
 
 

Technische Universität München 

 

 

Department of Hybrid Control System 

 

 

Master’s Thesis in Formal Verification 

 

 

Implementation of a symbolic controller  

using SCOTS 

 

 

 

Author: Rafif Hassis 

Matriculation Number:  03639600 

Supervisors: Mahmoud Khaled 

     : Prof. Dr. Majid Zamani 

 

 

 

Date: January xx, 2019 

 



Rafi Hassis – TUM – January 2019 Page 2 
 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

I confirm that this master thesis in is my own work and I have 

documented all sources and material used. 

 

 

 

 

Munich, January 2019   Rafif Hassis 

 

 

 

 

 

 

 

 

  



Rafi Hassis – TUM – January 2019 Page 4 
 

 

 

 

 

 

 

 

 

 

 

  



Master Thesis : Implementation of symbolic controller  5 

 

 

 

 

Summary 
Acknowledgments ................................................................................................................................... 7 

Abstract ................................................................................................................................................... 9 

Chapter 1. .............................................................................................................................................. 13 

General Introduction ............................................................................................................................. 13 

Chapter 2. .............................................................................................................................................. 15 

Background and definitions .................................................................................................................. 15 

Chapter 3. .............................................................................................................................................. 19 

Theoretical Formulation ........................................................................................................................ 19 

and presentation of SCOTS .................................................................................................................... 19 

3.1. Presentation of Scots ............................................................................................................ 19 

3.2. Control Problem .................................................................................................................... 19 

3.3. Auxiliary Control Problems .................................................................................................... 21 

3.4. Growth Bound. ...................................................................................................................... 22 

3.5. Closed Loop. .......................................................................................................................... 23 

3.6. Synthesis via Fixed Point Computations. ............................................................................... 24 

3.7. Conclusion ............................................................................................................................. 26 

Chapter 4. .............................................................................................................................................. 27 

Implementation of symbolic controlls on FPGAs .................................................................................. 27 

4.1. Introduction ........................................................................................................................... 27 

4.2. Simulation on opal 4200 ........................................................................................................ 27 

4.3. OPAL-RT and test unicycle dynamics in Simulink (Hardware in the loop simulator) ............ 28 

4.4. Software In the Loop Simulation of the synthesized controller ............................................ 30 

4.5. Hardware in the Loop Simulation of the synthesized controller .......................................... 31 

4.6. Testing the whole system (Controller and Dynamics system) on Simulink .......................... 32 

4.7. Testing the whole system (Controller and Dynamics system) on RT-Lab ............................. 32 

4.8. Hardware in a loop with Zedboard ....................................................................................... 33 

4.8.1. Axi protocol ................................................................................................................... 34 

4.8.2. Design of the IP core ..................................................................................................... 36 

4.8.3. Implementing a C application with Petalinux................................................................ 41 

4.8.4. Result ............................................................................................................................. 42 

4.9. Conclusion ............................................................................................................................. 43 

Chapter 5. .............................................................................................................................................. 45 

Implementation of the control over Raspberry pi ................................................................................ 45 



Rafi Hassis – TUM – January 2019 Page 6 
 

5.1. THE RASPBERRY PI 3 .............................................................................................................. 45 

5.2. THE RASPBERRY PI 3 CAPABILITIES ........................................................................................ 45 

5.3. THE C++ Code ........................................................................................................................ 46 

5.4. Conclusion ............................................................................................................................. 47 

Chapter 6. .............................................................................................................................................. 49 

Robot Control ........................................................................................................................................ 49 

6.1. . The State space.................................................................................................................... 50 

6.2. The Controller synthesis ........................................................................................................ 51 

6.3. The header file implementation ............................................................................................ 53 

6.5.  One robot control ...................................................................................................................... 54 

6.6.  Control of two robots ................................................................................................................ 58 

Chapter 7. .............................................................................................................................................. 63 

Conclusion and Future Work ................................................................................................................. 63 

7.1. Conclusion .................................................................................................................................. 63 

7.2. Future Work ............................................................................................................................... 64 

List of Figures ......................................................................................................................................... 65 

Bibliography ........................................................................................................................................... 67 

Appendix 1 vehicle_simul.m ................................................................................................................. 69 

Appendix 2 BDD.m ................................................................................................................................ 73 

Appendix 3 bddhil.c ............................................................................................................................... 75 

Appendix 4 bddReader.h ....................................................................................................................... 79 

Appendix 5 bdd_vehicle.h ..................................................................................................................... 83 

 

 

 

 

 

 

  



Master Thesis : Implementation of symbolic controller  7 

 

 

 

 

 

 

Acknowledgments 

 

 

To my family, nucleus of love, symbol of living together, giving and getting 

and building history. 

To my native country, and to the adopted one, for education, and for giving 

me an opportunity to learn, to develop interesting things, and simply to 

have a good life. 

To my native culture, my adopted one, and to any real culture, that have 

making me better. 

To the science, the innovation spirit, and to technologies, making our life 

more interesting. 

To my teachers, professors, mainly to my TUM professors. 

A special thanks to my supervisor Mahmoud Khaled for his effort, kindness, 

and availability. 

 

 

  



Rafi Hassis – TUM – January 2019 Page 8 
 

 

 

 

 

 

  



Master Thesis : Implementation of symbolic controller  9 

 

 

Abstract 

The purpose of this thesis is the implementation of a symbolic controller, for 

unicycle dynamics on FPGAs and Raspberry Pi microcontrollers.  The controller 

is then tested on robots. 

The formal verification, which is the only known way to guarantee that a 

system is free of errors, is used in the synthesis of this controller. 

For a given: 

  safety property, which is that a system will never do something 

contradictory to the desired behavior,  

  reach ability specification, which is that the system will eventually reach 

the desired goal,  

A symbolic controller is synthesized. For this purpose, a tool for automated 

synthesis of symbolic controllers is needed. The used one in this thesis is 

SCOTS [1]. 

 

. SCOTS is intended for the use in the area of formal methods for Cyber-

Physical Systems (CPS) which is integrations of computation and physical 

processes. Embedded computers and networks monitor and control the physical 

processes, usually with feedback loops where physical processes affect 

computations and vice versa. 
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Chapter 1.  

General  Introduction 
 

We attempt to test and verify the controller generated from SCOTS, which is a 

tool for the synthesis of symbolic controllers, using different real-time 

platforms. This includes:  

 a real-time hardware in-the-loop (HIL) simulator called RT-LAB 

OP4200,  

 a FPGA board: Zed-board, 

 a Raspberry Pi SOC,  

 Robot 

We use SCOTS for the synthesis of formally-verified controllers that will be 

targeted to different implementation platforms.  

SCOTS is an open source software tool, mainly implemented in C++, used for 

the synthesis of symbolic controllers for possibly perturbed, nonlinear, control 

systems. With a small MATLAB interface, we can easily access the synthesized 

controller, and using the CUDD library, the controller is provided in BDD 

format. 

The package of CUDD [2], which is written in C, supports Binary Decision 

Diagram (BDDs), Algebraic Decision Diagrams (ADDs) and Zero-suppressed 

Binary Decision Diagrams (ZDDs). 

 

SCOTS is given as a set of header files including: 

- Symbolicset.h,  

- Symbolicmodel.h  

- SymbolicModelGrowthBound.h.  

The following steps shows how SCOTS works: 

1. The user provides scots with the dynamical system as differential 

equations and a sampling period.  

2. SCOTS uses the class SymbolicSet to quantize the state and input sets. 

3. SCOTS uses the class SymbolicModelGrowthBound to compute the 

transition function. 
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4. The user uses the class SymbolicSet to specify the atomic propositions in 

the specification  

5. SCOTS uses the class FixedPoint to solve the auxiliary control problem  

6. SCOTS uses the class SymbolicSet to write the resulting controller to a 

BDD file. 

 

As the controllers synthesized by SCOTS take the form of BDD binaries, they 

cannot be directly used in targeted implementation platforms. Even if the target 

has support for such encoded files, this requires the availability of the CUDD 

library running in it, which is not always practically possible. 

 

This thesis is divided into three parts: 

 In the first part, we tested our controller in a first stage using mainly a 

software in the loop technique. In a second stage, we simulated our 

dynamics in a real time simulator, Hardware in the loop(HIL). Finally we 

implemented the controller on the FPGA using VHDL and we designed 

the hardware using Vivado, a tool for FPGA development.  

 In the second part, we simulate the dynamics of the unicycle together with 

the controller from within Raspberry Pi using C++. 

 In the third part, we test our controller on a robot that should go to a 

specific goal while avoiding some states of the urban like environment 

platform. 

 

Finally, the work is concluded, and some opening perspectives are briefly 

described.  
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Chapter 2. 

Background and definitions 
 

Here presented some classical definitions obtained from scientific sources 

and not modified. The references are here done. 

 

Cyber-Physical Systems [3] 

Cyber-Physical Systems are integrations of computation and physical processes. 

Embedded computers and networks monitor and control the physical processes, 

usually with feedback loops where physical processes affect computations and 

vice versa 

 

HIL [4] 

Hardware-in-the-loop (HIL) simulation is a technique used in the development 

and test of complex real-time embedded systems. HIL simulation provides 

an effective platform by adding the complexity of the plant under control to 

the test platform. The complexity of the plant under control is included in 

test and development by adding a mathematical representation of all 

related dynamic systems. These mathematical representations are referred 

to as the “plant simulation”. The embedded system to be tested interacts 

with this plant simulation. 

A HIL simulation must include electrical emulation of sensors and 

actuators. These electrical emulations act as the interface between the plant 

simulation and the embedded system under test. The value of each 

electrically emulated sensor is controlled by the plant simulation and is 

read by the embedded system under test (feedback). Likewise, the 

embedded system under test implements its control algorithms by 

outputting actuator control signals. Changes in the control signals result in 

changes to variable values in the plant simulation. 

 

Opal4200 [5] 

The OP4200 RCP/HIL system offers Hardware-in-the-Loop (HIL), Rapid 

Control Prototyping (RCP), data acquisition and I/O expansion capabilities 

in a desktop-friendly package. OP4200 supports power electronics, 

automotive and other real-time applications for industry and academia. 
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OP4200 comes equipped with a Xilinx Zynq® All Programmable SoC, 

featuring a Kintex™7 FPGA and dual-core ARM® Cortex processor, and 

the same class-leading FPGA-based I/Os and real-time solvers provided 

throughout OPAL-RT product line, making it the ideal choice for closed-

looped applications. 

 

FPGA [6, 7] 

Field Programmable Gate Arrays (FPGAs) are semiconductor devices that are 

based around a matrix of configurable logic blocks (CLBs) connected via 

programmable interconnects. FPGAs can be reprogrammed to desired 

application or functionality requirements after manufacturing. This feature 

distinguishes FPGAs from Application Specific Integrated Circuits 

(ASICs), which are custom manufactured for specific design tasks. 

Although one-time programmable (OTP) FPGAs are available, the 

dominant types are SRAM based which can be reprogrammed as the design 

evolves. 

You can think of an FPGA as a blank slate. By itself an FPGA does 

nothing. It is up to you (the designer) to create a configuration file, often 

called a bit file, for the FPGA. Once loaded the FPGA will behave like the 

digital circuit you designed! 

 

ZEDBOARD [8, 9] 

ZedBoard™ is a complete development kit for designers interested in exploring 

designs using the Xilinx Zynq®-7000 All Programmable SoC. The board 

contains all the necessary interfaces and supporting functions to enable a 

wide range of applications.  

The expandability features of this evaluation and development platform 

make it ideal for rapid prototyping and proof-of-concept development. The 

ZedBoard includes Xilinx XADC, FMC (FPGA Mezzanine Card), and 

Digilent Pmod™ compatible expansion headers as well as many common 

features used in system design. ZedBoard enables embedded computing 

capability by using DDR3 memory, Flash memory, gigabit Ethernet, 

general purpose I/O, and UART technologies. 

 

Formal verification [10] 

In the context of hardware and software systems, formal verification is the act of 

proving or disproving the correctness of intended algorithms underlying a 
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system with respect to a certain formal specification or property, using 

formal methods of mathematics. 

The verification of these systems is done by providing a formal proof on an 

abstract mathematical model of the system, the correspondence between 

the mathematical model and the nature of the system being otherwise 

known by construction. Examples of mathematical objects often used to 

model systems are: finite state machines, labeled transition systems, Petri 

nets, vector addition systems, timed automata, hybrid automata, process 

algebra, formal semantics of programming languages such as operational 

semantics, denotation semantics, axiomatic semantics and Hoare logic 

 

Validation and verification [11] 

Validation and verification are the two steps in any simulation project to 

validate a model. 

 Validation is the process of comparing two results. In this process, we 

need to compare the representation of a conceptual model to the real 

system. If the comparison is true, then it is valid, else invalid. 

 Verification is the process of comparing two or more results to ensure its 

accuracy. In this process, we have to compare the model’s 

implementation and its associated data with the developer's conceptual 

description and specifications. 
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Chapter 3.  

Theoretical Formulation and presentation of SCOTS 
 

Here, we introduce the theoretical formulation and a brief presentation of 

SCOTS taken from its manual [1]. 

3.1. Presentation of Scots 

For the synthesis of symbolic controllers for possibly perturbed, nonlinear, 

control systems, SCOTS which is an open source software (available at 

http://www.hcs.ei.tum.de) is here presented and used. It is implemented in C++ 

and access to the synthesized controller from within a MATLAB interface. 

SCOTS is intended to be used and extended by researches in the area of 

formal methods for cyber physical systems. SCOTS provides a baseline 

implementation of one of the most basic approaches to symbolic synthesis. 

The term cyber-physical systems (CPS) refer to a new generation of systems 

with integrated computational and physical capabilities that can interact with 

humans through many new modalities. The ability to interact with, and expand 

the capabilities of, the physical world through computation, communication, and 

control is a key enabler for future technology developments. Opportunities and 

research challenges include the design and development of next-generation 

airplanes and space vehicles, hybrid gas-electric vehicles, fully autonomous 

urban driving, and prostheses that allow brain signals to control physical objects. 

The main concepts of SCOTS were introduced as three steps. In the first step, 

the concrete infinite system is lifted to an abstract domain where it is substituted 

by a finite system which is referred to as abstraction or symbolic model. In the 

second step, an auxiliary problem on the abstract domain is solved and finally 

the controller that had been synthesized for the abstraction is refined to the 

concrete system.   

 

3.2. Control Problem 

SCOTS supports the controller computation of symbolic models of perturbed 

control systems of the form: 

                             (3.1) 



Rafi Hassis – TUM – January 2019 Page 20 
 

Where: 

  f is a function given by                   .  

 w = [w1 , . . . , wn ] ∈   
  is the vector perturbation bound 

 [[−w, w]] is the hyper-interval [−w1 , w1 ]×. . .×[−wn , wn ] 

Given a sampling time > 0, SCOTS define a solution of (3.1) on [0, ] under 

(constant) input u ∈ U as an absolutely continuous function ξ: [0,] → R
n
 that 

satisfies (3.1) for almost every t ∈ [0, ]. 

The desired behavior of the closed loop is defined with respect to the-

sampled behavior of the continuous-time systems (3.1). To this end, the sampled 

behavior of (3.1) is casted as simple system. 

S1 = (X1, U, F1 )      (3.2) 

with the state alphabet X1 = R
n
, input alphabet U1 = U and the transition 

function                defined by 

         
                                            

                   
 

A specification Σ1 for a simple system S1 = (X1, U1, F1) is simply a set  

Σ1             ∈             =: (U1 × X1)
∞    (3.3) 

of possibly finite and infinite input-state sequences. A simple system S1 

together with a specification Σ1 constitute a control problem (S1, Σ1).  

SCOTS natively supports invariance (often referred to as safety) and 

reachability specifications. Consider two sets I1   X1 and Z1   X1 × U1. A 

reachability specification associated with I1, Z1 is defined by  

Σ1 := {(u, x) ∈ (U1 × X1)∞ | x(0) ∈ I1    t∈[0;T[ : (x(t), u(t)) ∈ Z1 }. 

An invariance specification associated with I1, Z1 follows by  

Σ1 := {(u, x) ∈ (U1 × X1)[0;∞[ | x(0) ∈ I1  ∀ t∈ [0;∞[ : (x(t), u(t)) ∈  Z1 }. 

In this context, the sets I1 and Z1 are referred to as atomic propositions. 

SCOTS allows to define arbitrary sets as atomic propositions. In the BDD 

implementation, it provides customized commands to define  

• polytopes {x ∈ R
n
 | H x ≤ h} parameterized by H ∈ R

q×n
, h ∈  R

q
, and 
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• ellipsoids {x ∈ R
n
 | |L(x − y)|2 ≤ 1} parameterized by L ∈  R

n×n
 and y ∈  R

n
 

To summarize it, we first provide SCOTS with the state- and input-space, we 

then define the dynamical system representing the plant. Giving a sampling time 

we compute the solution of the dynamical system which results into a 

symbolic system. We finally define the specification (safety or reach ability) 

using polytopes and ellipsoids. For example, given some parameter, a defined 

ellipsoid would practically represent a small portion of the state space. This 

portion would be our target set or our obstacle depending on how we compute it 

later with some other SCOTS functions. The figure 3.1 below represents a 

polytope and an ellipsoid. 

 

 

Figure 3.1. Representation of a polytope on the left  

of the figure and an ellipsoid on the right  

 

3.3.  Auxiliary Control Problems  

Given a simple system S1 = (X1, U1, F1) representing the  -sampled behavior 

of (3.1) and a specification Σ1 for S1, the control problem (S1,Σ1) is not solved 

directly, but an auxiliary, finite control problem (S2,Σ2) is used in the synthesis 

process. Here, S2 = (X2, U2, F2) is a symbolic model or (discrete) abstraction of 

S1 and Σ2 is an abstract specification.  

The state alphabet of X2 is a cover of X1 and the input alphabet U2 is a subset 

of U1. The set X2 contains a subset     , representing the “real” quantizer 

symbols, while the remaining symbols       are interpreted as “overflow” 

symbols. The set of real quantizer symbols    are given by congruent hyper-

rectangles aligned on a uniform grid 
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ηZ n = {c ∈ Rn |     ∈   ∀i∈[1;n] ci = kiηi }  (3.4) 

with grid parameter η ∈ (R+ \ {0})n, i.e., 

 x2 ∈         c∈ηZn x2 = c + [−η/2, η/2].    (3.5) 

SCOTS computes symbolic models that are related via feedback refinement 

relations with the plant. A feedback refinement relation from S1 to S2 is a strict 

relation Q   X1×X2 that satisfies for all (x1, x2) ∈ Q and for all u ∈ U2 with  

F2(x2, u) ∅  

With the conditions  

 (1) F1(x1, u)  ∅ and 

 (2) Q(F1(x1, u))   F2 (x2, u). 

 In SCOTS, the feedback refinement relation Q is given by the set-

membership relation 

Q := {(x1, x2) | x1 ∈ x2}.     (3.6)  

Given an invariance (reachability) specification Σ1 for S1 associated with (I1, 

Z1) an abstract specification is given by the invariance (reachability) 

specification for S2 associated with 

 I2 = {x2 ∈ X2 | x2 ∩ I1   ∅} and Z2 = {x2 ∈ X2 | x2   Z1   ∅}.  (3.7)  

For the solution of the auxiliary control problems (S2, Σ2) SCOTS provides 

minimal and maximal fixed point algorithms. 

Practically, here we create a hyper-rectangle representing a cover of the real 

space giving the lower and upper bound. We then quantize our hyper-rectangle 

into small boxes giving a quantization step. That way we obtain our auxiliary 

state and input space. 

3.4.  Growth Bound.  

The construction of a symbolic model S2 of S1 is based on the over-

approximation of attainable sets. A growth bound of (1) is a function 

β :   
  × U’ →   

 , 

which is defined with respect to a sampling time   > 0, a set K   R
n
 and a set 

U’   U. Basically, it provides an upper bound on the deviation of solutions ξ of 
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(3.1) from nominal solutions   of (3.1), i.e., for every solution ξ of (3.1) on 

[0,  ] with input u ∈ U’ and ξ(0), p ∈ K, we have 

|ξ(τ)  (, p, u) | ≤ β(|ξ(0) − p|, u).     (3.8)  

Here, |x| for x ∈ Rn, denotes the component-wise absolute value. A growth 

bound can be obtained essentially by bounding the Jacobian of f.  

Let L : U’ → R
n×n 

satisfy 

Li,j (u) ≥   
                 

                     
       (9)  

for all x ∈ K’   Rn and u ∈ U’  U. Then     

                                      
 

 
     (10)  

is a growth bound on [0,  ], K, U’ associated with (3.1). The domain K’ on 

which (3.9) needs to hold, is assumed to be convex and contain any solution ξ 

on [0,  ] of (3.1) with u ∈ U’ and ξ(0) ∈ K.  

In order to use SCOTS, we need to provide a growth bound, which for 

nonlinear control systems can be provided in terms of the parameterized matrix 

L(u) whose entries satisfy (3.9). 

 

3.5. Closed Loop. 

The solution of a control problem (S,Σ) is a system  

C = (Xc , Xc,0,Uc , Vc , Yc , Fc , Hc ) 

which is feedback composable with S1, so that  

B(C × S)   Σ. 

Here B(C × S) denotes the behavior of the closed loop C × S1. The main 

statement enabling the symbolic synthesis approach reads as follows.  

Consider two control problems (Si, Σi), i ∈ {1, 2}. Suppose that Q is a 

feedback refinement relation from S1 to S2 and Σ2 is an abstract specification of 

Σ1. If C solves the control problem (S2, Σ2), then C ◦Q solves the control 

problem (S1, Σ1).  



Rafi Hassis – TUM – January 2019 Page 24 
 

The controller C ◦ Q for S1 is given by the serial composition of the quantizer    

Q:X1 ⇒ X2 with the controller C. The closed loop resulting from a simple 

system Σ1 which represents the -sampled behavior of (3.1) and a controller C ◦ 

Q is illustrated in Figure 3.2. At each k ∈ Z≥0 sampling time >0, the plant state 

x1 = ξ(k) is measured and fed to the quantizer Q, which is used to determine a 

cell x2 ∈ X2 that contains x1 ∈ x2 . Then x2 is feed to the controller C to pick the 

input u ∈ U2   U1 which is applied to (3.1). 

 

 
Figure 3.2. Sample-and-hold implementation of  

a controller synthesized with SCOTS 

 

3.6. Synthesis via Fixed Point Computations. 

For the synthesis of controllers C to enforce reachability, respectively, 

invariance specifications, SCOTS provides two fixed point algorithms.  

Consider   

S2 = (X2, U2, F2) with X2 finite and I2 ∈ X2, Z2   X2 × U2. For Y   X2 × U2, 

we define the map  

pre(Y) := {(x2, u) ∈ X2 × U2 | F2 (x2, u)   ∅ ∧ F2 (x2, u)   πX2 (Y)}. (3.12)  

where  πX2 (Y) denotes the projection of Y onto X2. 

We compute a controller to enforce a reachability specification Σ2 associated 

with I2, Z2, by computing the minimal fixed point of the map Y → pre(Y )   Z2, 

which we denote by using the usual µ calculus notation as 

µY.pre(Y )   Z2    (3.13) 

In order to extract a controller, we introduce the function j : X2 → N   {∞} 

by 
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j(x) = inf{i ∈ N | x ∈ πX2 (Yi )} 

where the sets Yi are recursively given by 

Y0 = ∅ 

Yi+1 = pre(Yi )   Z2 . 

Of course we have Yi = Yi+1 implies Yi = µY.pre(Y)   Z2. Let use define the 

map 

H’c (x2) ={ u ∈ U | (x2, u) ∈ Z2 ∨ (F2 (x2, u)  ∅ ∧ F2 (x2, u)   πX2 (Yj(x2 )−1))} 

which is non-empty for all x2 ∈ µY.pre(Y)   Z2. We derive a controller as by 

C = ({q}, {q}, X2, X2, U2, Fc, Hc) with 

          
  

                               

                                     
   

          
             ∈              
∅                                     

  

 

Similarly, if Σ2 is an invariance specification associated with I2, Z2, we 

compute the maximal fixed point of Y → pre(Y) ∩ Z2, which is denoted by 

νY.pre(Y) ∩ Z2. 

Given νY.pre(Y) ∩ Z2 we define the map 

H’c (x2) = {u ∈ U | F2 (x2, u)   ∅ ∧ F2 (x2, u)   πX2 (νY.pre(Y) ∩ Z2)}   (3.14) 

and the controller follows again by 

          
  

                                   

                                     
  

          
             ∈              
∅                                     

  

 

In either case, it is well known that C solves the control problem (S2, Σ2) with 

Σ2 being a reachability (invariance) specification iff I2   πX2 (µY.pre(Y)   Z2) 
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(I2   πX2 (νY.pre(Y) ∩ Z2)). Also for both types of specifications the controller 

is memoryless or static, i.e., the output is independent of the state. 

 

3.7. Conclusion 

Scots is a powerful tool for the synthesis of symbolic controller for perturbed 

control system. SCOTS begins by lifting the control system to an abstract 

domain by discretizing the state space given a sampling time and applying a 

constant input. This results into a simple system, with states x and a transition 

relation F, representing the   -sampled behavior of concrete systems. SCOTS 

then, solve the abstract control problem using fixed point computation and 

finally refine the synthesized controller to match the concrete system. 
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Chapter 4.  

Implementation of symbolic controller on FPGAs 
 

4.1. Introduction 

In order to test the controller, we used various techniques of simulation. We 

began first by doing software in the loop technique, where we simulated the 

dynamics and the controller using the MATLAB interface. Then in a second 

step we have used hardware in the loop simulation, where we integrated the 

dynamics into a hardware simulator called OP4200. Finally, we implemented 

our controller into an FPGA to get the control input and fed these inputs in the 

dynamics using a MATLAB interface to check the correctness of the 

synthesized controller.    

 

4.2. Simulation on opal 4200 

The OP4200 RCP/HIL system is a desktop-friendly package that offers 

Hardware-in-the-Loop (HIL), Rapid Control Prototyping (RCP), data 

acquisition and I/O expansion capabilities. Power electronics, automotive and 

other real-time applications for industry and academia are supported by OP4200. 

OP4200 contains a Xilinx Zynq® All Programmable SoC, featuring a 

Kintex™7 FPGA and dual-core ARM® Cortex processor, and the same class-

leading FPGA-based I/Os and real-time solvers provided throughout OPAL-RT 

product line, making it the ideal choice for closed-looped applications. 

Hardware-in-the-loop (HIL) simulation, is a technique that is used in the 

development and test of complex real-time embedded systems. HIL simulation 

provides an effective platform by adding the complexity of the plant under 

control to the test platform. The complexity of the plant under control is 

included in test and development by adding a mathematical representation of all 

related dynamic systems. These dynamics are referred to as the “plant 

simulation”. The embedded system to be tested interacts with this plant 

simulation. 

Electrical emulation of sensors and actuators must be included in the HIL 

simulation. These electrical emulations act as the interface between the plant 

simulation and the embedded system under test. The value of each electrically 

emulated sensor is controlled by the plant simulation and is read by the 

embedded system under test (feedback). Likewise, the embedded system under 



Rafi Hassis – TUM – January 2019 Page 28 
 

test implements its control algorithms by outputting actuator control signals. 

Changes in the control signals result in changes to variable values in the plant 

simulation. 

 

4.3. OPAL-RT and test unicycle dynamics in Simulink (Hardware in the 

loop simulator) 

The next test scenario is to run the controller using a MATLAB script 

(computer-side) and to process the unicycle dynamics in SIMULINK before 

running it directly on the HW simulator. We test the unicycle dynamics model 

on the HIL (Opal-RT) with different valid inputs to verify the model.  

OP4200 which we use is illustrated in figure 4.1. It has 64 Analog I/O and 

128 digital I/O. It has ETHERNET and Jtag peripherals. For further 

specification, its toturials is on https://www.opal-rt.com/wp-

content/themes/enfold-opal/pdf/L00161_0519.pdf.  

 

 

 

Figure 4.1. OP 4200 

 

RT-LAB is OPAL-RT's real-time simulation software which combines 

performance and enhanced user experience. Since Opal-RT works with 
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MATLAB Simulink, we first model the whole system including controller and 

dynamic system in MATLAB with an embedded controller. 

 

Quick start with OPAL-RT  

1. We install RT-LAB together with the corresponding compatible 

MATLAB version (Have a look to the RT-LAB guide), for example RT-

LAB 11.1.8 is compatible with MATLAB 2017a  

2. We open OPAL-RT and wait for software to recognize the hardware 

3. We have to configure it’s IP address correctly if OPAL-RT doesn’t 

recognize the OP4200, . 

4. We build a new project 

5. We build the Simulink model for unicycle dynamics system based on 

differential equations with off-the-shelf blocks in Simulink (more details 

are at test_vehicle_dynamics.slx in GITLAB) 

6. We modify the Simulink model so that we exchange the output with 

scopes and then regroup them with the inputs into one subsystem. 

7. We regroup the remaining computation system into another subsystem 

8. We rename the newly created core blocks with SC_(console display) and 

SM_(process) in Simulink. 

9. The top level should look like in figure 4.2.  

Figure 4.2. Top level representation of the RT-Lab simulink model 

 

10.  We add a model to your OPAL-RT project and we copy the created 

subsystem into the model 

11. We configure the model, [U1,U2]  should be in this range [-1 1].          

[X1,X2,X3] can be any real number. 

12.  We add OP-COMM block to input in SC and SM from the RT-LAB 

library in SIMULINK like in the figure 4.3 (here it is the SC subsystem) 
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Figure 4.3. Comsol Subsystem 

 

13.  We set solver in Rang-kutta Model configuration parameter in Menu bar 

in SIMULINK. Time-step should be 0.3 s.  

14.  We build Model and Load it and run it 

 

Here we are just testing the response of the simulator giving the dynamics of 

the unicycle.  
 

4.4. Software In the Loop Simulation of the synthesized controller 

In this section, we simulate the controller generated from SCOTS and 

dynamics of the unicycle model all by using Simulink, like the implementation 

in vehicle_simul.mat. To do it, we complement the vehicle.mat file and we 

implement dynamics system in ODE function as follows(the whole code is 

depicted in Appendix 1): 

1. We build function [t x]= ode(t,Y,U) (We took as example the ode 

function in vehicle_simul.mat here presented in Appendix 1) 

2. We build Simulink model for unicycle system  

3. We run simulation with sim function 

4. We verifiy that Cudd and mexfile library are functional 

5. We configure below parameter for simulation 

set_param(model,'AbsTol','1e-6','StopTime','0.3') 

6. Initial value of the unicycle trajectories should be set in the simulink 

model 
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Here, the controller gets input from the SIMULINK and result in controller 

output by reading the BDD-file. The simulation parameter can be modified in 

ODE function. The while loop continues till it reaches the target. Finally, a 

vehicle path through the obstacles is displayed. 

 

4.5. Hardware in the Loop Simulation of the synthesized controller 

In order to search input and output inside the BDD synthesized by SCOTS, 

the trajectories must be converted to new values with an abstraction operation. 

This helps the search function to find respective output conveniently.  

We come up with an indexing algorithm using abstraction. We use an 

embedded c function in SIMULINK to model a controller that can be run on Rt-

lab. We have to convert BDD file to mat file which is done with bdd.mat. By 

abstraction of trajectories, a unique index is generated for every valid trajectory. 

The respective controller's values are stored in controller.mat. To generate an 

index, the following functions are carried out: 

Quantization: 

                   
      

  
 
      

  
 
      

  
     

Indexing: 

                           

 

where,i are quantization steps.             are minimum values of X, Y and 

 . 

Note that based on the quantization parameters used in this example, we have 

51 values at both X,Y, and   dimensions. 

 Assuming each control action needs 8 bytes (as an integer in C/C++), the 

LUT needs (51^
3
)*8 byte spaces in memory. 

 

To build matfiles: 

• As reading BDD files are not possible on SIMULINK, all the information, 

including states and respective control actions, are transferred into a 
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MATFILE called controller.mat, controller1.mat and controller2.mat 

using bdd.mat (appendix 2). 

• bdd.mat loads the bdd file(vehicle_controller.bdd) and put its data in 

controller  

• The applied abstraction  is (  ,  ,           )=(0,0,-3.4,0.2,0.2,0.2) on all 

rows in controller 

• Indexing is also applied on all rows 

• Controller1.mat includes first control unit and its index  

• Controller2.mat includes second control unit and its index  

 

4.6. Testing the whole system (Controller and Dynamics system) on 

Simulink 

We tried to implement the simulation in Simulink 

(simul_function_2015_new_matfunctio.slx) with an interpreted function 

(getControlandstoremat.m) as controller in MATLAB. To run the whole system 

in SIMULINK, the MATLAB embedded function is used in SIMULINK model  

• We load controller.mat 

• We get state in interpreted function (getControlandstoremat.m) 

• We apply Abstraction on state 

• We run simulation  

 

4.7. Testing the whole system (Controller and Dynamics system) on RT-

Lab 

In Rt-lab, the embedded function has to be written in c (sfunction_vehicle.c). 

To use the controller in a C script, the controller outputs should be copied in two 

separate vectors called controller1 and controller2. To build function written in 

sfunction_vehicle.c: 

 

• We construct the controller block which has three inputs and two outputs 

using matlab s-function block (level 1) in SIMULINK  

• The control units are written in different vectors in c file 

• The controller input and output dimension and number of them are 

defined in method:  

static void mdlInitializeSizes(SimStruct *S) 

• The main algorithm is written in: 

static void mdlOutputs(SimStruct *S, int_T tid) 

• When the controller gets inputs, the abstraction and indexing respectively 

are carried out on it. Then the value based on the index is written on two 

outputs of the controller block.  
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Next, a block containing the dynamics of the unicycle model is created and 

related to the sfunction block. 

 To run the simulation on Opal-rt: 

• We open opal-rt and wait for software to recognize the hardware 

• We build a new project 

• We add a new model in the project and we copy the constructed block 

into the model by editing it 

• We modify the model in Simulink. Then, rename the core blocks with 

SC_(console display) and SM_(process) in Simulink 

• SM Contains our dynamics block and SC contains our sfunction 

• We add op-comm block to input in SC and SM 

• We set solver in Rang-kutta Model configuration parameter in Menu bar 

in SIMULINK. Time-step should be 0.3 s.  

• the sfunction_vehicle.c should be added to the Files tab in OPal-rt. 

Transfer mode must be ASCII and transfer time (aka Step) must 

be Before Compilation.  

• We Build the Model, Load it and run it 

 

4.8. Hardware in a loop with Zedboard 

The real Hardware implemented controller is tested in HIL (Hardware in the 

loop). In this part, the Controller’s implementation is generated as a VHDL 

module and implemented on a Zedboard. The VHDL module is encapsulated as 

IP-Core called AXI Slave. A ZYNQ processor system interfaces this IP-Core. 

The ZYNQ runs under an Embedded Linux system. Finally, a Linux application 

is used to provide networked hardware-in-the-loop (HIL) simulation server. 

BDD2Implement, [12], is a tool to automatically generates VHDL codes for 

the symbolic controller. BDD2Implement is a C++ tool to generate 

hardware/software implementations of BDD-based symbolic controllers. Having 

the tools SCOTS that generate BDD-based symbolic controllers of general 

nonlinear dynamical systems, BDD2Implement completes missing ring in the 

automatic synthesis technique. BDD2Implement can generate codes in the 

following formats VHDL/verilog module or in C/C++. The BBD2Implement 

structure is represented in figure 4.4. 

It starts by converting the multi-output boolean functions inside BDDs to 

multi singel-output functions. If the provided controller is not determinized, 

BDD2Implement provides a determinization of the controller using several 

posssible determinization methods. For VHDL, the boolean functions are 

dumped to the VHDL module which contains the boolean functions as maps 

from input-port to output-port. 
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We build the example (ex1-vhdl-raw) corresponding to a VHDL 

implementation of a controller for the unicycle model. The ouput file is 

bdd_vehicle.vhdl. 

 

Figure 4.4. Schematic of the BDD2implementation tool 

 

In the next stage, the vhdl_wrapper has to be implemented in Vivado to 

incorporate an IP on FPGA.  

4.8.1. Axi protocol 

We have decided first to focus on a very basic concept which is connectivity. 

In fact, the question here is how different modules inside our embedded system 

will talk to each other. We will be then able to design the embedded system in a 

very short amount of time.  

In order to solve the connectivity problem, we need a kind of a standard so 

that all of our units can talk based on this standard. So, there should be a kind of 

unique language through which all of the units can talk.  

So, if one module wants to perform a write operation it should obey the rules 

of this standard. This standard is in fact ways of signaling through which 

different modules inside our chip will talk to each other.  

 

Arm has developed a set of system-on-chip and they have extended and 

enhanced these system-on-chip protocols through time. AXI is one of them. AXI 
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is a kind of protocol; it is a kind of way of signaling through which our modules 

can talk to the outside world and when we design our module, we will obey the 

rules of AXI.  

These AXI Modules will initiate transactions. Transactions are basically 

operations through which data is transferred from one point of our chip to 

another point. For example, data is transferred from the memory inside our chip 

to one module or vice versa. The transactions in these cases can be either read 

transactions or write transactions. The module that starts the transaction is called 

an AXI-master.  

The module which will be the target of the transaction is called an AXI-slave. 

Suppose that we have two modules one of them will be an AXI-master and the 

other will be an AXI-slave, for example AXI-master can be a CPU, and AXI-

slave can be a block of memory. The CPU initiates read and write transactions 

to the memory, the memory responds to these read and write transactions. When 

we have write transactions the flow of data will be from the CPU to the memory, 

and when we have read transactions the flow of data will be from the memory to 

the CPU. Whenever an AXI-master needs to perform a transaction, it sends a set 

of commands and a set of initial information about the transaction that is going 

to happen inside the AXI-slave. For example whenever the AXI-master wants to 

perform a write transaction or a read transaction it is necessary that the AXI- 

master sends to the AXI-slave the address for this read or write transaction, and 

then when the AXI-slave is performing the transaction and is doing the 

transaction and is providing the data if it is the read or accepting the data if it is 

the write then the AXI-slave should produce the suitable response to the AXI- 

master.  

A connection between an AXI-slave and an AXI-master has in fact five basic 

components. These are called channels and each channel contains a set of 

signals. For example, whenever the AXI master wants to perform a write 

transaction to the AXI-slave, this write operation happens through three 

channels. First the AXI-master through the write address channel sends the write 

address to the AXI-slave, then through the write data channel sends the data to 

be written to the AXI-slave. Finally, the AXI-slave through the write response 

channel responses to the master, if the write operation is done successfully. For 

the read operation it is the same but with read channel. 

As in this thesis we do need an AXI-slave through which the CPU can 

perform a read transaction in order to get the control input from the VHDL 

computation. For that purpose, we need to design an IP core. 
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4.8.2. Design of the IP core 

To make an IP based core:  

1. We create new project for zedboard 

2. We click into project Settings and we choose VHDL as the target language 

3. We create a block design 

4. We add zynq processor 

5. We click the Run Block Automation link 

6. With the base Vivado project opened, from the menu, we select  

Tools->Create and package IP. 

 

 

7. The Create and Package IP wizard opens we click next.  

8. On the next window, we select “Create a new AXI4 peripheral”. We click 

“Next”.  
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9. Now we can give the peripheral an appropriate name, description and 

location. We click “Next”. 

 

 

In the next page we can configure the AXI bus interface. We’ll use AXI lite, and 

it’ll be a slave to the PS, so we’ll stick with the default values 

 

 

 

 

 

 

 

10. On the last page, we select “Edit IP” and we click “Finish”. Another Vivado 

window will open which will allow us to modify the peripheral that we just 

created 
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11. From the Flow navigator, we click ‘’Add Sources 

12. In the window that appears, we select “Add or Create Design Sources” and 

we click “Next”. 

 

 

13. On the next window, we click “Add Files”. 

14. We Browse to the “bdd_vehicle.vhd” file, we select it andwe  click “OK”. 
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15.  We double click on the “name_of _axi_v1_0_S00_AXI_inst” file to open it. 

16. The source file should be open in Vivado. We find the line with the “begin” 

keyword and add the following code just above it to declare the 

BDDWrapper_entity  and the output signal 

 

 

 

 

 

 

 

 

 

17. The line that says “– Add user logic here” is fined, we add the following code 

below it to instantiate the BDDWrapper_entity 
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18.  We find this line of code “reg_data_out <= slv_reg1;” and we replace it with 

 “reg_data_out <= bdd_out;”. 

19.  In the process statement just a few lines above, we replace “slv_reg1” with 

“bdd_out” 

20.  We save the file 

21.  We should notice that the “bddvehicle.vhd” file has been integrated into the 

hierarchy because we have instantiated it from within the peripheral 

22.  In the ‘’Packaging Steps’’ we go to ‘’Files Group’’ and we click ‘’Merge 

changes from File Groups Wizard’’ 

23.  We go to Review and Package and we click on ‘’Re-Package IP’’ 

24.  In the diagram we click on add IP and we select the newly created AXI4 

25.  We run connection automation  

26.  In the Sources right we click the ‘’design_1’’ (Or the chosen name for our 

design) under Design Sources and we click on ‘’create HDL wrapper’’ 
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We should now synthesize, implement and build the new design to generate 

Bit stream and HDF file. Finally we should export the design to Hardware. We 

can then use these files to generate a new Petalinux project.   

 

4.8.3. Implementing a C application with Petalinux 

The PetaLinux Software Development Kit (SDK) is a Xilinx development 

tool that contains everything necessary to build, develop, test and deploy 

Embedded Linux systems.  

To run Petalinux on Zedboard, we do it as follow  

1. We run the command Source  petalinux-installation-path\settings.sh  

2. We create a new petalinux project with the command       

petalinux-create --type project --template zynq --name <name of project> 

3. We go to the file containing the HDF file given from the design that we 

used inside vivado and we import it to our newly created project with the 

command petalinux-config --get-hw-description  -p <plnx-proj-root> 

4. We create a C application template, we pass the --template c option, as 

follows: petalinux-create -t apps --template c --name bddhil 

5. We change to the newly created application directory in /<project 

name>/components/apps/bddhil 
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6. We copy the bddhil code (depicted in appendix 3), the bddReader header 

file (depicted in appendix 4), the make file as also the apps.common.mk to 

the bddhil application. Those files are in the gitlab under documentation 

[14]. 

7. In order to use the bddhil application, we have to configure our project we 

use the command petalinux-config -c rootfs and then under apps check 

whether the bddhil is selected with * if not select it 

8. We run the command petalinux-build 

9. We run petalinux-build -c rootfs/bddhil -x build  

10. We use the petalinux-package command to generate a BOOt.bin file 

containing the first stage bootloader, U-BOOT and the bitstream. For that 

run the command petalinux-package --boot --fsbl …./zynq_fsbl.elf --fpga 

…/name.bit --uboot 

 

11. We copy the boot.bin and the image.ub together with the bddhil executable 

(bddhil executable is in rootfs folder)  

 

4.8.4. Result  

For running the new vehicle_hil_simulation on zedboard: 

1. We coonect to Fpga linux with UART 

2. We insert the SD-card  

3. We power on the fpga 

4. We launch minicom after configuring it to connect to ttyACM0 

5. We write the  following command in order to allow the fpga to boot from 

the SD-card instead of the system memory  

U-Boot-PetaLinux> setenv bootcmd 'run sdboot'; saveenv 

6. As Login and password we write root 

7. We launch the bddhil application this will respond with HIL STARTED  

8. We run the command exit and we close the terminal   

9. We run vehicle_hil_simulation.m in matlab  

10. Display of the result (Figure 4.5) 
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Figure 4.5. Path of the vehicle, modeled by a unicycle model,  

inside the state space 

 

4.9. Conclusion 

First and using mainly software in the loop technique, the controller was 

tested.  

Second the controller inputs were obtained from the function getInputs, and 

then were fed to the dynamics that were simulated using the hardware simulator. 

Finally, the controller was implemented on the FPGA, where we substituted 

the controller into a VHDL code and then integrated it in an AXI peripheral. 

This AXI serves as interface between the computer and the FPGA to get the 

control input given the state.  
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Chapter 5.  

Implementation of the control over Raspberry pi 
 

In this chapter the main goal is to implement our controller in the Raspberry 

Pi 3 shown in figure 5.1. The controller is generated as C++ code by help of the 

various functions of the SymbolicSet library. We will first introduce the 

Raspberry Pi then we will go through the C code and the function that we used 

to interact with the synthesized controller.    

5.1.  THE RASPBERRY PI 3 

The Raspberry Pi 3 Model B is the latest version of the Raspberry Pi 

computer. In its cheapest form it doesn't have a case, and is simply a credit-card 

sized electronic board  of the type you might find inside a PC or laptop but much 

smaller. 

5.2.  THE RASPBERRY PI 3 CAPABILITIES  

 The Pi 3 can be used as a budget desktop, media center, retro games console, 

or router for starters. The Pi can be used to build tablets, laptops, phones, robots, 

smart mirrors, to take pictures on the edge of space, to run experiments on the 

International Space Station  and that's without mentioning the wackier creations 

One thing to bear in mind is that the Pi by itself is just a bare board. We will 

need a power supply, a monitor and a mouse and a keyboard. 

 The installer makes it simple to set up various operating systems, we choosed 

to install Ubuntu mate because it was a lot easier to install SCOTS and set up the 

Cudd library 

The Pi 3 has the following component:  

 Four USB 2.0 ports (up to 480 megabits per second) 

 HDMI port 

 3.5mm 4-pole Composite Video and Audio jack 

 MicroUSB Power Input 

 DSI Display Port 

 CSI Camera Port 

 MicroSD card Sold 

 40-pin GPIO (Male headers) 
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Figure 5.1. Connexion and expansion 

 

5.3. THE C++ Code  

As we tested our controller with the MATLAB interface where we used 

special MATLAB functions like getinput and isElement in order to interact with 

the controller. These MATLAB functions are supported from the SymbolicSet 

Library. In the C++ code we will also use these functions.  

These functions are called SetValuedMap and IsElement. That s all we need 

to test our controller. The dynamics of the unicycle model has first to be set, 

using an ode_solver to solve the computation of the dynamics as we have done it 

with SCOTS. After setting up the dynamics, we can then make a while loop, 

where we check whether the current state is in the target set or not and that with 

the IsElement function. If it is the case, we close our while loop, if not we get 

our input from controller using the setValuedMap function and then re-compute 

the dynamics to get the new state given the new input. 

Practically, the IsElement function is a Boolean function that is part of the 

symbolicSet header file. It accepts as input a vector representing the current 

state and a bdd file, and then returns as output true if this state is part of the 

symbolicset or return false if this isn’t the case. The isElement function begin by 
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computing a bdd representation of the given state. Then through an indexing 

algorithm searches the index of the bdd cube. The algorithm consist in 

subsracting each dimension of the given x from the minimum value then it’s 

division by our quantization step. Finally we check if this index is inside the 

loaded bdd file.  

The setValuedMap is also another function of the symbolicSet header files 

that returns a vector of vector given as input a vector representing the state and 

also a vector of indices representing the dimension of this state. 

 

The whole step should look this way  

 We load our target set and store it in the symbolicSet ts (mgr is our 

CUDD manager) 

 

 We also load our controller and store it in the symbolicSet control 

 

 We then check whether our current state x is inside this target set 

 

 If it is the case the while loop ends if not we get the input from the 

controller as follow 

 

 The setValuedMap takes as input the state and an index showing the 

dimension of the state space: For example if it is three dimensional our 

index should be {0, 1, 2} 

 Finally we run the function that computes the dynamics given the input u 

and the state x 

 

5.4. Conclusion 

Using C++ and by help of the various functions of the SymbolicSet library, 

the controller is here implemented over the Raspberry Pi 3. 
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After introducing the Raspberry Pi, the interaction with the synthesized 

controller is done through the C code functions. 
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Chapter 6.  

Robot Control 
 

In this chapter, we test our controller on a real robot given an urban like 

environment as depicted in Figure 6.1. As a first part, the controller will be 

synthesized then implemented in the form of a C code. This C code is given the 

specification and the state space and it will generate inputs to the robot in order 

to steer it toward the goal while avoiding obstacles. As a second part, the 

controller will be synthesized online while moving the robots giving a 

dynamically changing obstacle. Two robots can then reach their respective 

targets while avoiding each other.  

In this chapter we will relate about this and finally we will see the result on 

the real platform.   

 

 

Figure 6.1: The urban like Environment 
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6.1. The State space 

Our robots are called Khepera IV. They represent real moveable cars as depicted 

in figure 6.2 and we have a platform representing an urban like environment 

where the robots can move. The platform has crossing roads, traffic lights and 

parking gates.  

 

 

Figure 6.2 Robot Khepera IV 

 

The Khepera IV has two wheels to make a transition or a rotation. If it is a 

simple transition the two wheels turn at the same time in the same direction. If it 

is a rotation each wheel will turn in the opposite direction of the other. The 

Khepera IV has also a laser to detect a given line given its color. For that 

purpose, our robot can move from one state to another by following the line. The 

high-level model of the platform looks like in the figure 6.3. This high-level 

model shows the possible transition between the states, and in our controller 

synthesis we will also provide SCOTS with this model as state space.   
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Figure 6.3 The stape-space 

 

6.2.  The Controller synthesis 

The controller synthesis in this test case is not the same as before because we 

already have a simple and discretized system. So, in our case we will not specify 

any sampling time and any ode_solver. We will also not have a growth bound. 

The dynamical computation will be in form of if statements, where each 

transition in the high-level model will be represented through these if statements 

like it is depicted in figure 6.4 where we defined that if the current state is 1 and 

that if we have input 0 the next state would be 2. 

If (x[0] == 1, && u[0] ==0) 

{ 

xx[0] = 2 ; 

} 

Figure 6.4 Declaration of a transition from the high-level model 
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 Concerning the state space, we declared the lower bound and the upper 

bound given also this high-level model with a quantization step of 1. Practically 

we create a one-dimensional hyper-rectangle that goes from state 1 till 69 

incremented by 1 each time so that each state will be represented by a cube of 

dimension 1. The corresponding code is depicted in figure 6.5. 

 

Figure 6.5 State space declaration with SCOTS 

 

For the input, the maximum transition from one state is 4, so we declared the 

input as going from 0 to 3 with a quantization step equal to 1 as shown in figure 

6.6.  

 

 

Figure 6.6 Input space declaration with SCOTS 
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For the obstacles and the target declaration, and as shown in figure 6.7, we 

declare polytopes using the matrix 

H={-1,1}, 

and the vector h to be of the form: 

h={-s, s}, 

where s is the state that we want to omit as an obstacle. 

 

Figure 6.7 Target declaration 

Finally, we declare our abstraction and we compute our fixed point. The 

whole process leads to the synthesis of the symbolic controller. We can now 

process to the header file implementation using the bdd2implement tool. 

 

6.3.  The header file implementation 

BDD2Implement is a C++ tool to generate hardware/software 

implementations of BDD-based symbolic controllers. Having the tools SCOTS 

that generate BDD-based symbolic controllers of general nonlinear dynamical 

systems, BDD2Implement completes missing ring in the automatic synthesis 

technique. BDD2Implement can generate codes in the following formats 

VHDL/Verilog module or in C/C++. 

Practically, the tool begins by reading the bddfile then, given the state and its 

action, we generate a Boolean function representing each transition of the 

system to be verified. The bdd2implement use a template file as support to 

generate the code which include these Boolean functions. The resulting header 

file is depicted in the appendix 5. 
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6.4.  One robot control 

In this test case the main goal is to steer one robot to its target while avoiding 

obstacles with the help of the FMLAB interface. Each time we are going to 

detect the robot position with a camera then we are going to generate a 

controller then implement it using a C++ code. Then using the robot position or 

state we get the inputs from the controller then we fit this input into the dynamic 

to move the robot from one state to the next one considering that it has to follow 

a path that take it to the target. 

As explained before the dynamics takes the form of IF statement then using 

the FMLAB function GoTo we can move the robot to the next state, as depicted 

in figure 6.8.  

 

 

Figure 6.8 Declaration of a transition 

 

With s is the current state u is the input and c the instantiation of the robot. 

During this test scenario, we figure out that the header file synthesized by the 

tool Bdd2implement has a bug in it, as it allows our robot to reach it’s target but 

it doesn’t avoid the obstacles. For that reason, we got back to the setValuedMap 

function as used in the raspberry PI. Whenever there is an obstacle on one path 

to the target, the robot changes to another path that contains no obstacles and 

leads to the target. 

 Here is an example that explains the control of one robot:  

We choose as start point a state that is close to the target. From this state, the 

robot has two possible paths. One path is small and would take the robot toward 

the target after 2 steps and one path is very long. We decided to put an obstacle 

on the smallest path in order to steer the robot to the longest path. This 

explicative image (figure 6.9) shows how the controlled robot did behave on the 

real platform. 
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Figure 6.9 Path followed by the controlled robot  

to reach the target while avoiding the obstacle 
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As you can see the green robot could just go to the target after two steps 

however as the obstacle is on this path. The controller steers the robot to another 

path leading to the target. 

In the following photos (figure 6.10), captured from the camera frame that 

allows us to detect the robot, represent a real overview of the followed path of 

the controlled robot step by step from links to right and from up to down.  
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Figure 6.10. Some steps of one robot path  
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6.5.  Control of two robots 

In this test case the main goal is to control two robots simultaneously. The 

two robots have to reach their respective goals while avoiding each other. The 

whole process is online. Each time a controller is synthesized given the new 

state of the robot and the new obstacles.  

The inputs are fed to the robots in the same way as described in the previous 

section and the controller synthesis is also the same as before. The only 

difference here is that we synthesize two different controllers given the robots 

positions and store them in two different bdd file.  

The next step is then to load the respective controller and to read the inputs 

from it and write them in a text file. Finally, we read these inputs from the text 

file and move the robots accordingly. 

A main program uses threads in order to run two sub-programs 

simultaneously. Each sub-program begins by detecting the respective robot 

position and writes it into a text file. Then this sub-program calls the controller, 

that given the position will synthesize a controller, generating this way a bdd 

file.  

This bdd file is then given back to the sub-programs that reads it and then get 

the control input for each robot. Finally given the control input, the sub-program 

moves the robot to the new state. This process repeats infinitely often through a 

while loop inside the main program. The structure of the whole program is 

depicted in figure 6.11. 

In this case scenario, the first robot (Green robot), start at state 2 while the 

second robot (blue robot), start at state 9. After two steps the blue robot is on the 

path of the green robot. As a result the green robot waits for the blue to get out 

of his path toward the target 12. After that the green robot restart moving while 

the blue one goes to its initial state. The green robot finally reaches its target 12 

and thus has a new goal which is state 2. As the blue robot is on its path another 

time the controller decided to steer it to another free path. After two other steps 

the blue robot is on the path of the green robot, and thus the green robot stops 

another time to wait the path to be free as it has no other path to go in. This 

process is depicted in figure 6.12 and the steps were taken from the camera 

frame that is above the platform and is presented in figure 6.13. 
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Figure 6.11. Structure of the program  
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Figure 6.12. Path followed by the controlled robot  

to reach the target while avoiding the obstacle 
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Figure 6.13. Some steps of  two robots path 
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Chapter 7.  

Conclusion and Future Work 
 

7.1. Conclusion  

The purpose of this thesis is to present implementations of a symbolic 

controller, for unicycle dynamics on FPGAs and a Raspberry PI and its test on 

robots. 

Scots is here used to solve the abstract control problem using fixed point 

computation and finally the synthesized controller is refined to match the 

concrete system. 

About the implementation on FPGA: 

 First and using mainly software in the loop technique, the controller was 

tested.  

 Second the controller inputs were obtained from the function getInputs, 

and then were fed to the dynamics that were simulated using the hardware 

simulator.  

 Finally, the controller was implemented on the FPGA, where we 

substituted the controller into a VHDL code and then integrated it in an 

AXI peripheral. This AXI serves as interface between the computer and 

the FPGA to get the control input given the state. 

About the implementation over the Raspberry Pi 3, the interaction with the 

synthesized controller is done through the C code functions using the 

SymbolicSet library. 

Finally, our controller is tested on a real robot given an urban like 

environment. As a first part, the controller is synthesized and then implemented 

in the form of a C code. This C code gave the specification and the state space 

generate inputs to the robot in order to steer it toward the goal while avoiding 

obstacles. As a second part, the controller is synthesized online while moving 

the robots giving a dynamically changing obstacle. The two robots reach their 

respective target while avoiding each other.  
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7.2. Future Work 

For the vehicle example, a multi layered abstraction could be done in order to 

solve the control problem, where for example three layer of abstraction with 

different quantization step and sampling time could be realized, and each time it 

would solve the problem using the layer with the biggest quantization step 

whenever this is feasible, and change to a finer one whenever it is needed. 
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Appendix 1 vehicle_simul.m 
 
function vehicle_simul 
clear set 
close all 
 
%% simulation 
 
% target set 
lb=[9 0]; 
ub=lb+0.5; 
v=[9 0; 9.5  0; 9 0.5; 9.5 .5]; 
% initial state 
x0=[0.4 0.4 0.0]; 
t=[]; 
 
controller=SymbolicSet('vehicle_controller.bdd','projection',[1 2 3]); %read th controller bdd-
file 
target=SymbolicSet('vehicle_target.bdd');%read th target bdd-file 
 
y=x0; 
v=[]; 
while(1) 
 
  u=controller.getInputs(y(end,:));%get controller output 
  v=[v; u(1,:)]; 
  if (target.isElement(y(end,:)))%check with target  
    break; 
  end  
  [t x]=ode(1,y(end,:),u(1,:));%ode sovlver with simulink 
 
  y=[y;x(end,:)]; 
end 
 
%% plot the vehicle domain 
% colors 
colors=get(groot,'DefaultAxesColorOrder'); 
 
% load the symbolic set containig the abstract state space 
set=SymbolicSet('vehicle_ss.bdd','projection',[1 2]); 
plotCells(set,'facecolor','none','edgec',[0.8 0.8 0.8],'linew',.1) 
hold on 
 
% load the symbolic set containig obstacles 
set=SymbolicSet('vehicle_obst.bdd','projection',[1 2]); 
plotCells(set,'facecolor',colors(1,:)*0.5+0.5,'edgec',colors(1,:),'linew',.1) 
 
% plot the real obstacles and target set 
plot_domain 
 
% load the symbolic set containig target set 
set=SymbolicSet('vehicle_target.bdd','projection',[1 2]); 
plotCells(set,'facecolor',colors(2,:)*0.5+0.5,'edgec',colors(2,:),'linew',.1) 
 
% plot initial state  and trajectory 



Rafi Hassis – TUM – January 2019 Page 70 
 

plot(y(:,1),y(:,2),'k.-') 
plot(y(1,1),y(1,1),'.','color',colors(5,:),'markersize',20) 
 
box on 
axis([-.5 10.5 -.5 10.5]) 
 
end 
%function dxdt = unicycle_ode(t,x,u) 
function [t x]= ode(t,Y,U) 
X =[]; 
t=  []; 
U=U; 
Y=Y; 
model='test_vehicle_dynamics'; 
open_system(model); 
%Apply changes to the model specified through a SimulationInput object, in 
in = Simulink.SimulationInput(model); 
 
t = (0:0.01:10)';%time 
%define the model paramters 
U1 =U(1,1); 
U2 = U(1,2); 
y1 = Y(1,1); 
y2 = Y(1,2); 
y3 = Y(1,3); 
 
%set model parameters 
in = in.setVariable(&#39;U1&#39;,U1); 
in = in.setVariable(&#39;U2&#39;,U2); 
in = in.setVariable(&#39;y1&#39;,y1); 
in = in.setVariable(&#39;y2&#39;,y2); 
in = in.setVariable(&#39;y3&#39;,y3); 
 
% configure the simulation 
Set_param(model, ‘Abstol’, ’1e-6’, ‘StopTime’,’0.3’) 
outputs=simOut.get('yout');%get simulation output 
x1=(outputs.get('X1').Values); 
x2=(outputs.get('X2').Values); 
x3=(outputs.get('X3').Values); 
t=x1.Time; 
x1=x1.Data; 
x2=x2.Data; 
x3=x3.Data; 
x=[x1';x2';x3']'; 
%  
%   dxdt = zeros(3,1); 
%   c=atan(tan(u(2))/2); 
%  
%   dxdt(1)=u(1)*cos(c+x(3))/cos(c); 
%   dxdt(2)=u(1)*sin(c+x(3))/cos(c); 
%   dxdt(3)=u(1)*tan(u(2)); 
%  
%  
end 
 
function plot_domain 
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colors=get(groot,'DefaultAxesColorOrder'); 
 
v=[9 0; 9.5  0; 9 0.5; 9.5 .5]; 
patch('vertices',v,'faces',[1 2 4 3],'facec',colors(2,:),'edgec',colors(2,:)); 
 
v=[1     0  ;1.2  0   ; 1     9    ; 1.2 9   ]; 
patch('vertices',v,'faces',[1 2 4 3],'facec',colors(1,:),'edgec',colors(1,:)); 
v=[2.2   0  ;2.4  0   ; 2.2   5    ; 2.4 5   ]; 
patch('vertices',v,'faces',[1 2 4 3],'facec',colors(1,:),'edgec',colors(1,:)); 
v=[2.2   6  ;2.4  6   ; 2.2   10   ; 2.4 10  ]; 
patch('vertices',v,'faces',[1 2 4 3],'facec',colors(1,:),'edgec',colors(1,:)); 
v=[3.4   0  ;3.6  0   ; 3.4   9    ; 3.6 9   ]; 
patch('vertices',v,'faces',[1 2 4 3],'facec',colors(1,:),'edgec',colors(1,:)); 
v=[4.6   1  ;4.8  1   ; 4.6   10   ; 4.8 10  ]; 
patch('vertices',v,'faces',[1 2 4 3],'facec',colors(1,:),'edgec',colors(1,:)); 
v=[5.8   0  ;6    0   ; 5.8   6    ; 6   6   ]; 
patch('vertices',v,'faces',[1 2 4 3],'facec',colors(1,:),'edgec',colors(1,:)); 
v=[5.8   7  ;6    7   ; 5.8   10   ; 6   10  ]; 
patch('vertices',v,'faces',[1 2 4 3],'facec',colors(1,:),'edgec',colors(1,:)); 
v=[7     1  ;7.2  1   ; 7     10   ; 7.2 10  ]; 
patch('vertices',v,'faces',[1 2 4 3],'facec',colors(1,:),'edgec',colors(1,:)); 
v=[8.2   0  ;8.4  0   ; 8.2   8.5  ; 8.4 8.5 ]; 
patch('vertices',v,'faces',[1 2 4 3],'facec',colors(1,:),'edgec',colors(1,:)); 
v=[8.4   8.3;9.3  8.3 ; 8.4   8.5  ; 9.3 8.5 ]; 
patch('vertices',v,'faces',[1 2 4 3],'facec',colors(1,:),'edgec',colors(1,:)); 
v=[9.3   7.1;10   7.1 ; 9.3   7.3  ; 10  7.3 ]; 
patch('vertices',v,'faces',[1 2 4 3],'facec',colors(1,:),'edgec',colors(1,:)); 
v=[8.4   5.9;9.3  5.9 ; 8.4   6.1  ; 9.3 6.1 ]; 
patch('vertices',v,'faces',[1 2 4 3],'facec',colors(1,:),'edgec',colors(1,:)); 
v=[9.3   4.7;10   4.7 ; 9.3   4.9  ; 10  4.9 ]; 
patch('vertices',v,'faces',[1 2 4 3],'facec',colors(1,:),'edgec',colors(1,:)); 
v=[8.4   3.5;9.3  3.5 ; 8.4   3.7  ; 9.3 3.7 ]; 
patch('vertices',v,'faces',[1 2 4 3],'facec',colors(1,:),'edgec',colors(1,:)); 
v=[9.3   2.3;10   2.3 ; 9.3   2.5  ; 10  2.5 ]; 
patch('vertices',v,'faces',[1 2 4 3],'facec',colors(1,:),'edgec',colors(1,:)); 
 
end 
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Appendix 2 BDD.m 
 

The different codes will be here presented 
function bddtomatfile() 
    lw0=0;%min x 
    lw1=0; 
    lw2=-3.4; 
    eta0=0.2;%quantization x 
    eta1=0.2; 
    eta2=0.2; 
    controller=SymbolicSet('vehicle_controller.bdd');%reading controller   
    conpoint=controller.points;% controller matrice 
    target=SymbolicSet('vehicle_target.bdd'); %reading Target 
    targetpoints=target.points;% Target matrice 
    A=ones(51^3,2)*100;% ones matrice 
    c=conpoint(:,1); 
  c=(c-lw0)/eta0;% Abstraction Controller 
  c1=conpoint(:,2); 
  c1=(c1-lw1)/eta1; 
  c2=conpoint(:,3); 
   c2=(c2-lw2)/eta2; 
  c3=conpoint(:,4); 
  c4=conpoint(:,5); 
  constate=[c c1 c2 c3 c4]; 
  for m=1:size(constate)% indexing Controller 
      index=constate(m,1)*50^2+constate(m,2)*50^1+constate(m,3)*50^0; 
      index=int64(index); 
      A(index,1)=constate(m,4); 
      A(index,2)=constate(m,5); 
  end 
  c=targetpoints(:,1);% Abstraction Target 
  c=(c-lw0)/eta0; 
  c1=targetpoints(:,2); 
  c1=(c1-lw1)/eta1; 
  c2=targetpoints(:,3); 
   c2=(c2-lw2)/eta2; 
    targetstate=[c c1 c2]; 
   
  for m=1:size(targetstate)% Indexing Controller 
      index=targetstate(m,1)*50^2+targetstate(m,2)*50^1+targetstate(m,3)*50^0; 
      index=int64(index); 
      targetindex(m)=index; 
  end 
    save('controllernew.mat','conpoint')% Save Controller and target 
    save('target.mat','targetpoints') 
    save('controlsymbloic.mat','A') 
    save('targetindex.mat','targetindex') 
A1=A(:,1)'; 
A2=round(A(:,2)',3); 
csvwrite('controller1.dat',A1) 
csvwrite('controller2.dat',A2) 
end 
function combs = nmultichoosek(values, k) 
%// Return number of multisubsets or actual multisubsets. 
if numel(values)==1  
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    n = values; 
    combs = nchoosek(n+k-1,k); 
else 
    n = numel(values); 
    combs = bsxfun(@minus, nchoosek(1:n+k-1,k), 0:k-1); 
    combs = reshape(values(combs),[],k); 
end 
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Appendix 3 bddhil.c 
/* 

 * Placeholder PetaLinux user application. 

 * 

 * Replace this with your application code 

 */ 

#include <stdio.h> 

#include <stdlib.h> 

#include "bddReader.h" 

 

 

int 

set_interface_attribs (int fd, int speed, int parity) 

{ 

        struct termios tty; 

        memset (&tty, 0, sizeof tty); 

        if (tcgetattr (fd, &tty) != 0) 

        { 

                printf ("Error %d from tcgetattr", errno); 

                return -1; 

        } 

 

        cfsetospeed (&tty, speed); 

        cfsetispeed (&tty, speed); 

 

        tty.c_cflag = (tty.c_cflag & ~CSIZE) | CS8;     // 8-bit chars 

        // disable IGNBRK for mismatched speed tests; otherwise receive 

break 

        // as \000 chars 

        tty.c_iflag &= ~IGNBRK;         // disable break processing 

        tty.c_lflag = 0;                // no signaling chars, no echo, 

                                        // no canonical processing 

        tty.c_oflag = 0;                // no remapping, no delays 

        tty.c_cc[VMIN]  = 0;            // read doesn't block 

        tty.c_cc[VTIME] = 5;            // 0.5 seconds read timeout 

 

        tty.c_iflag &= ~(IXON | IXOFF | IXANY); // shut off xon/xoff 

ctrl 

 

        tty.c_cflag |= (CLOCAL | CREAD);// ignore modem controls, 

                                        // enable reading 

        tty.c_cflag &= ~(PARENB | PARODD);      // shut off parity 

        tty.c_cflag |= parity; 

        tty.c_cflag &= ~CSTOPB; 

        tty.c_cflag &= ~CRTSCTS; 

 

        if (tcsetattr (fd, TCSANOW, &tty) != 0) 

        { 

                printf ("Error %d from tcsetattr", errno); 

                return -1; 

        } 

        return 0; 

} 

 

void 

set_blocking (int fd, int should_block) 

{ 

        struct termios tty; 

        memset (&tty, 0, sizeof tty); 
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        if (tcgetattr (fd, &tty) != 0) 

        { 

                printf("Error %d from tggetattr", errno); 

                return; 

        } 

 

        tty.c_cc[VMIN]  = should_block ? 1 : 0; 

        tty.c_cc[VTIME] = 5;            // 0.5 seconds read timeout 

 

        if (tcsetattr (fd, TCSANOW, &tty) != 0) 

                printf ("Error %d setting term attributes", errno); 

} 

 

int readLine(int fd, char* lineBuffer, int max){ 

 

    char ch; 

    int count = 0; 

 

    read(fd, &ch, 1); 

    do 

    {         

        while(read(fd, &ch, 1) < 1); 

  

 if(ch != '\n' && ch != '\r'){ 

  lineBuffer[count] = ch;   

         count++; 

 } 

 if(ch == '\n'){ 

  write (fd, "\r\n", 2);   

  usleep (200); 

 } 

 else{ 

  write (fd, &ch, 1); 

  usleep (100); 

 } 

 

    }while ((ch != '\n') && (count != max-1)); 

 

    lineBuffer[count] = '\0'; 

    return count++; 

} 

 

char *portname = "/dev/ttyPS0"; 

int main(int argc, char *argv[]) 

{ 

 unsigned long exit=0,fd,state; 

 ssize_t n; 

 char buf[100], action[50]; 

  

 fd = open (portname, O_RDWR | O_NOCTTY | O_SYNC); 

 if (fd < 0){ 

  printf("Error: %d opening %s: %s", errno, portname, 

strerror (errno)); 

  return 0; 

 } 

 

 set_interface_attribs (fd, B115200, 0);   // set speed to 

115,200 bps, 8n1 (no parity) 

 set_blocking (fd, 0);                  // set no 

blocking 
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 write (fd, "HIL started v1.1 !\n", 12);           // send 7 

character greeting 

 

 do{ 

  n = readLine(fd, buf, sizeof buf); 

  if(n > 0){ 

   if(strcmp(buf,"exit")==0){ 

    exit = 1; 

   } 

   else if(strcmp(buf,"ping")==0){ 

    write (fd, "pong\r\n", 6); 

    usleep (6 * 100); 

   } 

   else{ 

    state = atol(buf);    

    n = 

sprintf(action,"%d",bddGetAction(state)); 

    write (fd, action, n); 

    write (fd, "\r\n", 2); 

    usleep ((n+2) * 100); 

    

   } 

  } 

 }while(!exit); 

 return 0; 

} 
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Appendix 4 bddReader.h 
 

#include <stdint.h> 

#include <assert.h> 

#include <fcntl.h> 

#include <stdio.h> 

#include <stdlib.h> 

#include <string.h> 

#include <sys/mman.h> 

#include <unistd.h> 

#include <stddef.h> 

#include <errno.h> 

#include <termios.h> 

#include <unistd.h> 

 

#define BDD_PHY_ADDRESS 0x43C00000 

#define BDD_INP_OFFSET 0 

#define BDD_OUT_OFFSET 1 

 

// You need to be in root to run this!! 

#define MAP_SIZE 4096UL  // our 4K range of the AXI bdd 

#define MAP_MASK (MAP_SIZE-1) 

void* get_v_addr(int phys_addr){ 

 void* mapped_base; 

 int memfd; 

 void* mapped_dev_base; 

 off_t dev_base = phys_addr; 

 memfd = open("/dev/mem", O_RDWR | O_SYNC); 

 if(memfd == -1){ 

  printf("Cant open /dev/mem.\n"); 

  exit(0); 

 } 

 

 mapped_base = mmap(0, MAP_SIZE, PROT_READ | PROT_WRITE, 

MAP_SHARED, memfd, dev_base & ~MAP_MASK); 

 if(mapped_base == (void*)-1){ 

  printf("Cant map the physial address to user-space 

!.\n"); 

  exit(0); 

 } 

 

 mapped_dev_base = mapped_base + (dev_base & MAP_MASK); 

 return mapped_dev_base; 

} 

 

unsigned long bddGetAction(unsigned long state) 

{  

 unsigned long* bdd_addr = get_v_addr(BDD_PHY_ADDRESS); 

 

 unsigned long* bdd_inp = bdd_addr + BDD_INP_OFFSET; 

 unsigned long* bdd_out = bdd_addr + BDD_OUT_OFFSET; 

 *bdd_inp  = state; 

 usleep (100); 

 unsigned long out = *bdd_out; 

 return out; 

} 
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Appendix 5 bdd_vehicle.h 

#define BDD_INPUT_BITS 7 

#define BDD_OUTPUT_BITS 2 

 

bool f0(bool x0, bool x1, bool x2, bool x3, bool x4, bool x5, bool x6){ 

  return (!((x0  &&  ((x1  &&  ((x2  &&  ((x3  &&  ((x4  &&  

((x5)  ||  (((x6)))))  ||  (!(x4)  &&  ((x6)))))  ||  (!(x3)  &&  

(((x6))  ||  (!(x5))))))  ||  (!(x2)  &&  ((x3  &&  ((((x6))  ||  

(!(x5)))  ||  (!(x4))))  ||  (!(x3)  &&  ((x4)  ||  (((x5)  ||  

(!((x6)))))))))))  ||  (!(x1)  &&  ((x2  &&  ((x3  &&  ((x4  &&  

((x6)))  ||  (!(x4)  &&  ((x5)  ||  (((x6)))))))  ||  (!(x3)  &&  ((x4  

&&  (((x6))  ||  (!(x5))))  ||  (!(x4)  &&  ((x5)  ||  (((x6)))))))))  

||  (!(x2)  &&  ((x3  &&  (((x6))  ||  (!(x4))))  ||  (!(x3)  &&  ((x4)  

||  (((x5)  ||  (((x6)))))))))))))  ||  (!(x0)  &&  ((x1  &&  ((x2  &&  

((x3  &&  ((x4  &&  (((x6))  ||  (!(x5))))  ||  (!(x4)  &&  ((x5)  ||  

(((x6)))))))  ||  (!(x3)  &&  ((((x6))  ||  (!(x5)))  ||  (!(x4))))))  

||  (!(x2)  &&  ((x3  &&  ((x4)  ||  (((x5)  ||  (((x6)))))))  ||  

(!(x3)  &&  ((x4  &&  ((x6)))  ||  (!(x4)  &&  ((x5)  ||  

(!((x6)))))))))))  ||  (!(x1)  &&  ((x2  &&  ((x3  &&  ((x4  &&  

(((x6))  ||  (!(x5))))  ||  (!(x4)  &&  ((x6)))))  ||  (!(x3)  &&  ((x4  

&&  ((x5)  ||  (((x6)))))  ||  (!(x4)  &&  ((x6)))))))  ||  (!(x2)  &&  

((x3  &&  ((((x6))  ||  (!(x5)))  ||  (!(x4))))  ||  (!(x3)  &&  ((x4  

&&  ((x6)))  ||  (!(x4)  &&  (((x6))  ||  (!(x5)))))))))))))); 

} 

 

 

bool f1(bool x0, bool x1, bool x2, bool x3, bool x4, bool x5, bool x6){ 

  return (!((x0  &&  ((x1  &&  ((x2  &&  ((x3  &&  ((x4  &&  

(((x6))  ||  (!(x5))))  ||  (!(x4)  &&  ((x5)  ||  (((x6)))))))  ||  

(!(x3)  &&  (((x6))  ||  (!(x4))))))  ||  (!(x2)  &&  ((x4  &&  ((x6)))  

||  (!(x4)  &&  (((x6))  ||  (!(x5))))))))  ||  (!(x1)  &&  ((x2  &&  

((x3  &&  ((x6)))  ||  (!(x3)  &&  ((x4)  ||  (((x6)))))))  ||  (!(x2)  

&&  ((x3  &&  ((x4  &&  ((x6)))  ||  (!(x4)  &&  (((x6))  ||  

(!(x5))))))  ||  (!(x3)  &&  ((x4  &&  ((x5)  ||  (((x6)))))  ||  

(!(x4)  &&  ((x5)  ||  (!((x6)))))))))))))  ||  (!(x0)  &&  ((x1  &&  

((x2  &&  ((x3  &&  (((x6))  ||  (!(x4))))  ||  (!(x3)  &&  ((x4  &&  

(((x6))  ||  (!(x5))))  ||  (!(x4)  &&  ((x6)))))))  ||  (!(x2)  &&  

((x3  &&  ((x4)  ||  ((((x6))  ||  (!(x5))))))  ||  (!(x3)  &&  ((x4)  

||  (((x5  &&  ((x6)))))))))))  ||  (!(x1)  &&  ((x2  &&  ((x3  &&  

((x4  &&  ((x6)))  ||  (!(x4)  &&  (((x6))  ||  (!(x5))))))  ||  (!(x3)  

&&  ((((x6))  ||  (!(x5)))  ||  (!(x4))))))  ||  (!(x2)  &&  ((x3  &&  

(((x6))  ||  (!(x4))))  ||  (!(x3)  &&  ((x4  &&  ((x6)))  ||  (!(x4)  

&&  ((x5))))))))))))); 

} 

 

 

typedef bool (*bool_func_ptr)(bool x0, bool x1, bool x2, bool x3, bool 

x4, bool x5, bool x6); 

bool_func_ptr bddBoolFunctions[BDD_OUTPUT_BITS]; 

 

 

void interfaceBooleanFunctions(bool* inputValues, bool* outValues){ 

bddBoolFunctions[0] = f0; 

bddBoolFunctions[1] = f1; 

 

 unsigned long int i; 

 for(i=0; i<BDD_OUTPUT_BITS; i++){ 
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  outValues[i]=bddBoolFunctions[i]( inputValues[0], 

inputValues[1], inputValues[2], inputValues[3], inputValues[4], 

inputValues[5], inputValues[6] ); 

 } 

} 

 

void int_to_bool(unsigned long int in, int count, bool* out){ 

    unsigned long int mask = 1L; 

    int i; 

    for (i = 0; i < count; i++) { 

        out[i] = (in & mask) ? true : false; 

        in >>= 1; 

    } 

} 

 

unsigned long int bool_to_int(int count, bool* in){ 

    int i; 

    unsigned long int val=0; 

    unsigned long int weight=1; 

    for (i = 0; i < count; i++) { 

        val += weight*in[i]; 

        weight <<= 1; 

    } 

    return val; 

} 

 

unsigned long int getControlAction(unsigned long int state){ 

 bool stateBits[BDD_INPUT_BITS]; 

 bool actionBits[BDD_OUTPUT_BITS]; 

 int_to_bool(state, BDD_INPUT_BITS, stateBits); 

 interfaceBooleanFunctions(stateBits, actionBits); 

 return bool_to_int(BDD_OUTPUT_BITS, actionBits); 

} 
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