

# Synthesis of Symbolic Controllers: A Parallelized and Sparsity-Aware Approach

Mahmoud Khaled, Eric S. Kim, Murat Arcak, and Majid Zamani

ETAPS 2019 : Poster session

April 8-11, 2019

Professorship of Hybrid Control Systems

## Introduction to abstraction-based controller synthesis for dynamical systems

### Phase 1: construction of a finite abstraction:

Dynamical systems: physical systems modeled by differential/difference equations.

 $\Sigma: x^+ = f(x, u), \quad x \in X \subseteq R^n, \text{ and } u \in U \subseteq R^m$ 

► <u>Abstraction</u>: finite systems to mimic original plants up to a predefined accuracy.

 $\bar{\Sigma} = (\bar{X}, \bar{U}, T), \quad \bar{X} := [X]_{\eta_x}, \bar{U} := [U]_{\eta_u}, \text{ and } T \subseteq \bar{X} \times \bar{U} \times \bar{X}$ 

Phase 2: controller synthesis and refinement:





- Algorithmic synthesis: fixed-point iterations on subsets  $Z_i \subseteq \overline{X} \times \overline{U}$  using update map G(Z).
- $\blacktriangleright$  Handles complex specifications: LTL specification  $\psi$  is mapped to a set  $Z_\psi\subseteq ar{X} imesar{U}$

**Problem:** Exponential time/space bottlenecks w.r.t. m+n.



#### Literature: parallel implementation Literature: sparsity-aware construction of $\Sigma$ Sparsity: density of the dependency graph. ► pFaces: an acceleration ecosystem. Deattachable Kernel ► No need to iterate non-affecting states/inputs. ► Introduced parallel kernel: Computation Tuner Kernel Example: $x_2^+$ depends only on states $x_2$ and $x_3$ . $\blacktriangleright$ constructing $\overline{\Sigma}$ . $\operatorname{Resource}$ $x_2$ Managment Engine Fixed-point controller synthesis Indentif Then, no need to iterate $x_1$ for computing $x_2^+$ . Managn Task Scheduler Libraries Supports Cloud/local processing $\blacktriangleright$ Sparsity is only utilized for constructing $\Sigma$ . Interfaces to Computing Platforms elements (PEs). Inefficient storage of abstraction. CPU GPU HWA Cluster Daemon Many wasted compute-threads. C + +/MPI C + +/OpenCL, user-supplied

F. Gruber, E. Kim, and M. Arcak. Sparsity-aware finite abstraction. CDC 2017.

M. Khaled and M. Zamani. pFaces: An acceleration ecosystem for symbolic control. HSCC 2019.

### Contribution 1: Combining parallel and sparsity-aware approaches to construct $\bar{\Sigma}$

#### **Traditional algorithm:**

#### **Sparsity-aware approach:**

**Parallel sparsity-aware:** 



#### $\overline{T} \leftarrow \emptyset;$ for all $\overline{x} \in \overline{X}$ do for all $\overline{u} \in \overline{U}$ do for all $\overline{x}' \in O^f(\overline{x}, \overline{u})$ do $|T \leftarrow T \cup \{(\overline{x}, \overline{u}, \overline{x}')\};$ end end end

- Exhaustive iterations on (x, u).
- $O^f$  explodes in bigger m + n.
- $\begin{array}{c} x_1 & x_1^+ & u_1 \\ \hline x_2 & x_2^+ & u_2 \\ \hline x_3 & x_3^+ & x_3^+ \end{array} \xrightarrow{(T_1)} \begin{array}{c} T_1 & 0_2^{f} \\ \hline T_1 & T_2 \\ \hline T_1 & T_2 \\ \hline T_1 & T_3 \\ \hline T \end{array}$
- O<sup>f</sup>: Over-approximation of reachable sets.
   Bottleneck in combining T<sub>i</sub> for T.



 $K_1$ 

 $K_2$ 



Debug and Log Files

Traffic network (3D = intersection).
Noticeable speedup !

# Contribution 2: A novel parallel approach that utilizes sparsity in the synthesis of controllers









 $K_3$ 

- New Z: Iterative/symb. search. - Settles when  $Z_{k-1} = Z_k$  !
- Massively parallel.
- Wasted computations.
- $P_i^f$ : sparsity-aware projection map. -  $D_i^f$ : sparsity-aware recovery map.
- Robot maze: reach/avoid.
  Avg. compute efficiency: 80%.

### Case study: A 7D BMW 320i car avoids autonomously blocks on highway



| Used HW configuration               | PEs | $EX_1$ | $EX_1$ | $\mathbf{EX}_2$ | $\mathbf{EX}_2$ |
|-------------------------------------|-----|--------|--------|-----------------|-----------------|
|                                     |     | pFaces | this   | pFaces          | this            |
| Local machine: Intel Xeon E5-1620   | 8   | _      | _      | 24 H            | 8.7 H           |
| AWS p3.16xlarge: Intel Xeon E5-2686 | 64  | 2.1 H  | 0.5 H  | 8.1 H           | 3.2 H           |
| AWS c5.18xlarge: Intel Xeon P 8000  | 72  | 1.9 H  | 0.4 H  |                 | _               |