

Technische Universität München

Department of Hybrid Control System

Master’s Thesis in Formal Verification

Implementation of a symbolic controller

using SCOTS

Author: Rafif Hassis

Matriculation Number: 03639600

Supervisors: Mahmoud Khaled

 : Prof. Dr. Majid Zamani

Date: January xx, 2019

Rafi Hassis – TUM – January 2019 Page 2

I confirm that this master thesis in is my own work and I have

documented all sources and material used.

Munich, January 2019 Rafif Hassis

Rafi Hassis – TUM – January 2019 Page 4

Master Thesis : Implementation of symbolic controller 5

Summary
Acknowledgments ... 7

Abstract ... 9

Chapter 1. .. 13

General Introduction ... 13

Chapter 2. .. 15

Background and definitions .. 15

Chapter 3. .. 19

Theoretical Formulation .. 19

and presentation of SCOTS .. 19

3.1. Presentation of Scots .. 19

3.2. Control Problem .. 19

3.3. Auxiliary Control Problems .. 21

3.4. Growth Bound. .. 22

3.5. Closed Loop. .. 23

3.6. Synthesis via Fixed Point Computations. ... 24

3.7. Conclusion ... 26

Chapter 4. .. 27

Implementation of symbolic controlls on FPGAs .. 27

4.1. Introduction ... 27

4.2. Simulation on opal 4200 .. 27

4.3. OPAL-RT and test unicycle dynamics in Simulink (Hardware in the loop simulator) 28

4.4. Software In the Loop Simulation of the synthesized controller .. 30

4.5. Hardware in the Loop Simulation of the synthesized controller .. 31

4.6. Testing the whole system (Controller and Dynamics system) on Simulink 32

4.7. Testing the whole system (Controller and Dynamics system) on RT-Lab 32

4.8. Hardware in a loop with Zedboard ... 33

4.8.1. Axi protocol ... 34

4.8.2. Design of the IP core ... 36

4.8.3. Implementing a C application with Petalinux.. 41

4.8.4. Result ... 42

4.9. Conclusion ... 43

Chapter 5. .. 45

Implementation of the control over Raspberry pi .. 45

Rafi Hassis – TUM – January 2019 Page 6

5.1. THE RASPBERRY PI 3 .. 45

5.2. THE RASPBERRY PI 3 CAPABILITIES .. 45

5.3. THE C++ Code .. 46

5.4. Conclusion ... 47

Chapter 6. .. 49

Robot Control .. 49

6.1. . The State space.. 50

6.2. The Controller synthesis .. 51

6.3. The header file implementation .. 53

6.5. One robot control .. 54

6.6. Control of two robots .. 58

Chapter 7. .. 63

Conclusion and Future Work ... 63

7.1. Conclusion .. 63

7.2. Future Work ... 64

List of Figures ... 65

Bibliography ... 67

Appendix 1 vehicle_simul.m ... 69

Appendix 2 BDD.m .. 73

Appendix 3 bddhil.c ... 75

Appendix 4 bddReader.h ... 79

Appendix 5 bdd_vehicle.h ... 83

Master Thesis : Implementation of symbolic controller 7

Acknowledgments

To my family, nucleus of love, symbol of living together, giving and getting

and building history.

To my native country, and to the adopted one, for education, and for giving

me an opportunity to learn, to develop interesting things, and simply to

have a good life.

To my native culture, my adopted one, and to any real culture, that have

making me better.

To the science, the innovation spirit, and to technologies, making our life

more interesting.

To my teachers, professors, mainly to my TUM professors.

A special thanks to my supervisor Mahmoud Khaled for his effort, kindness,

and availability.

Rafi Hassis – TUM – January 2019 Page 8

Master Thesis : Implementation of symbolic controller 9

Abstract

The purpose of this thesis is the implementation of a symbolic controller, for

unicycle dynamics on FPGAs and Raspberry Pi microcontrollers. The controller

is then tested on robots.

The formal verification, which is the only known way to guarantee that a

system is free of errors, is used in the synthesis of this controller.

For a given:

 safety property, which is that a system will never do something

contradictory to the desired behavior,

 reach ability specification, which is that the system will eventually reach

the desired goal,

A symbolic controller is synthesized. For this purpose, a tool for automated

synthesis of symbolic controllers is needed. The used one in this thesis is

SCOTS [1].

. SCOTS is intended for the use in the area of formal methods for Cyber-

Physical Systems (CPS) which is integrations of computation and physical

processes. Embedded computers and networks monitor and control the physical

processes, usually with feedback loops where physical processes affect

computations and vice versa.

Rafi Hassis – TUM – January 2019 Page 10

Master Thesis : Implementation of symbolic controller 11

Kurzfassung

A short abstract of the Diplomarbeit in German. Only about 4 sentences.

Rafi Hassis – TUM – January 2019 Page 12

Master Thesis : Implementation of symbolic controller 13

Chapter 1.

General Introduction

We attempt to test and verify the controller generated from SCOTS, which is a

tool for the synthesis of symbolic controllers, using different real-time

platforms. This includes:

 a real-time hardware in-the-loop (HIL) simulator called RT-LAB

OP4200,

 a FPGA board: Zed-board,

 a Raspberry Pi SOC,

 Robot

We use SCOTS for the synthesis of formally-verified controllers that will be

targeted to different implementation platforms.

SCOTS is an open source software tool, mainly implemented in C++, used for

the synthesis of symbolic controllers for possibly perturbed, nonlinear, control

systems. With a small MATLAB interface, we can easily access the synthesized

controller, and using the CUDD library, the controller is provided in BDD

format.

The package of CUDD [2], which is written in C, supports Binary Decision

Diagram (BDDs), Algebraic Decision Diagrams (ADDs) and Zero-suppressed

Binary Decision Diagrams (ZDDs).

SCOTS is given as a set of header files including:

- Symbolicset.h,

- Symbolicmodel.h

- SymbolicModelGrowthBound.h.

The following steps shows how SCOTS works:

1. The user provides scots with the dynamical system as differential

equations and a sampling period.

2. SCOTS uses the class SymbolicSet to quantize the state and input sets.

3. SCOTS uses the class SymbolicModelGrowthBound to compute the

transition function.

Rafi Hassis – TUM – January 2019 Page 14

4. The user uses the class SymbolicSet to specify the atomic propositions in

the specification

5. SCOTS uses the class FixedPoint to solve the auxiliary control problem

6. SCOTS uses the class SymbolicSet to write the resulting controller to a

BDD file.

As the controllers synthesized by SCOTS take the form of BDD binaries, they

cannot be directly used in targeted implementation platforms. Even if the target

has support for such encoded files, this requires the availability of the CUDD

library running in it, which is not always practically possible.

This thesis is divided into three parts:

 In the first part, we tested our controller in a first stage using mainly a

software in the loop technique. In a second stage, we simulated our

dynamics in a real time simulator, Hardware in the loop(HIL). Finally we

implemented the controller on the FPGA using VHDL and we designed

the hardware using Vivado, a tool for FPGA development.

 In the second part, we simulate the dynamics of the unicycle together with

the controller from within Raspberry Pi using C++.

 In the third part, we test our controller on a robot that should go to a

specific goal while avoiding some states of the urban like environment

platform.

Finally, the work is concluded, and some opening perspectives are briefly

described.

Master Thesis : Implementation of symbolic controller 15

Chapter 2.

Background and definitions

Here presented some classical definitions obtained from scientific sources

and not modified. The references are here done.

Cyber-Physical Systems [3]

Cyber-Physical Systems are integrations of computation and physical processes.

Embedded computers and networks monitor and control the physical processes,

usually with feedback loops where physical processes affect computations and

vice versa

HIL [4]

Hardware-in-the-loop (HIL) simulation is a technique used in the development

and test of complex real-time embedded systems. HIL simulation provides

an effective platform by adding the complexity of the plant under control to

the test platform. The complexity of the plant under control is included in

test and development by adding a mathematical representation of all

related dynamic systems. These mathematical representations are referred

to as the “plant simulation”. The embedded system to be tested interacts

with this plant simulation.

A HIL simulation must include electrical emulation of sensors and

actuators. These electrical emulations act as the interface between the plant

simulation and the embedded system under test. The value of each

electrically emulated sensor is controlled by the plant simulation and is

read by the embedded system under test (feedback). Likewise, the

embedded system under test implements its control algorithms by

outputting actuator control signals. Changes in the control signals result in

changes to variable values in the plant simulation.

Opal4200 [5]

The OP4200 RCP/HIL system offers Hardware-in-the-Loop (HIL), Rapid

Control Prototyping (RCP), data acquisition and I/O expansion capabilities

in a desktop-friendly package. OP4200 supports power electronics,

automotive and other real-time applications for industry and academia.

Rafi Hassis – TUM – January 2019 Page 16

OP4200 comes equipped with a Xilinx Zynq® All Programmable SoC,

featuring a Kintex™7 FPGA and dual-core ARM® Cortex processor, and

the same class-leading FPGA-based I/Os and real-time solvers provided

throughout OPAL-RT product line, making it the ideal choice for closed-

looped applications.

FPGA [6, 7]

Field Programmable Gate Arrays (FPGAs) are semiconductor devices that are

based around a matrix of configurable logic blocks (CLBs) connected via

programmable interconnects. FPGAs can be reprogrammed to desired

application or functionality requirements after manufacturing. This feature

distinguishes FPGAs from Application Specific Integrated Circuits

(ASICs), which are custom manufactured for specific design tasks.

Although one-time programmable (OTP) FPGAs are available, the

dominant types are SRAM based which can be reprogrammed as the design

evolves.

You can think of an FPGA as a blank slate. By itself an FPGA does

nothing. It is up to you (the designer) to create a configuration file, often

called a bit file, for the FPGA. Once loaded the FPGA will behave like the

digital circuit you designed!

ZEDBOARD [8, 9]

ZedBoard™ is a complete development kit for designers interested in exploring

designs using the Xilinx Zynq®-7000 All Programmable SoC. The board

contains all the necessary interfaces and supporting functions to enable a

wide range of applications.

The expandability features of this evaluation and development platform

make it ideal for rapid prototyping and proof-of-concept development. The

ZedBoard includes Xilinx XADC, FMC (FPGA Mezzanine Card), and

Digilent Pmod™ compatible expansion headers as well as many common

features used in system design. ZedBoard enables embedded computing

capability by using DDR3 memory, Flash memory, gigabit Ethernet,

general purpose I/O, and UART technologies.

Formal verification [10]

In the context of hardware and software systems, formal verification is the act of

proving or disproving the correctness of intended algorithms underlying a

Master Thesis : Implementation of symbolic controller 17

system with respect to a certain formal specification or property, using

formal methods of mathematics.

The verification of these systems is done by providing a formal proof on an

abstract mathematical model of the system, the correspondence between

the mathematical model and the nature of the system being otherwise

known by construction. Examples of mathematical objects often used to

model systems are: finite state machines, labeled transition systems, Petri

nets, vector addition systems, timed automata, hybrid automata, process

algebra, formal semantics of programming languages such as operational

semantics, denotation semantics, axiomatic semantics and Hoare logic

Validation and verification [11]

Validation and verification are the two steps in any simulation project to

validate a model.

 Validation is the process of comparing two results. In this process, we

need to compare the representation of a conceptual model to the real

system. If the comparison is true, then it is valid, else invalid.

 Verification is the process of comparing two or more results to ensure its

accuracy. In this process, we have to compare the model’s

implementation and its associated data with the developer's conceptual

description and specifications.

Rafi Hassis – TUM – January 2019 Page 18

Master Thesis : Implementation of symbolic controller 19

Chapter 3.

Theoretical Formulation and presentation of SCOTS

Here, we introduce the theoretical formulation and a brief presentation of

SCOTS taken from its manual [1].

3.1. Presentation of Scots

For the synthesis of symbolic controllers for possibly perturbed, nonlinear,

control systems, SCOTS which is an open source software (available at

http://www.hcs.ei.tum.de) is here presented and used. It is implemented in C++

and access to the synthesized controller from within a MATLAB interface.

SCOTS is intended to be used and extended by researches in the area of

formal methods for cyber physical systems. SCOTS provides a baseline

implementation of one of the most basic approaches to symbolic synthesis.

The term cyber-physical systems (CPS) refer to a new generation of systems

with integrated computational and physical capabilities that can interact with

humans through many new modalities. The ability to interact with, and expand

the capabilities of, the physical world through computation, communication, and

control is a key enabler for future technology developments. Opportunities and

research challenges include the design and development of next-generation

airplanes and space vehicles, hybrid gas-electric vehicles, fully autonomous

urban driving, and prostheses that allow brain signals to control physical objects.

The main concepts of SCOTS were introduced as three steps. In the first step,

the concrete infinite system is lifted to an abstract domain where it is substituted

by a finite system which is referred to as abstraction or symbolic model. In the

second step, an auxiliary problem on the abstract domain is solved and finally

the controller that had been synthesized for the abstraction is refined to the

concrete system.

3.2. Control Problem

SCOTS supports the controller computation of symbolic models of perturbed

control systems of the form:

 (3.1)

Rafi Hassis – TUM – January 2019 Page 20

Where:

 f is a function given by .

 w = [w1 , . . . , wn] ∈
 is the vector perturbation bound

 [[−w, w]] is the hyper-interval [−w1 , w1]×. . .×[−wn , wn]

Given a sampling time > 0, SCOTS define a solution of (3.1) on [0,] under

(constant) input u ∈ U as an absolutely continuous function ξ: [0,] → R
n
 that

satisfies (3.1) for almost every t ∈ [0,].

The desired behavior of the closed loop is defined with respect to the-

sampled behavior of the continuous-time systems (3.1). To this end, the sampled

behavior of (3.1) is casted as simple system.

S1 = (X1, U, F1) (3.2)

with the state alphabet X1 = R
n
, input alphabet U1 = U and the transition

function defined by

A specification Σ1 for a simple system S1 = (X1, U1, F1) is simply a set

Σ1 ∈ =: (U1 × X1)
∞ (3.3)

of possibly finite and infinite input-state sequences. A simple system S1

together with a specification Σ1 constitute a control problem (S1, Σ1).

SCOTS natively supports invariance (often referred to as safety) and

reachability specifications. Consider two sets I1 X1 and Z1 X1 × U1. A

reachability specification associated with I1, Z1 is defined by

Σ1 := {(u, x) ∈ (U1 × X1)∞ | x(0) ∈ I1 t∈[0;T[: (x(t), u(t)) ∈ Z1 }.

An invariance specification associated with I1, Z1 follows by

Σ1 := {(u, x) ∈ (U1 × X1)[0;∞[| x(0) ∈ I1 ∀ t∈ [0;∞[: (x(t), u(t)) ∈ Z1 }.

In this context, the sets I1 and Z1 are referred to as atomic propositions.

SCOTS allows to define arbitrary sets as atomic propositions. In the BDD

implementation, it provides customized commands to define

• polytopes {x ∈ R
n
 | H x ≤ h} parameterized by H ∈ R

q×n
, h ∈ R

q
, and

Master Thesis : Implementation of symbolic controller 21

• ellipsoids {x ∈ R
n
 | |L(x − y)|2 ≤ 1} parameterized by L ∈ R

n×n
 and y ∈ R

n

To summarize it, we first provide SCOTS with the state- and input-space, we

then define the dynamical system representing the plant. Giving a sampling time

we compute the solution of the dynamical system which results into a

symbolic system. We finally define the specification (safety or reach ability)

using polytopes and ellipsoids. For example, given some parameter, a defined

ellipsoid would practically represent a small portion of the state space. This

portion would be our target set or our obstacle depending on how we compute it

later with some other SCOTS functions. The figure 3.1 below represents a

polytope and an ellipsoid.

Figure 3.1. Representation of a polytope on the left

of the figure and an ellipsoid on the right

3.3. Auxiliary Control Problems

Given a simple system S1 = (X1, U1, F1) representing the -sampled behavior

of (3.1) and a specification Σ1 for S1, the control problem (S1,Σ1) is not solved

directly, but an auxiliary, finite control problem (S2,Σ2) is used in the synthesis

process. Here, S2 = (X2, U2, F2) is a symbolic model or (discrete) abstraction of

S1 and Σ2 is an abstract specification.

The state alphabet of X2 is a cover of X1 and the input alphabet U2 is a subset

of U1. The set X2 contains a subset , representing the “real” quantizer

symbols, while the remaining symbols are interpreted as “overflow”

symbols. The set of real quantizer symbols are given by congruent hyper-

rectangles aligned on a uniform grid

Rafi Hassis – TUM – January 2019 Page 22

ηZ n = {c ∈ Rn | ∈ ∀i∈[1;n] ci = kiηi } (3.4)

with grid parameter η ∈ (R+ \ {0})n, i.e.,

 x2 ∈ c∈ηZn x2 = c + [−η/2, η/2]. (3.5)

SCOTS computes symbolic models that are related via feedback refinement

relations with the plant. A feedback refinement relation from S1 to S2 is a strict

relation Q X1×X2 that satisfies for all (x1, x2) ∈ Q and for all u ∈ U2 with

F2(x2, u) ∅

With the conditions

 (1) F1(x1, u) ∅ and

 (2) Q(F1(x1, u)) F2 (x2, u).

 In SCOTS, the feedback refinement relation Q is given by the set-

membership relation

Q := {(x1, x2) | x1 ∈ x2}. (3.6)

Given an invariance (reachability) specification Σ1 for S1 associated with (I1,

Z1) an abstract specification is given by the invariance (reachability)

specification for S2 associated with

 I2 = {x2 ∈ X2 | x2 ∩ I1 ∅} and Z2 = {x2 ∈ X2 | x2 Z1 ∅}. (3.7)

For the solution of the auxiliary control problems (S2, Σ2) SCOTS provides

minimal and maximal fixed point algorithms.

Practically, here we create a hyper-rectangle representing a cover of the real

space giving the lower and upper bound. We then quantize our hyper-rectangle

into small boxes giving a quantization step. That way we obtain our auxiliary

state and input space.

3.4. Growth Bound.

The construction of a symbolic model S2 of S1 is based on the over-

approximation of attainable sets. A growth bound of (1) is a function

β :
 × U’ →

 ,

which is defined with respect to a sampling time > 0, a set K R
n
 and a set

U’ U. Basically, it provides an upper bound on the deviation of solutions ξ of

Master Thesis : Implementation of symbolic controller 23

(3.1) from nominal solutions of (3.1), i.e., for every solution ξ of (3.1) on

[0,] with input u ∈ U’ and ξ(0), p ∈ K, we have

|ξ(τ) (, p, u) | ≤ β(|ξ(0) − p|, u). (3.8)

Here, |x| for x ∈ Rn, denotes the component-wise absolute value. A growth

bound can be obtained essentially by bounding the Jacobian of f.

Let L : U’ → R
n×n

satisfy

Li,j (u) ≥

 (9)

for all x ∈ K’ Rn and u ∈ U’ U. Then

 (10)

is a growth bound on [0,], K, U’ associated with (3.1). The domain K’ on

which (3.9) needs to hold, is assumed to be convex and contain any solution ξ

on [0,] of (3.1) with u ∈ U’ and ξ(0) ∈ K.

In order to use SCOTS, we need to provide a growth bound, which for

nonlinear control systems can be provided in terms of the parameterized matrix

L(u) whose entries satisfy (3.9).

3.5. Closed Loop.

The solution of a control problem (S,Σ) is a system

C = (Xc , Xc,0,Uc , Vc , Yc , Fc , Hc)

which is feedback composable with S1, so that

B(C × S) Σ.

Here B(C × S) denotes the behavior of the closed loop C × S1. The main

statement enabling the symbolic synthesis approach reads as follows.

Consider two control problems (Si, Σi), i ∈ {1, 2}. Suppose that Q is a

feedback refinement relation from S1 to S2 and Σ2 is an abstract specification of

Σ1. If C solves the control problem (S2, Σ2), then C ◦Q solves the control

problem (S1, Σ1).

Rafi Hassis – TUM – January 2019 Page 24

The controller C ◦ Q for S1 is given by the serial composition of the quantizer

Q:X1 ⇒ X2 with the controller C. The closed loop resulting from a simple

system Σ1 which represents the -sampled behavior of (3.1) and a controller C ◦

Q is illustrated in Figure 3.2. At each k ∈ Z≥0 sampling time >0, the plant state

x1 = ξ(k) is measured and fed to the quantizer Q, which is used to determine a

cell x2 ∈ X2 that contains x1 ∈ x2 . Then x2 is feed to the controller C to pick the

input u ∈ U2 U1 which is applied to (3.1).

Figure 3.2. Sample-and-hold implementation of

a controller synthesized with SCOTS

3.6. Synthesis via Fixed Point Computations.

For the synthesis of controllers C to enforce reachability, respectively,

invariance specifications, SCOTS provides two fixed point algorithms.

Consider

S2 = (X2, U2, F2) with X2 finite and I2 ∈ X2, Z2 X2 × U2. For Y X2 × U2,

we define the map

pre(Y) := {(x2, u) ∈ X2 × U2 | F2 (x2, u) ∅ ∧ F2 (x2, u) πX2 (Y)}. (3.12)

where πX2 (Y) denotes the projection of Y onto X2.

We compute a controller to enforce a reachability specification Σ2 associated

with I2, Z2, by computing the minimal fixed point of the map Y → pre(Y) Z2,

which we denote by using the usual µ calculus notation as

µY.pre(Y) Z2 (3.13)

In order to extract a controller, we introduce the function j : X2 → N {∞}

by

Master Thesis : Implementation of symbolic controller 25

j(x) = inf{i ∈ N | x ∈ πX2 (Yi)}

where the sets Yi are recursively given by

Y0 = ∅

Yi+1 = pre(Yi) Z2 .

Of course we have Yi = Yi+1 implies Yi = µY.pre(Y) Z2. Let use define the

map

H’c (x2) ={ u ∈ U | (x2, u) ∈ Z2 ∨ (F2 (x2, u) ∅ ∧ F2 (x2, u) πX2 (Yj(x2)−1))}

which is non-empty for all x2 ∈ µY.pre(Y) Z2. We derive a controller as by

C = ({q}, {q}, X2, X2, U2, Fc, Hc) with

 ∈
∅

Similarly, if Σ2 is an invariance specification associated with I2, Z2, we

compute the maximal fixed point of Y → pre(Y) ∩ Z2, which is denoted by

νY.pre(Y) ∩ Z2.

Given νY.pre(Y) ∩ Z2 we define the map

H’c (x2) = {u ∈ U | F2 (x2, u) ∅ ∧ F2 (x2, u) πX2 (νY.pre(Y) ∩ Z2)} (3.14)

and the controller follows again by

 ∈
∅

In either case, it is well known that C solves the control problem (S2, Σ2) with

Σ2 being a reachability (invariance) specification iff I2 πX2 (µY.pre(Y) Z2)

Rafi Hassis – TUM – January 2019 Page 26

(I2 πX2 (νY.pre(Y) ∩ Z2)). Also for both types of specifications the controller

is memoryless or static, i.e., the output is independent of the state.

3.7. Conclusion

Scots is a powerful tool for the synthesis of symbolic controller for perturbed

control system. SCOTS begins by lifting the control system to an abstract

domain by discretizing the state space given a sampling time and applying a

constant input. This results into a simple system, with states x and a transition

relation F, representing the -sampled behavior of concrete systems. SCOTS

then, solve the abstract control problem using fixed point computation and

finally refine the synthesized controller to match the concrete system.

Master Thesis : Implementation of symbolic controller 27

Chapter 4.

Implementation of symbolic controller on FPGAs

4.1. Introduction

In order to test the controller, we used various techniques of simulation. We

began first by doing software in the loop technique, where we simulated the

dynamics and the controller using the MATLAB interface. Then in a second

step we have used hardware in the loop simulation, where we integrated the

dynamics into a hardware simulator called OP4200. Finally, we implemented

our controller into an FPGA to get the control input and fed these inputs in the

dynamics using a MATLAB interface to check the correctness of the

synthesized controller.

4.2. Simulation on opal 4200

The OP4200 RCP/HIL system is a desktop-friendly package that offers

Hardware-in-the-Loop (HIL), Rapid Control Prototyping (RCP), data

acquisition and I/O expansion capabilities. Power electronics, automotive and

other real-time applications for industry and academia are supported by OP4200.

OP4200 contains a Xilinx Zynq® All Programmable SoC, featuring a

Kintex™7 FPGA and dual-core ARM® Cortex processor, and the same class-

leading FPGA-based I/Os and real-time solvers provided throughout OPAL-RT

product line, making it the ideal choice for closed-looped applications.

Hardware-in-the-loop (HIL) simulation, is a technique that is used in the

development and test of complex real-time embedded systems. HIL simulation

provides an effective platform by adding the complexity of the plant under

control to the test platform. The complexity of the plant under control is

included in test and development by adding a mathematical representation of all

related dynamic systems. These dynamics are referred to as the “plant

simulation”. The embedded system to be tested interacts with this plant

simulation.

Electrical emulation of sensors and actuators must be included in the HIL

simulation. These electrical emulations act as the interface between the plant

simulation and the embedded system under test. The value of each electrically

emulated sensor is controlled by the plant simulation and is read by the

embedded system under test (feedback). Likewise, the embedded system under

Rafi Hassis – TUM – January 2019 Page 28

test implements its control algorithms by outputting actuator control signals.

Changes in the control signals result in changes to variable values in the plant

simulation.

4.3. OPAL-RT and test unicycle dynamics in Simulink (Hardware in the

loop simulator)

The next test scenario is to run the controller using a MATLAB script

(computer-side) and to process the unicycle dynamics in SIMULINK before

running it directly on the HW simulator. We test the unicycle dynamics model

on the HIL (Opal-RT) with different valid inputs to verify the model.

OP4200 which we use is illustrated in figure 4.1. It has 64 Analog I/O and

128 digital I/O. It has ETHERNET and Jtag peripherals. For further

specification, its toturials is on https://www.opal-rt.com/wp-

content/themes/enfold-opal/pdf/L00161_0519.pdf.

Figure 4.1. OP 4200

RT-LAB is OPAL-RT's real-time simulation software which combines

performance and enhanced user experience. Since Opal-RT works with

Master Thesis : Implementation of symbolic controller 29

MATLAB Simulink, we first model the whole system including controller and

dynamic system in MATLAB with an embedded controller.

Quick start with OPAL-RT

1. We install RT-LAB together with the corresponding compatible

MATLAB version (Have a look to the RT-LAB guide), for example RT-

LAB 11.1.8 is compatible with MATLAB 2017a

2. We open OPAL-RT and wait for software to recognize the hardware

3. We have to configure it’s IP address correctly if OPAL-RT doesn’t

recognize the OP4200, .

4. We build a new project

5. We build the Simulink model for unicycle dynamics system based on

differential equations with off-the-shelf blocks in Simulink (more details

are at test_vehicle_dynamics.slx in GITLAB)

6. We modify the Simulink model so that we exchange the output with

scopes and then regroup them with the inputs into one subsystem.

7. We regroup the remaining computation system into another subsystem

8. We rename the newly created core blocks with SC_(console display) and

SM_(process) in Simulink.

9. The top level should look like in figure 4.2.

Figure 4.2. Top level representation of the RT-Lab simulink model

10. We add a model to your OPAL-RT project and we copy the created

subsystem into the model

11. We configure the model, [U1,U2] should be in this range [-1 1].

[X1,X2,X3] can be any real number.

12. We add OP-COMM block to input in SC and SM from the RT-LAB

library in SIMULINK like in the figure 4.3 (here it is the SC subsystem)

Rafi Hassis – TUM – January 2019 Page 30

Figure 4.3. Comsol Subsystem

13. We set solver in Rang-kutta Model configuration parameter in Menu bar

in SIMULINK. Time-step should be 0.3 s.

14. We build Model and Load it and run it

Here we are just testing the response of the simulator giving the dynamics of

the unicycle.

4.4. Software In the Loop Simulation of the synthesized controller

In this section, we simulate the controller generated from SCOTS and

dynamics of the unicycle model all by using Simulink, like the implementation

in vehicle_simul.mat. To do it, we complement the vehicle.mat file and we

implement dynamics system in ODE function as follows(the whole code is

depicted in Appendix 1):

1. We build function [t x]= ode(t,Y,U) (We took as example the ode

function in vehicle_simul.mat here presented in Appendix 1)

2. We build Simulink model for unicycle system

3. We run simulation with sim function

4. We verifiy that Cudd and mexfile library are functional

5. We configure below parameter for simulation

set_param(model,'AbsTol','1e-6','StopTime','0.3')

6. Initial value of the unicycle trajectories should be set in the simulink

model

Master Thesis : Implementation of symbolic controller 31

Here, the controller gets input from the SIMULINK and result in controller

output by reading the BDD-file. The simulation parameter can be modified in

ODE function. The while loop continues till it reaches the target. Finally, a

vehicle path through the obstacles is displayed.

4.5. Hardware in the Loop Simulation of the synthesized controller

In order to search input and output inside the BDD synthesized by SCOTS,

the trajectories must be converted to new values with an abstraction operation.

This helps the search function to find respective output conveniently.

We come up with an indexing algorithm using abstraction. We use an

embedded c function in SIMULINK to model a controller that can be run on Rt-

lab. We have to convert BDD file to mat file which is done with bdd.mat. By

abstraction of trajectories, a unique index is generated for every valid trajectory.

The respective controller's values are stored in controller.mat. To generate an

index, the following functions are carried out:

Quantization:

Indexing:

where,i are quantization steps. are minimum values of X, Y and

 .

Note that based on the quantization parameters used in this example, we have

51 values at both X,Y, and dimensions.

 Assuming each control action needs 8 bytes (as an integer in C/C++), the

LUT needs (51^
3
)*8 byte spaces in memory.

To build matfiles:

• As reading BDD files are not possible on SIMULINK, all the information,

including states and respective control actions, are transferred into a

Rafi Hassis – TUM – January 2019 Page 32

MATFILE called controller.mat, controller1.mat and controller2.mat

using bdd.mat (appendix 2).

• bdd.mat loads the bdd file(vehicle_controller.bdd) and put its data in

controller

• The applied abstraction is (, ,)=(0,0,-3.4,0.2,0.2,0.2) on all

rows in controller

• Indexing is also applied on all rows

• Controller1.mat includes first control unit and its index

• Controller2.mat includes second control unit and its index

4.6. Testing the whole system (Controller and Dynamics system) on

Simulink

We tried to implement the simulation in Simulink

(simul_function_2015_new_matfunctio.slx) with an interpreted function

(getControlandstoremat.m) as controller in MATLAB. To run the whole system

in SIMULINK, the MATLAB embedded function is used in SIMULINK model

• We load controller.mat

• We get state in interpreted function (getControlandstoremat.m)

• We apply Abstraction on state

• We run simulation

4.7. Testing the whole system (Controller and Dynamics system) on RT-

Lab

In Rt-lab, the embedded function has to be written in c (sfunction_vehicle.c).

To use the controller in a C script, the controller outputs should be copied in two

separate vectors called controller1 and controller2. To build function written in

sfunction_vehicle.c:

• We construct the controller block which has three inputs and two outputs

using matlab s-function block (level 1) in SIMULINK

• The control units are written in different vectors in c file

• The controller input and output dimension and number of them are

defined in method:

static void mdlInitializeSizes(SimStruct *S)

• The main algorithm is written in:

static void mdlOutputs(SimStruct *S, int_T tid)

• When the controller gets inputs, the abstraction and indexing respectively

are carried out on it. Then the value based on the index is written on two

outputs of the controller block.

Master Thesis : Implementation of symbolic controller 33

Next, a block containing the dynamics of the unicycle model is created and

related to the sfunction block.

 To run the simulation on Opal-rt:

• We open opal-rt and wait for software to recognize the hardware

• We build a new project

• We add a new model in the project and we copy the constructed block

into the model by editing it

• We modify the model in Simulink. Then, rename the core blocks with

SC_(console display) and SM_(process) in Simulink

• SM Contains our dynamics block and SC contains our sfunction

• We add op-comm block to input in SC and SM

• We set solver in Rang-kutta Model configuration parameter in Menu bar

in SIMULINK. Time-step should be 0.3 s.

• the sfunction_vehicle.c should be added to the Files tab in OPal-rt.

Transfer mode must be ASCII and transfer time (aka Step) must

be Before Compilation.

• We Build the Model, Load it and run it

4.8. Hardware in a loop with Zedboard

The real Hardware implemented controller is tested in HIL (Hardware in the

loop). In this part, the Controller’s implementation is generated as a VHDL

module and implemented on a Zedboard. The VHDL module is encapsulated as

IP-Core called AXI Slave. A ZYNQ processor system interfaces this IP-Core.

The ZYNQ runs under an Embedded Linux system. Finally, a Linux application

is used to provide networked hardware-in-the-loop (HIL) simulation server.

BDD2Implement, [12], is a tool to automatically generates VHDL codes for

the symbolic controller. BDD2Implement is a C++ tool to generate

hardware/software implementations of BDD-based symbolic controllers. Having

the tools SCOTS that generate BDD-based symbolic controllers of general

nonlinear dynamical systems, BDD2Implement completes missing ring in the

automatic synthesis technique. BDD2Implement can generate codes in the

following formats VHDL/verilog module or in C/C++. The BBD2Implement

structure is represented in figure 4.4.

It starts by converting the multi-output boolean functions inside BDDs to

multi singel-output functions. If the provided controller is not determinized,

BDD2Implement provides a determinization of the controller using several

posssible determinization methods. For VHDL, the boolean functions are

dumped to the VHDL module which contains the boolean functions as maps

from input-port to output-port.

Rafi Hassis – TUM – January 2019 Page 34

We build the example (ex1-vhdl-raw) corresponding to a VHDL

implementation of a controller for the unicycle model. The ouput file is

bdd_vehicle.vhdl.

Figure 4.4. Schematic of the BDD2implementation tool

In the next stage, the vhdl_wrapper has to be implemented in Vivado to

incorporate an IP on FPGA.

4.8.1. Axi protocol

We have decided first to focus on a very basic concept which is connectivity.

In fact, the question here is how different modules inside our embedded system

will talk to each other. We will be then able to design the embedded system in a

very short amount of time.

In order to solve the connectivity problem, we need a kind of a standard so

that all of our units can talk based on this standard. So, there should be a kind of

unique language through which all of the units can talk.

So, if one module wants to perform a write operation it should obey the rules

of this standard. This standard is in fact ways of signaling through which

different modules inside our chip will talk to each other.

Arm has developed a set of system-on-chip and they have extended and

enhanced these system-on-chip protocols through time. AXI is one of them. AXI

Master Thesis : Implementation of symbolic controller 35

is a kind of protocol; it is a kind of way of signaling through which our modules

can talk to the outside world and when we design our module, we will obey the

rules of AXI.

These AXI Modules will initiate transactions. Transactions are basically

operations through which data is transferred from one point of our chip to

another point. For example, data is transferred from the memory inside our chip

to one module or vice versa. The transactions in these cases can be either read

transactions or write transactions. The module that starts the transaction is called

an AXI-master.

The module which will be the target of the transaction is called an AXI-slave.

Suppose that we have two modules one of them will be an AXI-master and the

other will be an AXI-slave, for example AXI-master can be a CPU, and AXI-

slave can be a block of memory. The CPU initiates read and write transactions

to the memory, the memory responds to these read and write transactions. When

we have write transactions the flow of data will be from the CPU to the memory,

and when we have read transactions the flow of data will be from the memory to

the CPU. Whenever an AXI-master needs to perform a transaction, it sends a set

of commands and a set of initial information about the transaction that is going

to happen inside the AXI-slave. For example whenever the AXI-master wants to

perform a write transaction or a read transaction it is necessary that the AXI-

master sends to the AXI-slave the address for this read or write transaction, and

then when the AXI-slave is performing the transaction and is doing the

transaction and is providing the data if it is the read or accepting the data if it is

the write then the AXI-slave should produce the suitable response to the AXI-

master.

A connection between an AXI-slave and an AXI-master has in fact five basic

components. These are called channels and each channel contains a set of

signals. For example, whenever the AXI master wants to perform a write

transaction to the AXI-slave, this write operation happens through three

channels. First the AXI-master through the write address channel sends the write

address to the AXI-slave, then through the write data channel sends the data to

be written to the AXI-slave. Finally, the AXI-slave through the write response

channel responses to the master, if the write operation is done successfully. For

the read operation it is the same but with read channel.

As in this thesis we do need an AXI-slave through which the CPU can

perform a read transaction in order to get the control input from the VHDL

computation. For that purpose, we need to design an IP core.

Rafi Hassis – TUM – January 2019 Page 36

4.8.2. Design of the IP core

To make an IP based core:

1. We create new project for zedboard

2. We click into project Settings and we choose VHDL as the target language

3. We create a block design

4. We add zynq processor

5. We click the Run Block Automation link

6. With the base Vivado project opened, from the menu, we select

Tools->Create and package IP.

7. The Create and Package IP wizard opens we click next.

8. On the next window, we select “Create a new AXI4 peripheral”. We click

“Next”.

Master Thesis : Implementation of symbolic controller 37

9. Now we can give the peripheral an appropriate name, description and

location. We click “Next”.

In the next page we can configure the AXI bus interface. We’ll use AXI lite, and

it’ll be a slave to the PS, so we’ll stick with the default values

10. On the last page, we select “Edit IP” and we click “Finish”. Another Vivado

window will open which will allow us to modify the peripheral that we just

created

Rafi Hassis – TUM – January 2019 Page 38

11. From the Flow navigator, we click ‘’Add Sources

12. In the window that appears, we select “Add or Create Design Sources” and

we click “Next”.

13. On the next window, we click “Add Files”.

14. We Browse to the “bdd_vehicle.vhd” file, we select it andwe click “OK”.

Master Thesis : Implementation of symbolic controller 39

15. We double click on the “name_of _axi_v1_0_S00_AXI_inst” file to open it.

16. The source file should be open in Vivado. We find the line with the “begin”

keyword and add the following code just above it to declare the

BDDWrapper_entity and the output signal

17. The line that says “– Add user logic here” is fined, we add the following code

below it to instantiate the BDDWrapper_entity

Rafi Hassis – TUM – January 2019 Page 40

18. We find this line of code “reg_data_out <= slv_reg1;” and we replace it with

 “reg_data_out <= bdd_out;”.

19. In the process statement just a few lines above, we replace “slv_reg1” with

“bdd_out”

20. We save the file

21. We should notice that the “bddvehicle.vhd” file has been integrated into the

hierarchy because we have instantiated it from within the peripheral

22. In the ‘’Packaging Steps’’ we go to ‘’Files Group’’ and we click ‘’Merge

changes from File Groups Wizard’’

23. We go to Review and Package and we click on ‘’Re-Package IP’’

24. In the diagram we click on add IP and we select the newly created AXI4

25. We run connection automation

26. In the Sources right we click the ‘’design_1’’ (Or the chosen name for our

design) under Design Sources and we click on ‘’create HDL wrapper’’

Master Thesis : Implementation of symbolic controller 41

We should now synthesize, implement and build the new design to generate

Bit stream and HDF file. Finally we should export the design to Hardware. We

can then use these files to generate a new Petalinux project.

4.8.3. Implementing a C application with Petalinux

The PetaLinux Software Development Kit (SDK) is a Xilinx development

tool that contains everything necessary to build, develop, test and deploy

Embedded Linux systems.

To run Petalinux on Zedboard, we do it as follow

1. We run the command Source petalinux-installation-path\settings.sh

2. We create a new petalinux project with the command

petalinux-create --type project --template zynq --name <name of project>

3. We go to the file containing the HDF file given from the design that we

used inside vivado and we import it to our newly created project with the

command petalinux-config --get-hw-description -p <plnx-proj-root>

4. We create a C application template, we pass the --template c option, as

follows: petalinux-create -t apps --template c --name bddhil

5. We change to the newly created application directory in /<project

name>/components/apps/bddhil

Rafi Hassis – TUM – January 2019 Page 42

6. We copy the bddhil code (depicted in appendix 3), the bddReader header

file (depicted in appendix 4), the make file as also the apps.common.mk to

the bddhil application. Those files are in the gitlab under documentation

[14].

7. In order to use the bddhil application, we have to configure our project we

use the command petalinux-config -c rootfs and then under apps check

whether the bddhil is selected with * if not select it

8. We run the command petalinux-build

9. We run petalinux-build -c rootfs/bddhil -x build

10. We use the petalinux-package command to generate a BOOt.bin file

containing the first stage bootloader, U-BOOT and the bitstream. For that

run the command petalinux-package --boot --fsbl …./zynq_fsbl.elf --fpga

…/name.bit --uboot

11. We copy the boot.bin and the image.ub together with the bddhil executable

(bddhil executable is in rootfs folder)

4.8.4. Result

For running the new vehicle_hil_simulation on zedboard:

1. We coonect to Fpga linux with UART

2. We insert the SD-card

3. We power on the fpga

4. We launch minicom after configuring it to connect to ttyACM0

5. We write the following command in order to allow the fpga to boot from

the SD-card instead of the system memory

U-Boot-PetaLinux> setenv bootcmd 'run sdboot'; saveenv

6. As Login and password we write root

7. We launch the bddhil application this will respond with HIL STARTED

8. We run the command exit and we close the terminal

9. We run vehicle_hil_simulation.m in matlab

10. Display of the result (Figure 4.5)

Master Thesis : Implementation of symbolic controller 43

Figure 4.5. Path of the vehicle, modeled by a unicycle model,

inside the state space

4.9. Conclusion

First and using mainly software in the loop technique, the controller was

tested.

Second the controller inputs were obtained from the function getInputs, and

then were fed to the dynamics that were simulated using the hardware simulator.

Finally, the controller was implemented on the FPGA, where we substituted

the controller into a VHDL code and then integrated it in an AXI peripheral.

This AXI serves as interface between the computer and the FPGA to get the

control input given the state.

Rafi Hassis – TUM – January 2019 Page 44

Master Thesis : Implementation of symbolic controller 45

Chapter 5.

Implementation of the control over Raspberry pi

In this chapter the main goal is to implement our controller in the Raspberry

Pi 3 shown in figure 5.1. The controller is generated as C++ code by help of the

various functions of the SymbolicSet library. We will first introduce the

Raspberry Pi then we will go through the C code and the function that we used

to interact with the synthesized controller.

5.1. THE RASPBERRY PI 3

The Raspberry Pi 3 Model B is the latest version of the Raspberry Pi

computer. In its cheapest form it doesn't have a case, and is simply a credit-card

sized electronic board of the type you might find inside a PC or laptop but much

smaller.

5.2. THE RASPBERRY PI 3 CAPABILITIES

 The Pi 3 can be used as a budget desktop, media center, retro games console,

or router for starters. The Pi can be used to build tablets, laptops, phones, robots,

smart mirrors, to take pictures on the edge of space, to run experiments on the

International Space Station and that's without mentioning the wackier creations

One thing to bear in mind is that the Pi by itself is just a bare board. We will

need a power supply, a monitor and a mouse and a keyboard.

 The installer makes it simple to set up various operating systems, we choosed

to install Ubuntu mate because it was a lot easier to install SCOTS and set up the

Cudd library

The Pi 3 has the following component:

 Four USB 2.0 ports (up to 480 megabits per second)

 HDMI port

 3.5mm 4-pole Composite Video and Audio jack

 MicroUSB Power Input

 DSI Display Port

 CSI Camera Port

 MicroSD card Sold

 40-pin GPIO (Male headers)

Rafi Hassis – TUM – January 2019 Page 46

Figure 5.1. Connexion and expansion

5.3. THE C++ Code

As we tested our controller with the MATLAB interface where we used

special MATLAB functions like getinput and isElement in order to interact with

the controller. These MATLAB functions are supported from the SymbolicSet

Library. In the C++ code we will also use these functions.

These functions are called SetValuedMap and IsElement. That s all we need

to test our controller. The dynamics of the unicycle model has first to be set,

using an ode_solver to solve the computation of the dynamics as we have done it

with SCOTS. After setting up the dynamics, we can then make a while loop,

where we check whether the current state is in the target set or not and that with

the IsElement function. If it is the case, we close our while loop, if not we get

our input from controller using the setValuedMap function and then re-compute

the dynamics to get the new state given the new input.

Practically, the IsElement function is a Boolean function that is part of the

symbolicSet header file. It accepts as input a vector representing the current

state and a bdd file, and then returns as output true if this state is part of the

symbolicset or return false if this isn’t the case. The isElement function begin by

Master Thesis : Implementation of symbolic controller 47

computing a bdd representation of the given state. Then through an indexing

algorithm searches the index of the bdd cube. The algorithm consist in

subsracting each dimension of the given x from the minimum value then it’s

division by our quantization step. Finally we check if this index is inside the

loaded bdd file.

The setValuedMap is also another function of the symbolicSet header files

that returns a vector of vector given as input a vector representing the state and

also a vector of indices representing the dimension of this state.

The whole step should look this way

 We load our target set and store it in the symbolicSet ts (mgr is our

CUDD manager)

 We also load our controller and store it in the symbolicSet control

 We then check whether our current state x is inside this target set

 If it is the case the while loop ends if not we get the input from the

controller as follow

 The setValuedMap takes as input the state and an index showing the

dimension of the state space: For example if it is three dimensional our

index should be {0, 1, 2}

 Finally we run the function that computes the dynamics given the input u

and the state x

5.4. Conclusion

Using C++ and by help of the various functions of the SymbolicSet library,

the controller is here implemented over the Raspberry Pi 3.

Rafi Hassis – TUM – January 2019 Page 48

After introducing the Raspberry Pi, the interaction with the synthesized

controller is done through the C code functions.

Master Thesis : Implementation of symbolic controller 49

Chapter 6.

Robot Control

In this chapter, we test our controller on a real robot given an urban like

environment as depicted in Figure 6.1. As a first part, the controller will be

synthesized then implemented in the form of a C code. This C code is given the

specification and the state space and it will generate inputs to the robot in order

to steer it toward the goal while avoiding obstacles. As a second part, the

controller will be synthesized online while moving the robots giving a

dynamically changing obstacle. Two robots can then reach their respective

targets while avoiding each other.

In this chapter we will relate about this and finally we will see the result on

the real platform.

Figure 6.1: The urban like Environment

Rafi Hassis – TUM – January 2019 Page 50

6.1. The State space

Our robots are called Khepera IV. They represent real moveable cars as depicted

in figure 6.2 and we have a platform representing an urban like environment

where the robots can move. The platform has crossing roads, traffic lights and

parking gates.

Figure 6.2 Robot Khepera IV

The Khepera IV has two wheels to make a transition or a rotation. If it is a

simple transition the two wheels turn at the same time in the same direction. If it

is a rotation each wheel will turn in the opposite direction of the other. The

Khepera IV has also a laser to detect a given line given its color. For that

purpose, our robot can move from one state to another by following the line. The

high-level model of the platform looks like in the figure 6.3. This high-level

model shows the possible transition between the states, and in our controller

synthesis we will also provide SCOTS with this model as state space.

Master Thesis : Implementation of symbolic controller 51

Figure 6.3 The stape-space

6.2. The Controller synthesis

The controller synthesis in this test case is not the same as before because we

already have a simple and discretized system. So, in our case we will not specify

any sampling time and any ode_solver. We will also not have a growth bound.

The dynamical computation will be in form of if statements, where each

transition in the high-level model will be represented through these if statements

like it is depicted in figure 6.4 where we defined that if the current state is 1 and

that if we have input 0 the next state would be 2.

If (x[0] == 1, && u[0] ==0)

{

xx[0] = 2 ;

}

Figure 6.4 Declaration of a transition from the high-level model

Rafi Hassis – TUM – January 2019 Page 52

 Concerning the state space, we declared the lower bound and the upper

bound given also this high-level model with a quantization step of 1. Practically

we create a one-dimensional hyper-rectangle that goes from state 1 till 69

incremented by 1 each time so that each state will be represented by a cube of

dimension 1. The corresponding code is depicted in figure 6.5.

Figure 6.5 State space declaration with SCOTS

For the input, the maximum transition from one state is 4, so we declared the

input as going from 0 to 3 with a quantization step equal to 1 as shown in figure

6.6.

Figure 6.6 Input space declaration with SCOTS

Master Thesis : Implementation of symbolic controller 53

For the obstacles and the target declaration, and as shown in figure 6.7, we

declare polytopes using the matrix

H={-1,1},

and the vector h to be of the form:

h={-s, s},

where s is the state that we want to omit as an obstacle.

Figure 6.7 Target declaration

Finally, we declare our abstraction and we compute our fixed point. The

whole process leads to the synthesis of the symbolic controller. We can now

process to the header file implementation using the bdd2implement tool.

6.3. The header file implementation

BDD2Implement is a C++ tool to generate hardware/software

implementations of BDD-based symbolic controllers. Having the tools SCOTS

that generate BDD-based symbolic controllers of general nonlinear dynamical

systems, BDD2Implement completes missing ring in the automatic synthesis

technique. BDD2Implement can generate codes in the following formats

VHDL/Verilog module or in C/C++.

Practically, the tool begins by reading the bddfile then, given the state and its

action, we generate a Boolean function representing each transition of the

system to be verified. The bdd2implement use a template file as support to

generate the code which include these Boolean functions. The resulting header

file is depicted in the appendix 5.

Rafi Hassis – TUM – January 2019 Page 54

6.4. One robot control

In this test case the main goal is to steer one robot to its target while avoiding

obstacles with the help of the FMLAB interface. Each time we are going to

detect the robot position with a camera then we are going to generate a

controller then implement it using a C++ code. Then using the robot position or

state we get the inputs from the controller then we fit this input into the dynamic

to move the robot from one state to the next one considering that it has to follow

a path that take it to the target.

As explained before the dynamics takes the form of IF statement then using

the FMLAB function GoTo we can move the robot to the next state, as depicted

in figure 6.8.

Figure 6.8 Declaration of a transition

With s is the current state u is the input and c the instantiation of the robot.

During this test scenario, we figure out that the header file synthesized by the

tool Bdd2implement has a bug in it, as it allows our robot to reach it’s target but

it doesn’t avoid the obstacles. For that reason, we got back to the setValuedMap

function as used in the raspberry PI. Whenever there is an obstacle on one path

to the target, the robot changes to another path that contains no obstacles and

leads to the target.

 Here is an example that explains the control of one robot:

We choose as start point a state that is close to the target. From this state, the

robot has two possible paths. One path is small and would take the robot toward

the target after 2 steps and one path is very long. We decided to put an obstacle

on the smallest path in order to steer the robot to the longest path. This

explicative image (figure 6.9) shows how the controlled robot did behave on the

real platform.

Master Thesis : Implementation of symbolic controller 55

Figure 6.9 Path followed by the controlled robot

to reach the target while avoiding the obstacle

Green robot start

Target

Green robot path

Obstacle

Non Transition

Transition

Rafi Hassis – TUM – January 2019 Page 56

As you can see the green robot could just go to the target after two steps

however as the obstacle is on this path. The controller steers the robot to another

path leading to the target.

In the following photos (figure 6.10), captured from the camera frame that

allows us to detect the robot, represent a real overview of the followed path of

the controlled robot step by step from links to right and from up to down.

Master Thesis : Implementation of symbolic controller 57

Figure 6.10. Some steps of one robot path

Rafi Hassis – TUM – January 2019 Page 58

6.5. Control of two robots

In this test case the main goal is to control two robots simultaneously. The

two robots have to reach their respective goals while avoiding each other. The

whole process is online. Each time a controller is synthesized given the new

state of the robot and the new obstacles.

The inputs are fed to the robots in the same way as described in the previous

section and the controller synthesis is also the same as before. The only

difference here is that we synthesize two different controllers given the robots

positions and store them in two different bdd file.

The next step is then to load the respective controller and to read the inputs

from it and write them in a text file. Finally, we read these inputs from the text

file and move the robots accordingly.

A main program uses threads in order to run two sub-programs

simultaneously. Each sub-program begins by detecting the respective robot

position and writes it into a text file. Then this sub-program calls the controller,

that given the position will synthesize a controller, generating this way a bdd

file.

This bdd file is then given back to the sub-programs that reads it and then get

the control input for each robot. Finally given the control input, the sub-program

moves the robot to the new state. This process repeats infinitely often through a

while loop inside the main program. The structure of the whole program is

depicted in figure 6.11.

In this case scenario, the first robot (Green robot), start at state 2 while the

second robot (blue robot), start at state 9. After two steps the blue robot is on the

path of the green robot. As a result the green robot waits for the blue to get out

of his path toward the target 12. After that the green robot restart moving while

the blue one goes to its initial state. The green robot finally reaches its target 12

and thus has a new goal which is state 2. As the blue robot is on its path another

time the controller decided to steer it to another free path. After two other steps

the blue robot is on the path of the green robot, and thus the green robot stops

another time to wait the path to be free as it has no other path to go in. This

process is depicted in figure 6.12 and the steps were taken from the camera

frame that is above the platform and is presented in figure 6.13.

Master Thesis : Implementation of symbolic controller 59

Figure 6.11. Structure of the program

Main Program

Main Program Green Main Program Blue

Blue

Position

Control Green Control Blue

Control Green.bdd Control Blue.bdd

Green

Position

Moving

Blue

Robot

Moving

Green

Robot

Rafi Hassis – TUM – January 2019 Page 60

Figure 6.12. Path followed by the controlled robot

to reach the target while avoiding the obstacle

.

Green robot start

Second passage

Green robot path First passage

Blue robot start Blue robot path
Waiting before path

Master Thesis : Implementation of symbolic controller 61

Rafi Hassis – TUM – January 2019 Page 62

Figure 6.13. Some steps of two robots path

Master Thesis : Implementation of symbolic controller 63

Chapter 7.

Conclusion and Future Work

7.1. Conclusion

The purpose of this thesis is to present implementations of a symbolic

controller, for unicycle dynamics on FPGAs and a Raspberry PI and its test on

robots.

Scots is here used to solve the abstract control problem using fixed point

computation and finally the synthesized controller is refined to match the

concrete system.

About the implementation on FPGA:

 First and using mainly software in the loop technique, the controller was

tested.

 Second the controller inputs were obtained from the function getInputs,

and then were fed to the dynamics that were simulated using the hardware

simulator.

 Finally, the controller was implemented on the FPGA, where we

substituted the controller into a VHDL code and then integrated it in an

AXI peripheral. This AXI serves as interface between the computer and

the FPGA to get the control input given the state.

About the implementation over the Raspberry Pi 3, the interaction with the

synthesized controller is done through the C code functions using the

SymbolicSet library.

Finally, our controller is tested on a real robot given an urban like

environment. As a first part, the controller is synthesized and then implemented

in the form of a C code. This C code gave the specification and the state space

generate inputs to the robot in order to steer it toward the goal while avoiding

obstacles. As a second part, the controller is synthesized online while moving

the robots giving a dynamically changing obstacle. The two robots reach their

respective target while avoiding each other.

Rafi Hassis – TUM – January 2019 Page 64

7.2. Future Work

For the vehicle example, a multi layered abstraction could be done in order to

solve the control problem, where for example three layer of abstraction with

different quantization step and sampling time could be realized, and each time it

would solve the problem using the layer with the biggest quantization step

whenever this is feasible, and change to a finer one whenever it is needed.

Master Thesis : Implementation of symbolic controller 65

List of Figures

Figure 3.1. Representation of a polytope on the left of the figure and an

ellipsoid on the right

Figure 3.2. Sample-and-hold implementation of a controller synthesized with

SCOTS

Figure 4.1. OP 4200

Figure 4.2. Top level representation of the RT-Lab simulink model

Figure 4.3. Comsol Subsystem

Figure 4.4. Schematic of the BDD implementation tool

Figure 4.5. Path of the vehicle, modeled by a unicycle model, inside the state

space

Figure 5.1. Connexion and expansion

Figure 6.1 The urban like Environment

Figure 6.2 Robot Khepera IV

Figure 6.3 The stape-space

Figure 6.4 Declaration of a transition from the high level model

Figure 6.5 State space declaration with SCOTS

Figure 6.6 Input space declaration with SCOTS

Figure 6.7 Target declaration

Figure 6.8 Declaration of a transition

Figure 6.9 Path followed by the controlled robot to reach the target while

avoiding the obstacle

Figure 6.10. Some steps of one robot path

Figure 6.11. Structure of the program

Figure 6.12. Path followed by the controlled robot to reach the target while

avoiding the obstacle

Figure 6.13. Some steps of two robots path

Rafi Hassis – TUM – January 2019 Page 66

Master Thesis : Implementation of symbolic controller 67

Bibliography

[1]
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/embed

ded-design-tools/archive.html

[2] F. Somenzi. “CUDD: CU decision diagram package release”. In: University of Colorado

at Boulder (1998).

[3] 2008 11th IEEE International Symposium on Object and Component-Oriented Real-Time

Distributed Computing (ISORC), Cyber Physical Systems: Design Challenges

Year: 2008, Volume: 1, Pages: 363-369. DOI Bookmark:10.1109/ISORC.2008.25

Authors: Edward A. Lee

[4] https://en.wikipedia.org/wiki/Hardware-in-the-loop_simulation

[5] https://www.opal-rt.com/op4200/

[6] https://www.xilinx.com/products/silicon-devices/fpga/what-is-an-fpga.html

[7] https://alchitry.com/blogs/tutorials/what-is-an-fpga

[8] http://zedboard.org/product/zedboard

[9]http://zedboard.org/sites/default/files/documentations/GS-AES-Z7EV-7Z020-G-V7-1.pdf

[10] https://en.wikipedia.org/wiki/Formal_verification

[11]

https://www.tutorialspoint.com/modelling_and_simulation/modelling_and_simulation_verific

ation_validation.htm

[12] https://gitlab.lrz.de/hcs/sense/tree/master/tools/bdd2implement

https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/embedded-design-tools/archive.html
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/embedded-design-tools/archive.html
https://en.wikipedia.org/wiki/Hardware-in-the-loop_simulation
https://www.opal-rt.com/op4200/
https://alchitry.com/blogs/tutorials/what-is-an-fpga
http://zedboard.org/product/zedboard
http://zedboard.org/sites/default/files/documentations/GS-AES-Z7EV-7Z020-G-V7-1.pdf
https://en.wikipedia.org/wiki/Formal_verification
https://www.tutorialspoint.com/modelling_and_simulation/modelling_and_simulation_verification_validation.htm
https://www.tutorialspoint.com/modelling_and_simulation/modelling_and_simulation_verification_validation.htm
https://gitlab.lrz.de/hcs/sense/tree/master/tools/bdd2implement?fbclid=IwAR2RC44OtKL5Wsm_v-DI_wvwqKYs5FHBjVkMZkBAYBYWBQbZperaRsrwb3E

Rafi Hassis – TUM – January 2019 Page 68

Master Thesis : Implementation of symbolic controller 69

Appendix 1 vehicle_simul.m

function vehicle_simul
clear set
close all

%% simulation

% target set
lb=[9 0];
ub=lb+0.5;
v=[9 0; 9.5 0; 9 0.5; 9.5 .5];
% initial state
x0=[0.4 0.4 0.0];
t=[];

controller=SymbolicSet('vehicle_controller.bdd','projection',[1 2 3]); %read th controller bdd-
file
target=SymbolicSet('vehicle_target.bdd');%read th target bdd-file

y=x0;
v=[];
while(1)

 u=controller.getInputs(y(end,:));%get controller output
 v=[v; u(1,:)];
 if (target.isElement(y(end,:)))%check with target
 break;
 end
 [t x]=ode(1,y(end,:),u(1,:));%ode sovlver with simulink

 y=[y;x(end,:)];
end

%% plot the vehicle domain
% colors
colors=get(groot,'DefaultAxesColorOrder');

% load the symbolic set containig the abstract state space
set=SymbolicSet('vehicle_ss.bdd','projection',[1 2]);
plotCells(set,'facecolor','none','edgec',[0.8 0.8 0.8],'linew',.1)
hold on

% load the symbolic set containig obstacles
set=SymbolicSet('vehicle_obst.bdd','projection',[1 2]);
plotCells(set,'facecolor',colors(1,:)*0.5+0.5,'edgec',colors(1,:),'linew',.1)

% plot the real obstacles and target set
plot_domain

% load the symbolic set containig target set
set=SymbolicSet('vehicle_target.bdd','projection',[1 2]);
plotCells(set,'facecolor',colors(2,:)*0.5+0.5,'edgec',colors(2,:),'linew',.1)

% plot initial state and trajectory

Rafi Hassis – TUM – January 2019 Page 70

plot(y(:,1),y(:,2),'k.-')
plot(y(1,1),y(1,1),'.','color',colors(5,:),'markersize',20)

box on
axis([-.5 10.5 -.5 10.5])

end
%function dxdt = unicycle_ode(t,x,u)
function [t x]= ode(t,Y,U)
X =[];
t= [];
U=U;
Y=Y;
model='test_vehicle_dynamics';
open_system(model);
%Apply changes to the model specified through a SimulationInput object, in
in = Simulink.SimulationInput(model);

t = (0:0.01:10)';%time
%define the model paramters
U1 =U(1,1);
U2 = U(1,2);
y1 = Y(1,1);
y2 = Y(1,2);
y3 = Y(1,3);

%set model parameters
in = in.setVariable('U1',U1);
in = in.setVariable('U2',U2);
in = in.setVariable('y1',y1);
in = in.setVariable('y2',y2);
in = in.setVariable('y3',y3);

% configure the simulation
Set_param(model, ‘Abstol’, ’1e-6’, ‘StopTime’,’0.3’)
outputs=simOut.get('yout');%get simulation output
x1=(outputs.get('X1').Values);
x2=(outputs.get('X2').Values);
x3=(outputs.get('X3').Values);
t=x1.Time;
x1=x1.Data;
x2=x2.Data;
x3=x3.Data;
x=[x1';x2';x3']';
%
% dxdt = zeros(3,1);
% c=atan(tan(u(2))/2);
%
% dxdt(1)=u(1)*cos(c+x(3))/cos(c);
% dxdt(2)=u(1)*sin(c+x(3))/cos(c);
% dxdt(3)=u(1)*tan(u(2));
%
%
end

function plot_domain

Master Thesis : Implementation of symbolic controller 71

colors=get(groot,'DefaultAxesColorOrder');

v=[9 0; 9.5 0; 9 0.5; 9.5 .5];
patch('vertices',v,'faces',[1 2 4 3],'facec',colors(2,:),'edgec',colors(2,:));

v=[1 0 ;1.2 0 ; 1 9 ; 1.2 9];
patch('vertices',v,'faces',[1 2 4 3],'facec',colors(1,:),'edgec',colors(1,:));
v=[2.2 0 ;2.4 0 ; 2.2 5 ; 2.4 5];
patch('vertices',v,'faces',[1 2 4 3],'facec',colors(1,:),'edgec',colors(1,:));
v=[2.2 6 ;2.4 6 ; 2.2 10 ; 2.4 10];
patch('vertices',v,'faces',[1 2 4 3],'facec',colors(1,:),'edgec',colors(1,:));
v=[3.4 0 ;3.6 0 ; 3.4 9 ; 3.6 9];
patch('vertices',v,'faces',[1 2 4 3],'facec',colors(1,:),'edgec',colors(1,:));
v=[4.6 1 ;4.8 1 ; 4.6 10 ; 4.8 10];
patch('vertices',v,'faces',[1 2 4 3],'facec',colors(1,:),'edgec',colors(1,:));
v=[5.8 0 ;6 0 ; 5.8 6 ; 6 6];
patch('vertices',v,'faces',[1 2 4 3],'facec',colors(1,:),'edgec',colors(1,:));
v=[5.8 7 ;6 7 ; 5.8 10 ; 6 10];
patch('vertices',v,'faces',[1 2 4 3],'facec',colors(1,:),'edgec',colors(1,:));
v=[7 1 ;7.2 1 ; 7 10 ; 7.2 10];
patch('vertices',v,'faces',[1 2 4 3],'facec',colors(1,:),'edgec',colors(1,:));
v=[8.2 0 ;8.4 0 ; 8.2 8.5 ; 8.4 8.5];
patch('vertices',v,'faces',[1 2 4 3],'facec',colors(1,:),'edgec',colors(1,:));
v=[8.4 8.3;9.3 8.3 ; 8.4 8.5 ; 9.3 8.5];
patch('vertices',v,'faces',[1 2 4 3],'facec',colors(1,:),'edgec',colors(1,:));
v=[9.3 7.1;10 7.1 ; 9.3 7.3 ; 10 7.3];
patch('vertices',v,'faces',[1 2 4 3],'facec',colors(1,:),'edgec',colors(1,:));
v=[8.4 5.9;9.3 5.9 ; 8.4 6.1 ; 9.3 6.1];
patch('vertices',v,'faces',[1 2 4 3],'facec',colors(1,:),'edgec',colors(1,:));
v=[9.3 4.7;10 4.7 ; 9.3 4.9 ; 10 4.9];
patch('vertices',v,'faces',[1 2 4 3],'facec',colors(1,:),'edgec',colors(1,:));
v=[8.4 3.5;9.3 3.5 ; 8.4 3.7 ; 9.3 3.7];
patch('vertices',v,'faces',[1 2 4 3],'facec',colors(1,:),'edgec',colors(1,:));
v=[9.3 2.3;10 2.3 ; 9.3 2.5 ; 10 2.5];
patch('vertices',v,'faces',[1 2 4 3],'facec',colors(1,:),'edgec',colors(1,:));

end

Rafi Hassis – TUM – January 2019 Page 72

Master Thesis : Implementation of symbolic controller 73

Appendix 2 BDD.m

The different codes will be here presented
function bddtomatfile()
 lw0=0;%min x
 lw1=0;
 lw2=-3.4;
 eta0=0.2;%quantization x
 eta1=0.2;
 eta2=0.2;
 controller=SymbolicSet('vehicle_controller.bdd');%reading controller
 conpoint=controller.points;% controller matrice
 target=SymbolicSet('vehicle_target.bdd'); %reading Target
 targetpoints=target.points;% Target matrice
 A=ones(51^3,2)*100;% ones matrice
 c=conpoint(:,1);
 c=(c-lw0)/eta0;% Abstraction Controller
 c1=conpoint(:,2);
 c1=(c1-lw1)/eta1;
 c2=conpoint(:,3);
 c2=(c2-lw2)/eta2;
 c3=conpoint(:,4);
 c4=conpoint(:,5);
 constate=[c c1 c2 c3 c4];
 for m=1:size(constate)% indexing Controller
 index=constate(m,1)*50^2+constate(m,2)*50^1+constate(m,3)*50^0;
 index=int64(index);
 A(index,1)=constate(m,4);
 A(index,2)=constate(m,5);
 end
 c=targetpoints(:,1);% Abstraction Target
 c=(c-lw0)/eta0;
 c1=targetpoints(:,2);
 c1=(c1-lw1)/eta1;
 c2=targetpoints(:,3);
 c2=(c2-lw2)/eta2;
 targetstate=[c c1 c2];

 for m=1:size(targetstate)% Indexing Controller
 index=targetstate(m,1)*50^2+targetstate(m,2)*50^1+targetstate(m,3)*50^0;
 index=int64(index);
 targetindex(m)=index;
 end
 save('controllernew.mat','conpoint')% Save Controller and target
 save('target.mat','targetpoints')
 save('controlsymbloic.mat','A')
 save('targetindex.mat','targetindex')
A1=A(:,1)';
A2=round(A(:,2)',3);
csvwrite('controller1.dat',A1)
csvwrite('controller2.dat',A2)
end
function combs = nmultichoosek(values, k)
%// Return number of multisubsets or actual multisubsets.
if numel(values)==1

Rafi Hassis – TUM – January 2019 Page 74

 n = values;
 combs = nchoosek(n+k-1,k);
else
 n = numel(values);
 combs = bsxfun(@minus, nchoosek(1:n+k-1,k), 0:k-1);
 combs = reshape(values(combs),[],k);
end

Master Thesis : Implementation of symbolic controller 75

Appendix 3 bddhil.c
/*

 * Placeholder PetaLinux user application.

 *

 * Replace this with your application code

 */

#include <stdio.h>

#include <stdlib.h>

#include "bddReader.h"

int

set_interface_attribs (int fd, int speed, int parity)

{

 struct termios tty;

 memset (&tty, 0, sizeof tty);

 if (tcgetattr (fd, &tty) != 0)

 {

 printf ("Error %d from tcgetattr", errno);

 return -1;

 }

 cfsetospeed (&tty, speed);

 cfsetispeed (&tty, speed);

 tty.c_cflag = (tty.c_cflag & ~CSIZE) | CS8; // 8-bit chars

 // disable IGNBRK for mismatched speed tests; otherwise receive

break

 // as \000 chars

 tty.c_iflag &= ~IGNBRK; // disable break processing

 tty.c_lflag = 0; // no signaling chars, no echo,

 // no canonical processing

 tty.c_oflag = 0; // no remapping, no delays

 tty.c_cc[VMIN] = 0; // read doesn't block

 tty.c_cc[VTIME] = 5; // 0.5 seconds read timeout

 tty.c_iflag &= ~(IXON | IXOFF | IXANY); // shut off xon/xoff

ctrl

 tty.c_cflag |= (CLOCAL | CREAD);// ignore modem controls,

 // enable reading

 tty.c_cflag &= ~(PARENB | PARODD); // shut off parity

 tty.c_cflag |= parity;

 tty.c_cflag &= ~CSTOPB;

 tty.c_cflag &= ~CRTSCTS;

 if (tcsetattr (fd, TCSANOW, &tty) != 0)

 {

 printf ("Error %d from tcsetattr", errno);

 return -1;

 }

 return 0;

}

void

set_blocking (int fd, int should_block)

{

 struct termios tty;

 memset (&tty, 0, sizeof tty);

Rafi Hassis – TUM – January 2019 Page 76

 if (tcgetattr (fd, &tty) != 0)

 {

 printf("Error %d from tggetattr", errno);

 return;

 }

 tty.c_cc[VMIN] = should_block ? 1 : 0;

 tty.c_cc[VTIME] = 5; // 0.5 seconds read timeout

 if (tcsetattr (fd, TCSANOW, &tty) != 0)

 printf ("Error %d setting term attributes", errno);

}

int readLine(int fd, char* lineBuffer, int max){

 char ch;

 int count = 0;

 read(fd, &ch, 1);

 do

 {

 while(read(fd, &ch, 1) < 1);

 if(ch != '\n' && ch != '\r'){

 lineBuffer[count] = ch;

 count++;

 }

 if(ch == '\n'){

 write (fd, "\r\n", 2);

 usleep (200);

 }

 else{

 write (fd, &ch, 1);

 usleep (100);

 }

 }while ((ch != '\n') && (count != max-1));

 lineBuffer[count] = '\0';

 return count++;

}

char *portname = "/dev/ttyPS0";

int main(int argc, char *argv[])

{

 unsigned long exit=0,fd,state;

 ssize_t n;

 char buf[100], action[50];

 fd = open (portname, O_RDWR | O_NOCTTY | O_SYNC);

 if (fd < 0){

 printf("Error: %d opening %s: %s", errno, portname,

strerror (errno));

 return 0;

 }

 set_interface_attribs (fd, B115200, 0); // set speed to

115,200 bps, 8n1 (no parity)

 set_blocking (fd, 0); // set no

blocking

Master Thesis : Implementation of symbolic controller 77

 write (fd, "HIL started v1.1 !\n", 12); // send 7

character greeting

 do{

 n = readLine(fd, buf, sizeof buf);

 if(n > 0){

 if(strcmp(buf,"exit")==0){

 exit = 1;

 }

 else if(strcmp(buf,"ping")==0){

 write (fd, "pong\r\n", 6);

 usleep (6 * 100);

 }

 else{

 state = atol(buf);

 n =

sprintf(action,"%d",bddGetAction(state));

 write (fd, action, n);

 write (fd, "\r\n", 2);

 usleep ((n+2) * 100);

 }

 }

 }while(!exit);

 return 0;

}

Rafi Hassis – TUM – January 2019 Page 78

Master Thesis : Implementation of symbolic controller 79

Appendix 4 bddReader.h

#include <stdint.h>

#include <assert.h>

#include <fcntl.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <sys/mman.h>

#include <unistd.h>

#include <stddef.h>

#include <errno.h>

#include <termios.h>

#include <unistd.h>

#define BDD_PHY_ADDRESS 0x43C00000

#define BDD_INP_OFFSET 0

#define BDD_OUT_OFFSET 1

// You need to be in root to run this!!

#define MAP_SIZE 4096UL // our 4K range of the AXI bdd

#define MAP_MASK (MAP_SIZE-1)

void* get_v_addr(int phys_addr){

 void* mapped_base;

 int memfd;

 void* mapped_dev_base;

 off_t dev_base = phys_addr;

 memfd = open("/dev/mem", O_RDWR | O_SYNC);

 if(memfd == -1){

 printf("Cant open /dev/mem.\n");

 exit(0);

 }

 mapped_base = mmap(0, MAP_SIZE, PROT_READ | PROT_WRITE,

MAP_SHARED, memfd, dev_base & ~MAP_MASK);

 if(mapped_base == (void*)-1){

 printf("Cant map the physial address to user-space

!.\n");

 exit(0);

 }

 mapped_dev_base = mapped_base + (dev_base & MAP_MASK);

 return mapped_dev_base;

}

unsigned long bddGetAction(unsigned long state)

{

 unsigned long* bdd_addr = get_v_addr(BDD_PHY_ADDRESS);

 unsigned long* bdd_inp = bdd_addr + BDD_INP_OFFSET;

 unsigned long* bdd_out = bdd_addr + BDD_OUT_OFFSET;

 *bdd_inp = state;

 usleep (100);

 unsigned long out = *bdd_out;

 return out;

}

Rafi Hassis – TUM – January 2019 Page 80

Master Thesis : Implementation of symbolic controller 81

Rafi Hassis – TUM – January 2019 Page 82

Master Thesis : Implementation of symbolic controller 83

Appendix 5 bdd_vehicle.h

#define BDD_INPUT_BITS 7

#define BDD_OUTPUT_BITS 2

bool f0(bool x0, bool x1, bool x2, bool x3, bool x4, bool x5, bool x6){

 return (!((x0 && ((x1 && ((x2 && ((x3 && ((x4 &&

((x5) || (((x6))))) || (!(x4) && ((x6))))) || (!(x3) &&

(((x6)) || (!(x5)))))) || (!(x2) && ((x3 && ((((x6)) ||

(!(x5))) || (!(x4)))) || (!(x3) && ((x4) || (((x5) ||

(!((x6))))))))))) || (!(x1) && ((x2 && ((x3 && ((x4 &&

((x6))) || (!(x4) && ((x5) || (((x6))))))) || (!(x3) && ((x4

&& (((x6)) || (!(x5)))) || (!(x4) && ((x5) || (((x6)))))))))

|| (!(x2) && ((x3 && (((x6)) || (!(x4)))) || (!(x3) && ((x4)

|| (((x5) || (((x6))))))))))))) || (!(x0) && ((x1 && ((x2 &&

((x3 && ((x4 && (((x6)) || (!(x5)))) || (!(x4) && ((x5) ||

(((x6))))))) || (!(x3) && ((((x6)) || (!(x5))) || (!(x4))))))

|| (!(x2) && ((x3 && ((x4) || (((x5) || (((x6))))))) ||

(!(x3) && ((x4 && ((x6))) || (!(x4) && ((x5) ||

(!((x6))))))))))) || (!(x1) && ((x2 && ((x3 && ((x4 &&

(((x6)) || (!(x5)))) || (!(x4) && ((x6))))) || (!(x3) && ((x4

&& ((x5) || (((x6))))) || (!(x4) && ((x6))))))) || (!(x2) &&

((x3 && ((((x6)) || (!(x5))) || (!(x4)))) || (!(x3) && ((x4

&& ((x6))) || (!(x4) && (((x6)) || (!(x5))))))))))))));

}

bool f1(bool x0, bool x1, bool x2, bool x3, bool x4, bool x5, bool x6){

 return (!((x0 && ((x1 && ((x2 && ((x3 && ((x4 &&

(((x6)) || (!(x5)))) || (!(x4) && ((x5) || (((x6))))))) ||

(!(x3) && (((x6)) || (!(x4)))))) || (!(x2) && ((x4 && ((x6)))

|| (!(x4) && (((x6)) || (!(x5)))))))) || (!(x1) && ((x2 &&

((x3 && ((x6))) || (!(x3) && ((x4) || (((x6))))))) || (!(x2)

&& ((x3 && ((x4 && ((x6))) || (!(x4) && (((x6)) ||

(!(x5)))))) || (!(x3) && ((x4 && ((x5) || (((x6))))) ||

(!(x4) && ((x5) || (!((x6))))))))))))) || (!(x0) && ((x1 &&

((x2 && ((x3 && (((x6)) || (!(x4)))) || (!(x3) && ((x4 &&

(((x6)) || (!(x5)))) || (!(x4) && ((x6))))))) || (!(x2) &&

((x3 && ((x4) || ((((x6)) || (!(x5)))))) || (!(x3) && ((x4)

|| (((x5 && ((x6))))))))))) || (!(x1) && ((x2 && ((x3 &&

((x4 && ((x6))) || (!(x4) && (((x6)) || (!(x5)))))) || (!(x3)

&& ((((x6)) || (!(x5))) || (!(x4)))))) || (!(x2) && ((x3 &&

(((x6)) || (!(x4)))) || (!(x3) && ((x4 && ((x6))) || (!(x4)

&& ((x5)))))))))))));

}

typedef bool (*bool_func_ptr)(bool x0, bool x1, bool x2, bool x3, bool

x4, bool x5, bool x6);

bool_func_ptr bddBoolFunctions[BDD_OUTPUT_BITS];

void interfaceBooleanFunctions(bool* inputValues, bool* outValues){

bddBoolFunctions[0] = f0;

bddBoolFunctions[1] = f1;

 unsigned long int i;

 for(i=0; i<BDD_OUTPUT_BITS; i++){

Rafi Hassis – TUM – January 2019 Page 84

 outValues[i]=bddBoolFunctions[i](inputValues[0],

inputValues[1], inputValues[2], inputValues[3], inputValues[4],

inputValues[5], inputValues[6]);

 }

}

void int_to_bool(unsigned long int in, int count, bool* out){

 unsigned long int mask = 1L;

 int i;

 for (i = 0; i < count; i++) {

 out[i] = (in & mask) ? true : false;

 in >>= 1;

 }

}

unsigned long int bool_to_int(int count, bool* in){

 int i;

 unsigned long int val=0;

 unsigned long int weight=1;

 for (i = 0; i < count; i++) {

 val += weight*in[i];

 weight <<= 1;

 }

 return val;

}

unsigned long int getControlAction(unsigned long int state){

 bool stateBits[BDD_INPUT_BITS];

 bool actionBits[BDD_OUTPUT_BITS];

 int_to_bool(state, BDD_INPUT_BITS, stateBits);

 interfaceBooleanFunctions(stateBits, actionBits);

 return bool_to_int(BDD_OUTPUT_BITS, actionBits);

}

Master Thesis : Implementation of symbolic controller 85

