
Synthesis of Symbolic Controllers:
A Parallelized and Sparsity-Aware Approach

Mahmoud Khaled, Eric S. Kim, Murat Arcak, and Majid Zamani

ETAPS 2019 : Poster session

April 8-11, 2019

Introduction to abstraction-based controller synthesis for dynamical systems

Phase 1: construction of a finite abstraction:
I Dynamical systems: physical systems modeled by differential/difference equations.

Σ : x+ = f (x, u), x ∈ X ⊆ Rn, and u ∈ U ⊆ Rm

I Abstraction: finite systems to mimic original plants up to a predefined accuracy.

Σ̄ = (X̄ , Ū,T ), X̄ := [X ]ηx, Ū := [U]ηu, and T ⊆ X̄ × Ū × X̄

Phase 2: controller synthesis and refinement:
I Algorithmic synthesis: fixed-point iterations on subsets Zi ⊆ X̄ × Ū using update map G(Z).
I Handles complex specifications: LTL specification ψ is mapped to a set Zψ ⊆ X̄ × Ū

Problem: Exponential time/space bottlenecks w.r.t. m+n.

Symbolic
Controller

Refined
Controller

_ξ(t) = f(ξ(t); v(t))

Dynamical System

Infinte state/input sets

q1 q2

q4

q3

a

a
b

a

b

Finite Transition System

Finte state/input sets

Σ

Σ̄

Relation

Literature: sparsity-aware construction of Σ̄

I Sparsity: density of the dependency graph.
I No need to iterate non-affecting states/inputs.
I Example: x+

2 depends only on states x2 and x3.
Then, no need to iterate x1 for computing x+

2 .
I Sparsity is only utilized for constructing Σ̄.
I Inefficient storage of abstraction.

x1

x2

x3

x
+
1

x
+
2

x
+
3

u1

u2

F. Gruber, E. Kim, and M. Arcak. Sparsity-aware finite abstraction. CDC 2017.

Literature: parallel implementation

I pFaces: an acceleration ecosystem.
I Introduced parallel kernel:

I constructing Σ̄.
I Fixed-point controller synthesis

I Supports Cloud/local processing
elements (PEs).

I Many wasted compute-threads.

pFaces
User
Config.
Files

C++=MPI C++=OpenCL, user-supplied

Debug and
Log
Files

M. Khaled and M. Zamani. pFaces: An acceleration ecosystem for symbolic control. HSCC 2019.

Contribution 1: Combining parallel and sparsity-aware approaches to construct Σ̄

Traditional algorithm:

T ← ∅;
for all x̄ ∈ X̄ do
for all ū ∈ Ū do
for all x̄ ′ ∈ Of (x̄, ū) do
T ← T ∪ {(x̄, ū, x̄ ′)};

end
end

end

- Exhaustive iterations on (x, u).
- Of explodes in bigger m + n.

Sparsity-aware approach:

x1

x2

x3

x
+
1

x
+
2

x
+
3

u1

u2

T1 T2 T3

∗

T

O
f
2

- Of : Over-approximation of reachable sets.
- Bottleneck in combining Ti for T .

Parallel sparsity-aware:

x1

x2

x3

x+1

x+2

x+3

u1

u2

K1 K2 K3

Ω
f

parallelΩ
f

parallel
Ω
f

parallel

- Ωf : Corners of reachable sets.
- Ki : Locally-stored storage.

Comparison:

0 10 20 30 40 50 60 70 80 90 100

Dimension of the state set

0

20

40

60

80

100

120

140

160

180

200

T
im

e
 (

s
e
c
.)

Serial algorithm for sparsity-aware abstraction

Distributed algorithm for sparsity-aware abstraction

- Traffic network (3D = intersection).
- Noticeable speedup !

Contribution 2: A novel parallel approach that utilizes sparsity in the synthesis of controllers

Traditional approach:

X̄

- New Z : Iterative/symb. search.
- Settles when Zk−1 = Zk !

Parallel approach:

X̄

Parallel search !

- Massively parallel.
- Wasted computations.

Parallel sparsity-aware:

X̄

P
f

1
(Z)

G
1
(Z)

P
f

2
(Z)

G
2
(Z)

D
f

2
(G2(Z))

D
f

1
(G1(Z))

Z+Search here !

- P f
i : sparsity-aware projection map.

- Df
i : sparsity-aware recovery map.

Example:

- Robot maze: reach/avoid.
- Avg. compute efficiency: 80%.

Case study: A 7D BMW 320i car avoids autonomously blocks on highway

Used HW configuration PEs
EX1

pFaces
EX1

this
EX2

pFaces
EX2

this
Local machine: Intel Xeon E5-1620 8 – – 24 H 8.7 H
AWS p3.16xlarge: Intel Xeon E5-2686 64 2.1 H 0.5 H 8.1 H 3.2 H
AWS c5.18xlarge: Intel Xeon P 8000 72 1.9 H 0.4 H – –


