and a remote host (the
simulation) with continuous information exchange [12]. The illustration of the websocket
protocol usage in this thesis is shown in figure 4.2.

11

4 Tool integration in the highway traffic simulation

Websocket clientSimulation

handshake()

send(telemetry)

send(next path)

close()

Figure 4.2: Simulation-control code communication [12]

Once the host gets the telemetry data, these outputs need to be processed by two
modules: the behaviour planner and the path planner. Depending on the ego vehicle
situation in the highway traffic, the behaviour planner decides if the car would stay in the
same lane, accelerate or decelerate, turn right or left. The behaviour of the car is not only
driven by safety requirements but also by the user preferences. Hence, one conservative
approach would be to limit the task to the safety requirements but this is not the case in
this thesis. Indeed, the purpose is to reach the target as fast as possible while upholding
traffic rules. The state diagram 4.3 illustrates the behavior planner used in thesis. It
shows that the car never change lanes unless there is a car blocking in the front. A car is
considered as blocking the front if the distance between the ego vehicle and the front car
is less than ∆s = 17 i.e. sego + 17 > sfront car. If this is true, then the car should change
lanes and the priority is to turn left (see figure 4.8). If there is a car on the left or there
is no left lane, the ego vehicle should turn right (see figure 4.9). If this also cannot be
achieved, the ego vehicle should stay in the same lane until there is no blocking obstacles.
One should note that the car change lanes once at a time.

Once the next action is known, the path planner, which is illustrated in the state
diagram 6.3, determines the next path of the ego vehicle. The target is always specified
as starget = sego + 40, and as for the d axis, it depends on the chosen behavior. If the ego
vehicle turn left, then dtarget = dego − 4, and if the car turn right, then dtarget = dego + 4.
For a better understanding, the figure 4.7 illustrates the lanes coordinates. Once the target
is determined, both target and obstacle spaces are specified in scots, which synthesizes
the path from the ego vehicle to the selected target using the specification reachAvoid.

12

4 Tool integration in the highway traffic simulation

Now that we have the safe next path in Frenét coordinates, we need to convert it to
Cartesian coordinates. However, this is not sufficient to run the car safely. Hence, the
spline interpolation is used to assure the continuity of the trajectory by interpolating
points between the starting point and the target in x-y coordinates [10]. This would
specify the speed as well as the motion smoothness of the ego vehicle.

If this is accomplished, then the simulation gets the next path of the ego vehicle,
which is a set of x-y points, from the websocket client. In this simulation, the speed,
location, and previous path of the ego are provided. Moreover, sensor fusion outputs
provides also the location of the nearby cars and their velocities.

Stay in lanestart

Change lanesGo left Go right

Car in the front
Car on

the left and right

No car
on the left

No car
on the right

&& Car
on the left

Reach lane Reach lane

Figure 4.3: Behavior planner

These information are updated in each iteration according to the changing environ-
ment. Since the map of the landscape is also provided, then the next safe location of the
car can be predicted [5]. The safety requirements in this simulation are the following:

• No collision with other cars

• No speed limit violation (50mph/80kmh)

• No acceleration limit violation (10m/s2)

• No maximum jerk violation (50m/s3)

• Stay in the middle of the lane.

13

4 Tool integration in the highway traffic simulation

The jerk refers to the acceleration change, which has a big impact on the driver and
passengers comfort. Therefore, in order to keep a certain comfort, the maximum jerk of
50m/s3 should not be exceed.

All these information need to be processed in order to extrapolate a design that
would satisfy all of the requirements above. Using scots for path planning, all the require-
ments were considered. However, the spline interpolation [10], which was taken from [30],
contributes to the non-violation of the max jerk and speed limit requirements. Hence,
the path and the target are specified by SCOTS but the smoothness of the car’s motion
as well as the speed limitation and the maximum jerk limitation is determined by the
spline interpolation.

Behavior plannerstart

Specify target

SCOTS

Spline

Simulation

behavior

target

path

waypoints

telemetry data

Figure 4.4: Overall process

14

4 Tool integration in the highway traffic simulation

4.2 Frenét coordinates

Figure 4.5: Full map

The sensor fusion provides the location of the ego vehicle in two different coordinates: x-y
(Cartesian coordinates) and d-s (Frenét coordinates). The figure 4.5 shows the map of
the highway road in x-y coordinates. Looking a the shape of the road, one can conclude
that locating vehicles relatively to each other using this map is an inconvenient and a
complicated task. In order to overcome this issue, the map is transformed to a Frenét
coordinates. The transformation is shown in figure 4.6.

x

y

s = 0

s = 600

s = 100

s = 200

s = 400s = 400

d

dd

d

Figure 4.6: Cartesian vs Frenét coordinates [32]

15

4 Tool integration in the highway traffic simulation

The advantage of Frenét coordinates is that the axis takes the shape of the road
i.e. in the of middle the road we have d = 0 and each lane l is defined by an interval
d ∈ [lane_start, lane_end]. And as for the s axis it represents the length of the road.
As a result of using these coordinates, one can easily detect the presence of a vehicle at
a certain lane, which makes events such as "There is a car on the left" easier to define.
Moreover, it makes the use of SCOTS for this task possible. Indeed, the use of the Frenét
coordinates makes it possible to use a predefined state space. Hence, the use of a small
shifting window is used instead of specifying the whole map as the state space. The figure
4.7 illustrates this shifting window in red dashed square. The use of this workaround
allows scots to synthesize a controller much faster and subsequently send the way-points
in time such as the ego vehicle does not stop or crash. The empirical evidence from this
thesis shows that sending new points to the simulation each 0,03 second without incidents
is feasible.

d = −12 d = −8 d = −4 d = 0 d = 4 d = 8 d = 12

Figure 4.7: Representation of the simulation’s highway traffic

16

4 Tool integration in the highway traffic simulation

4.3 Use cases

Turn left situation:

d = 0 d = 4 d = 8 d = 12

Figure 4.8: Turn left

The figure above shows the case when the ego vehicle (represented by the grey car)
turn left because there is another car (represented by the green car in front of the ego
vehicle) blocking the front road and there is no other car blocking the left side. The grey
grid represents the quantization of the state space and the orange square represents the
target space. Scots tool synthesizes the safe path from the ego vehicle to one point that
is included in both target space and controller domain.

17

4 Tool integration in the highway traffic simulation

Turn right situation:

d = 0 d = 4 d = 8 d = 12

Figure 4.9: Turn right

The figure above shows the case when the ego vehicle (represented by the grey car)
turn right because there is another car (represented by the green car in front of the ego
vehicle) blocking the front road, a car blocking the left side, and no car is blocking the
right side.

18

4 Tool integration in the highway traffic simulation

Stay in lane situation:

d = 0 d = 4 d = 8 d = 12

Figure 4.10: Stay in lane

The figure above shows the case when the ego vehicle (represented by the grey car)
stays in the same lane while another car (represented by the green car in front of the ego
vehicle) is blocking the front road, and the right and left side is blocked.

19

4 Tool integration in the highway traffic simulation

4.4 Symbolic sets parameters
ODE:

ẋ1 = u1 cos(u2)

ẋ2 = u1 sin(u2)

u1 : velocity ; u2 : the heading

x1 : s position ; x2 : d position

Growth bound:

r1 = 0.5

r2 = 0.5

State space:

lower bound = [210,0]

upper bound = [316,12]

η = [5,1]

Input space:

lower bound = [0,−3.14]

upper bound = [50,3.14]

η = [0.1,0.4]

Obstacle space:

•d = 1.5

s = 3

The figure below shows a visualization of the moving window, which was introduced
in the prior section. This was taken from a simulation run at a random time. In this
window, the ego vehicle (shown in yellow and not specified in scots) has 3 other vehicles in
the back and one blocking the front road (the cars are shown in blue). In this situation,
the ego vehicle has to turn left, therefore the target space, is on the left (shown in orange
). One should notice that the d-axis in reversed in this figure and that the ego vehicle is
moving from the left to the right.

Figure 4.11: Matlab visualization

20

5 Artificial Intelligence (AI) for path
planning

The use of AI-based systems in autonomous driving was encouraged by the fact that
great findings has been made in the field of object detection and pattern recognition.
Hence, autonomous vehicles have been deployed on the road that uses deep learning to
detect lanes and other vehicles as well as to control the steering wheel and the vehicle’s
speed [16, 4].

However, the black box nature of these systems makes the certification of safety
critical application that uses these system not feasible. Hence, to this day, there is no
technique that would formally verify these system i.e. no safety guarantee can be obtained.
Even worse, if the AI-design fails and the vehicle crashes as a result, there is also no
proven method to explain the failure. Moreover, even if the issue can be explained, no
guarantee can be provided regarding the recurrence of the failure [19, 7, 18].

In order to make a contribution towards solving these issues, a design is implemented,
where the neural network outputs are checked for safety requirements. This is called
shielding, which is useful when a faulty design is used in a safety critical application.
Hence, the safety shield is the component that enforces safety specifications by modifying
every output that is generated by a faulty design and considered as unsafe. For a better
understanding, the figure shows how the shielding technique occurs.

Inputs Faulty design
Shield

Biased output

Modified output

Figure 5.1: Safety Shield

21

5 Artificial Intelligence (AI) for path planning

5.1 LSTM cell

First when neural networks were introduced, they did not have the capability to memorize
the inputs. For instance, classifying textual information was not feasible since each input
word has a dependency with the prior one. In order to solve this issue and make the
neural networks memorize sequences, the Long Short-Term Memory (LSTM) cell was
first introduced in 1997 and then modified in 2000. The figure below shows the structure
of LSTM cell [13].

σ σ Tanh σ

× +

× ×

Tanh

Ct−1

Cell

ht−1

Hidden

xtInput

Ct

ht

ht

ft

it ot

Figure 5.2: LSTM cell [13]

ft = σ(Wf [ht−1, xt] + bf)

it = σ(Wf [ht−1, xt] + bi)

C̃t = tanh (Wf [ht−1, xt] + bC)

Ct = ft ×Ct−1 + it × C̃t
ot = σ(Wf [ht−1, xt] + bo)

ht = ot × tanh(Ct)

xt ∈ R : input vector

ft ∈ Rh : forget gate’s activation vector

it ∈ Rh : input gate’s activation vector

ht ∈ Rh : hidden state vector

ct ∈ Rh : cell state vector

Wt ∈ Rh×d, Ut ∈ Rh×h, and b ∈ Rh : weight

matrices and bias vector

22

5 Artificial Intelligence (AI) for path planning

5.2 Recurrent neural networks

There are many varieties when it comes to Recurrent Neural Networks (RNNs). One
variety is composed of LSTM layers since any function involving recurrence can be
considered a RNN. This type of RNN has better memorization capacity than other
types [13]. In this thesis, two RNNs with an identical architecture were trained to predict
the next safe path of the ego vehicle in the Frenét coordinates (s and d positions).
However, it should be noticed that the s and d refer to the ego vehicle position inside the
predefined window illustrated as a dashed red square in the figure 4.7.

LSTM layer (200 units)

LSTM layer (100 units)

LSTM layer (50 units)

y1 y2

Sensor Fusion

x1 x2 x3 x4 x5 x6 x7

Figure 5.3: RNN architecture

• x1/x2/x3/x4: Front/Back/Left/Right Car (0 or 1)

• x5: Car speed (0 to 50mph)

• x6/x7: Current car s/d position

• y1: ∆s position

• y2: Next d position

23

5 Artificial Intelligence (AI) for path planning

5.2.1 Data collection

The data used to train the two RNNs was collected from a simulation run that was
previously implemented with SCOTS.The data set is divided into training and test data.
Moreover, the log data was collected in a csv format. The inputs of the two RNNs are the
following: 4 binary inputs x1, x2, x3, and x4 that signals the presence of other cars in the
front, back, left, and right side as well as the speed x5 and the position of the ego vehicle
x6. As for the outputs, y1 and y2 refers to the ∆s position and d position. Hence, the
RNN that is meant to predict the s position, is trained to the predict ∆s = snew − sold
instead. This modification provided a better accuracy for the training procedure.

5.2.2 Data visualization

In this section, a data visualization of the data collected is provided. The visualization
provides the quality of the data collected. Hence, if the data has low variance, the
probability that the trained architecture would suffer from either over-fitting or under-
fitting. In other words, if an event appear must often enough during the simulation run,
it is likely that other events will be false predicted. This is referred to as over-fitting. On
the other hand, if an event does not appear often during the simulation run, it is likely
that a false prediction would occur. This is referred to as over-fitting [14].

Therefore, before to begin with the training, the collected data should be visualized.
If the quality of the data is not good enough, another simulation run and data collection
procedure should be executed.

Collect data

Visualize data

Training

Change RNN parameters or architecture

no convergence/poor accuracy

poor qualityno convergence/poor accuracy

Figure 5.4: Methodology

24

5 Artificial Intelligence (AI) for path planning

Figure 5.5: Data points of the position d

The figure 5.5 shows the lane position of the ego vehicle during the simulation run
that was used to train the RNN. It shows that the ego vehicle has been more on the
left side on road than other lanes. This can be explained by the fact that when a car is
blocking, the priority is always to turn left as long as there is obstacles.

25

5 Artificial Intelligence (AI) for path planning

Figure 5.6: Data points of ∆s position

The figure 5.6 shows the ∆s position (∆s = snew − sold) of the ego vehicle during
the simulation run that was used to train the RNN. It shows that ∆s position has low
variance, which would lead to a relatively poor accuracy (74% accuracy against 92% for
the d position) after training the RNN with this data. This can be explained by the fact
that when a car runs with a constant speed (speed limitation of 50mph/80kmh) unless
a car is blocking the front or taking a turn.

26

5 Artificial Intelligence (AI) for path planning

Figure 5.7: Actions taken during the simulation run

The figure 5.7 shows the actions taken by the ego vehicle during the simulation run
that was used to train the RNN. The actions are labeled as follows: 1→stay in the same
lane, 2→turn left, and 3→turn right. The data shows that, most of the time, the ego
vehicle stayed in the same lane, and that it turned left more that it did to the right.

27

5 Artificial Intelligence (AI) for path planning

5.2.3 Training

After training both neural networks, the test data shows that predicting the lane position
d has 92% accuracy and 74% for the s position. The difference between both accuracy’s
can be explained by the fact that the data lane position d has more variance than the
position s. Although the same architecture was adopted for both networks, two different
data sets were collected. This was crucial for the convergence of both training. Moreover,
only 1 data point as batch size and number of epochs equal to 20. Unfortunately, no
formal explanation can be provided regarding these decisions. The RNNs have LSTM
layers that have the dimensions of 200, 100, and 50 in number of units respectively. The
number of units in this context refers to the dimension of the inner cells Ct and Ct−1, and
hidden/output state ht and ht−1, which are shown in figure 5.2. Moreover, it should be
noticed that the ADAM optimizer was used for the training [17].

Figure 5.8: Summary of the RNN model (d position)

Figure 5.9: Summary of the RNN model (∆s)

28

5 Artificial Intelligence (AI) for path planning

5.2.4 Tools and frameworks

In order to train the RNNs, the Keras framework was used in python. This choice is
motivated by the fact that the deep learning community use the programming language
python to train neural networks. And as for the framework, Keras provides a high level of
abstraction in order to define the neural network architecture as well as for the training [9].

Figure 5.10: frugally-deep [15]

Once the training is done, the model should be transferred from the python code to
the c++ code to run on the simulation. In order to achieve this, the header-only library
frugally-deep is used to run the forward pass on the model. First, the model is saved in
h5 format (python code) using model.save(’....h5’, include_optimizer=False) and then
converted to json file using frugally-deep [15].
Consider the following command to convert the model:

python3 keras_export/convert_model.py keras_model.h5 fdeep_model.json

Finally, frugally-deep allows the loading of the model using fdeep::load_model(...) and
model.predict(...) to run the forward pass on the model.

29

6 Methodology and results

6.1 Work process

This section highlights the work process of this thesis. This is shown in the flow chart below.
The arrows that goes backwards indicates that the process was not done successfully
since the prior process needed to be rectified many times such as the next process can be
implemented.

Run the simulation to capture
the state space as well as the obstacle and target space

Prepare the prespecified shifting window by visualizing
scots synthesized controller in Matlab

Run the ego vehicle autonomously
without collision using SCOTS

Collecting log data (train and test data) in csv format:
Obstacle specifications (Car on the front, on the right,...)

and the as well as the ego vehicle position path that follows it

Train a Recurrent Neural Network (RNN) using the training
and testing data until convergence

Run the ego vehicle autonomously without collision using RNN

Figure 6.1: Methodology

30

6 Methodology and results

6.2 Final model

The final implemented model is composed of the formal path planner, the AI design, and
the shield that decides which path should be adopted. Hence, the shield takes the AI
design output and compare it with the formal path planner output. If the AI output is
considered as unsafe, then the path planner’s output is taken instead. In this thesis, the
safety of the AI output is measured by ξs = spredicted − ssafe and ξd = dpredicted − dsafe,
where the safe output is the formal path planner output and the AI output is the
predicted output. The figure 6.2 illustrates the full model that was modeled in this thesis.

Simulation AI design Shield

Formal path planner

Websocket Client

Figure 6.2: Final model

ξs >?spredicted − ssafe
ξd >?dpredicted − dsafe

Final output

ξs,ξd

AI output

Path planner output

Figure 6.3: Overall process

31

6 Methodology and results

6.3 Simulation runs

In this section, the simulation results, using the final model shown in figure 6.2, are
presented. Hence, 3 different shields configurations have been implemented. For each
configuration, 5 different runs have been performed. The results shows that a conservative
shield configuration lead to safer paths but more shield usage and less AI usage. On the
other hand, a more fault-tolerant configuration lead to less shield usage, more AI usage
but more safety requirements violations.

First configuration (conservative)

Shield tolerance: ξs = spredicted − ssafe = 20 and ξd = dpredicted − dsafe = 1

Run Path planner outputs AI outputs Shield usage AI usage
#1 1682 699 58% 42%
#2 863 200 77% 23%
#3 790 425 47% 53%
#4 1056 473 55% 45%
#5 996 517 48% 52%

Observations:

• No collision

• No violation of the speed limitation

• No violation of the maximum acceleration

• Few violations of the max jerk

• Stable path

Second configuration (fault-tolerant)

Shield tolerance: ξs = spredicted − ssafe = 30 and ξd = dpredicted − dsafe = 1

Run Path planner outputs AI outputs Shield usage AI usage
#1 1023 871 15% 85%
#2 1075 946 12% 88%
#3 1008 792 22% 78%
#4 1096 797 28% 72%
#5 1122 953 15% 85%

32

6 Methodology and results

Observations:

• No collision

• No violation of the speed limitation

• Violation of the maximum acceleration

• Some violations of the max jerk

• Stable path for most of the time

Shield tolerance: ξs = spredicted − ssafe = 40 and ξd = dpredicted − dsafe = 3

Third configuration (extremely fault-tolerant)

Run Path planner outputs AI outputs Shield usage AI usage
#1 974 905 7% 93%
#2 986 946 8% 92%
#3 889 865 3% 97%
#4 1066 982 8% 92%
#5 1122 953 3% 97%

Observations:

• No collision

• No violation of the speed limitation

• No violation of the maximum acceleration

• Few violations of the max jerk

33

7 Future work and limitations

In this thesis the future work, which is extrapolated from this thesis’s approach limitations,
is discussed. Unfortunately, these limitations could not be overcome in this work due to
time and resources constraints. This work would be then translated in a scientific paper
for publications.

7.1 SCOTS limitations

In this thesis, the ego vehicle dynamics are only 2 dimensional (x-y positions). However,
this model of the car is simplistic and irrelevant for real-life settings applications. Therefore,
a realistic model such as the single track model, which is shown in below, should be
implemented. Unfortunately, the current version (v1.0) of Scots does not provide fast
synthesis for a 5 dimensional model. Indeed, the highway traffic simulation need to get a
new path each 20ms, which is not always obtained with the 2 dimensional model. In order
to overcome this issue, the new version of SCOTS (v2.0) will be implemented. Hence, the
new version of SCOTS use parallel computing to synthesize symbolic controllers, which
allows the use of complex dynamics such as the single track model [2].

ẋ1 = x4 cos(x5)

ẋ2 = x4 sin(x5)

ẋ3 = u1

ẋ4 = u2

ẋ5 =
x4
lwb

tan(x3)

x1 : x position ; x2 : y position

x3 : steering angle ; x4 : velocity

x5 : the heading ; lwb : wheelbase

u1 : steering wheel velocity ; u2 : acceleration

34

7 Future work and limitations

One other limitation is SCOTS is that the ego vehicle as a single point and does
not take into account the vehicles dimensions. This feature is very important to the
future work since obstacles need always need to be over-specified such as no collision
occur. However, this was not provided by the new version of SCOTS. Therefore, a newer
version should be implemented with feature such as the task of specifying the environment
becomes easier.

width

length

7.2 Simulation limitations

The term 3 simulation used in this thesis was designed to send telemetry data to a
websocket client and receive an x-y coordinates in order to steer the vehicle. Despite the
fact that the path planning is important for autonomous driving, steering the vehicle
with a steering wheel velocity and acceleration inputs is more relevant for the research
field. In order to overcome this issue, the command server of the simulation should be
modified such as it receives a steering wheel velocity and acceleration instead of x-y
coordinates. This is already true for the simulation Term 2 which is also developed by
Udacity. Therefore, the term 3 simulation should adopt the command server of the term
2 simulation in order to fix this issue.

Term 3 simulation Websocket client

telemetry data

x-y coordinates

Figure 7.1: Term 3 simulation [5]

Term 2 simulation Websocket client

Telemetry data

Steering wheel angle, acceleration

Figure 7.2: Term 2 simulation [6]

35

Bibliography

[1] Althoff, M. and Dolan, J. M. “Online verification of automated road vehicles using
reachability analysis”. In: IEEE Transactions on Robotics 30.4 (2014), pp. 903–918.

[2] Althoff, M., Koschi, M., and Manzinger, S. “CommonRoad: Composable benchmarks
for motion planning on roads”. In: Intelligent Vehicles Symposium (IV), 2017 IEEE.
IEEE. 2017, pp. 719–726.

[3] Bloem, R., Jobstmann, B., Piterman, N., Pnueli, A., and Saár, Y. “Synthesis of
reactive (1) designs”. In: Journal of Computer and System Sciences 78.3 (2012),
pp. 911–938.

[4] Bojarski, M., Del Testa, D., Dworakowski, D., Firner, B., Flepp, B., Goyal, P.,
Jackel, L. D., Monfort, M., Muller, U., Zhang, J., et al. “End to end learning for
self-driving cars”. In: arXiv preprint arXiv:1604.07316 (2016).

[5] Brown, A. Udacity’s Self-Driving Car Simulator. Udacity, 2017. url: https://
github.com/udacity/self-driving-car-sim/tree/term3_collection.

[6] Brown, A. Udacity’s Self-Driving Car Simulator. Udacity, 2017. url: https://
github.com/udacity/self-driving-car-sim/tree/term2_collection.

[7] Cheng, C., Diehl, F., Hinz, G., Hamza, Y., Nuehrenberg, G., Rickert, M., Ruess, H.,
and Truong-Le, M. “Neural networks for safety-critical applications — Challenges, ex-
periments and perspectives”. In: 2018 Design, Automation Test in Europe Conference
Exhibition (DATE). Mar. 2018, pp. 1005–1006. doi: 10.23919/DATE.2018.8342158.

[8] Cheng, C.-H., Hamza, Y., and Ruess, H. “Structural synthesis for GXW specifi-
cations”. In: International Conference on Computer Aided Verification. Springer.
2016, pp. 95–117.

[9] Chollet, F. et al. Keras. https://github.com/fchollet/keras. 2015.

[10] De Boor, C., De Boor, C., Mathématicien, E.-U., De Boor, C., and De Boor, C. A
practical guide to splines. Vol. 27. Springer-Verlag New York, 1978.

[11] Fagnant, D. and Kockelman, K. M. “Preparing a nation for autonomous vehicles:
Opportunities, barriers and policy recommendations”. In: (2013).

[12] Fette, I. and Melnikov, A. The websocket protocol. Tech. rep. 2011.

[13] Goodfellow, I., Bengio, Y., and Courville, A. Deep Learning. MIT Press, 2016,
pp. 373–402. url: http://www.deeplearningbook.org.

36

https://github.com/udacity/self-driving-car-sim/tree/term3_collection
https://github.com/udacity/self-driving-car-sim/tree/term3_collection
https://github.com/udacity/self-driving-car-sim/tree/term2_collection
https://github.com/udacity/self-driving-car-sim/tree/term2_collection
https://doi.org/10.23919/DATE.2018.8342158
https://github.com/fchollet/keras
http://www.deeplearningbook.org

Bibliography

[14] Goodfellow, I., Bengio, Y., and Courville, A. Deep Learning. MIT Press, 2016,
pp. 423–444. url: http://www.deeplearningbook.org.

[15] Hermann, T. Keras. https://github.com/Dobiasd/frugally-deep. 2018.

[16] Huval, B., Wang, T., Tandon, S., Kiske, J., Song, W., Pazhayampallil, J., Andriluka,
M., Rajpurkar, P., Migimatsu, T., Cheng-Yue, R., et al. “An empirical evaluation
of deep learning on highway driving”. In: arXiv preprint arXiv:1504.01716 (2015).

[17] Kingma, D. P. and Ba, J. “Adam: A method for stochastic optimization”. In: arXiv
preprint arXiv:1412.6980 (2014).

[18] Könighofer, B., Alshiekh, M., Bloem, R., Humphrey, L., Könighofer, R., Topcu, U.,
and Wang, C. “Shield synthesis”. In: Formal Methods in System Design 51.2 (Nov.
2017), pp. 332–361. issn: 1572-8102.

[19] Koopman, P. and Wagner, M. “Challenges in autonomous vehicle testing and
validation”. In: SAE International Journal of Transportation Safety 4.2016-01-0128
(2016), pp. 15–24.

[20] Levinson, J., Askeland, J., Becker, J., Dolson, J., Held, D., Kammel, S., Kolter, J. Z.,
Langer, D., Pink, O., Pratt, V., et al. “Towards fully autonomous driving: Systems
and algorithms”. In: Intelligent Vehicles Symposium (IV), 2011 IEEE. IEEE. 2011,
pp. 163–168.

[21] Pike, L., Niller, S., and Wegmann, N. “Runtime Verification for Ultra-Critical Sys-
tems”. In: Runtime Verification. Ed. by Khurshid, S. and Sen, K. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2012, pp. 310–324. isbn: 978-3-642-29860-8.

[22] Piterman, N. “From nondeterministic Buchi and Streett automata to deterministic
parity automata”. In: Logic in Computer Science, 2006 21st Annual IEEE Symposium
on. IEEE. 2006, pp. 255–264.

[23] Piterman, N., Pnueli, A., and Sa’ar, Y. “Synthesis of Reactive(1) Designs”. In:
Verification, Model Checking, and Abstract Interpretation. Ed. by Emerson, E. A.
and Namjoshi, K. S. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 364–
380. isbn: 978-3-540-31622-0.

[24] Pnueli, A. “The temporal logic of programs”. In: Foundations of Computer Science,
1977., 18th Annual Symposium on. IEEE. 1977, pp. 46–57.

[25] Pnueli, A. and Rosner, R. “On the synthesis of an asynchronous reactive module”.
In: Automata, Languages and Programming. Ed. by Ausiello, G., Dezani-Ciancaglini,
M., and Della Rocca, S. R. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989,
pp. 652–671. isbn: 978-3-540-46201-9.

[26] Reissig, G., Weber, A., and Rungger, M. “Feedback refinement relations for the
synthesis of symbolic controllers”. In: IEEE Transactions on Automatic Control
62.4 (2017), pp. 1781–1796.

37

http://www.deeplearningbook.org
https://github.com/Dobiasd/frugally-deep

Bibliography

[27] Rungger, M. and Zamani, M. “SCOTS: A tool for the synthesis of symbolic con-
trollers”. In: Proceedings of the 19th International Conference on Hybrid Systems:
Computation and Control. ACM. 2016, pp. 99–104.

[28] Safra, S. “On the complexity of omega-automata”. In: Foundations of Computer
Science, 1988., 29th Annual Symposium on. IEEE. 1988, pp. 319–327.

[29] Schwarting, W., Alonso-Mora, J., and Rus, D. “Planning and decision-making for
autonomous vehicles”. In: Annual Review of Control, Robotics, and Autonomous
Systems 1 (2018), pp. 187–210.

[30] Torres, D. M. CarND-Path-Planning-Project-P1. 2017. url: https://github.com/
darienmt/CarND-Path-Planning-Project-P1/blob/master/src/main.cpp.

[31] Udacity. Udacity’s Self-Driving Car Nanodegree. 2017. url: https://github.com/
udacity/CarND-Path-Planning-Project/blob/master/src/main.cpp.

[32] Werling, M., Ziegler, J., Kammel, S., and Thrun, S. “Optimal trajectory generation
for dynamic street scenarios in a frenet frame”. In: Robotics and Automation (ICRA),
2010 IEEE International Conference on. IEEE. 2010, pp. 987–993.

[33] Wolper, P., Vardi, M. Y., and Sistla, A. P. “Reasoning about infinite computation
paths”. In: Foundations of Computer Science, 1983., 24th Annual Symposium on.
IEEE. 1983, pp. 185–194.

[34] Wu, M., Zeng, H., and Wang, C. “Synthesizing runtime enforcer of safety properties
under burst error”. In: NASA Formal Methods Symposium. Springer. 2016, pp. 65–
81.

38

https://github.com/darienmt/CarND-Path-Planning-Project-P1/blob/master/src/main.cpp
https://github.com/darienmt/CarND-Path-Planning-Project-P1/blob/master/src/main.cpp
https://github.com/udacity/CarND-Path-Planning-Project/blob/master/src/main.cpp
https://github.com/udacity/CarND-Path-Planning-Project/blob/master/src/main.cpp

	Acknowledgments
	Abstract
	Contents
	Introduction
	Controller synthesis
	Why synthesis?
	Linear Temporal Logic (LTL)
	Formal synthesis
	Overall concept
	GR(1) synthesis

	SCOTS: A Tool for the Synthesis of Symbolic Controllers
	Overall concept
	Matlab simulation

	Tool integration in the highway traffic simulation
	Udacity traffic simulation
	Frenét coordinates
	Use cases
	Symbolic sets parameters

	Artificial Intelligence (AI) for path planning
	LSTM cell
	Recurrent neural networks
	Data collection
	Data visualization
	Training
	Tools and frameworks

	Methodology and results
	Work process
	Final model
	Simulation runs

	Future work and limitations
	SCOTS limitations
	Simulation limitations

	Bibliography

