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Abstract— This paper investigates a confidentiality property
called opacity for discrete-time stochastic control systems. In
order to quantitatively evaluate the security guarantee, a notion
of approximate initial-state opacity for stochastic control sys-
tems is proposed. Then, we introduce a new notion of so-called
opacity-preserving stochastic simulation functions to quantify
the distance between two systems in a probabilistic setting, while
preserving approximate initial-state opacity across them. In
addition, we show that for a class of stochastic control systems
satisfying incremental input-to-state stability property, one can
construct their finite abstractions (a.k.a finite Markov decision
processes) together with a corresponding opacity-preserving
stochastic simulation function between them.

I. INTRODUCTION

Security analysis of cyber-physical systems (CPS) has
attracted considerable attention in the past years. The notions
of security for CPS can be classified into two categories.
The first category deals with the capabilities of the intruders
while the second one focuses on the information flow from
the systems to the intruders. In this paper, we investigate
a security property called opacity, which belongs to the
second category. In this case, we assume that there are
outside intruders who can monitor the system by observing
the external behaviors (i.e. outputs) of the system. Opacity
property essentially determines whether or not any trace that
reveals secret behaviors of the system is indistinguishable
from other traces to an intruder [1], [2], [3].

The concept of opacity was originally proposed by [4] in
the realm of computer science for the analysis of crypto-
graphic protocols. Since then, the opacity problem has been
widely studied in Discrete-Event Systems (DES) context. In
order to capture various types of secret requirements, differ-
ent notions of opacity have been proposed, including state-
based notions in [5], [6], [7] and language-based notions in
[8]. In practical situations, the state-based notions of opacity
of DES are generally classified into the so-called initial-state
opacity [7], current-state opacity [1], K-step opacity [5], and
infinite-state opacity [6]. We refer interested readers to the
recent surveys in [9], [3] describing those different notions
of opacity in details.
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The verification of opacity has also been widely studied
in [5], [6], [10]. Unfortunately, it is known (cf. the previous
references) that existing algorithms for verifying opacity
have exponential time complexity. Efficient approaches to
overcome the computational complexity are highly demand-
ing [11]. More recently, several promising abstraction-based
techniques have been employed for efficiently verifying and
enforcing opacity [2], [12]. Particularly, in [12], several
notions of opacity-preserving (bi)simulation relations are
proposed. The proposed relations essentially characterize the
distance between two systems in terms of preservation of
opacity. By constructing abstractions of the original systems
and leveraging the relations between them, the complexity
of the verification algorithms can be mitigated.

Since opacity is an information-flow property, its definition
depends on the information model of the system. The exist-
ing results are mostly based on the event-observation models.
In this context, it is assumed that outputs of the systems are
symbolic so that different outputs can be precisely distin-
guished by the observer. However, many real life applications
are metric systems (e.g. discrete-time control systems with
continuous state sets and continuous output sets) in the sense
that their outputs are physical signals equipped with some
metrics. In this setting, it is not practical for the intruder to
unambiguously distinguish outputs due to the measurement
errors. A more reasonable concept of opacity for metric
systems called approximate opacity was lately proposed in
[13]. These new notions provide relaxed versions of opacity
to quantitatively evaluate the security guarantee level with
respect to the measurement precision of the intruder.

On the other hand, in real-world applications, a small
probability of violation of the opacity could be tolerable.
Hence, instead of simply asking if a system is opaque or
non-opaque, it is more applicable to evaluate the possibility
of being not secure for stochastic systems. This direction
has been recently explored in the context of stochastic DES
[14], [15], [16], [17], [18], [11]. For example, in [14] three
different notions of probabilistic opacity were introduced for
current-state opacity; this approach has also been extended
to infinite-step opacity by [11]. In [16], Jensen-Shannon
divergence was adopted to quantify secrecy loss in stochastic
systems. Opacity of (partially-observed) Markov decision
processes has also been studied in [15], [17], [18]. Note that
most of the existing works on opacity analysis of stochastic
DES are based on finite systems. In discrete-time stochastic
control systems, however, the state-sets are usually infinite,
which makes the verification problem very challenging and
even undecidable. Therefore, efficient abstraction techniques,
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together with suitably defined notions of stochastic opacity,
are needed in order to quantitatively evaluate the security
level of large-scale infinite stochastic systems.

In this paper, we introduce a new notion of initial-state
opacity for discrete-time stochastic control systems, which
is called (δ, ε)-approximate initial-state opacity. Our notion
can be regarded as the stochastic counterpart of the notion
of approximate opacity introduced in [13]. In particular, the
δ-approximate initial-state opacity proposed in [13] requires
that given a threshold parameter δ ≥ 0 (based on the mea-
surement precision of the intruder), for any state run starting
from a secret state, there always exists another state run
starting from a non-secret state, such that the largest distance
between their output runs is smaller than δ. In this paper,
the aim is still to ensure that discerning which of the states
was the originating one is difficult for an intruder based on
its observation. Particularly, starting from two initial states,
the output trajectories are considered indistinguishable if the
probability measures of them remaining in any set of interest
are close to each other. The parameter ε is used to bound
the probability distance and δ captures the measurement
precision of the intruder. In the special case when δ=0, the
notion boils down to ε-approximate initial-state opacity, and
the parameter ε can be captured exactly by the well-known
total variation distance, see, e.g. [19], [20], [21], [22].

In addition, we introduce a notion of initial-state opacity-
preserving stochastic simulation function. This function is es-
sentially used to quantitatively relate two systems in terms of
opacity satisfactions in a probabilistic setting. Unfortunately,
the existing notions of stochastic simulation functions do not
necessarily preserve opacity. We show that if our notion of
opacity-preserving stochastic simulation function exists be-
tween systems Σ and Σ̂, then Σ̂ being ε-approximate initial-
state opaque implies that Σ is (2λ, ε+ 2ε̄λ)-approximate
initial-state opaque for any arbitrarily chosen λ > 0 and ε̄λ ≥
0 which is a function of λ (cf. equation (6)). As a result, this
allows us to efficiently verify opacity of a complex system
with possibly uncountable number of states by analyzing
it over its simpler (potentially finite) abstraction. Finally,
we propose a scheme to construct abstractions (in the form
of finite Markov decision processes (MDPs)) for a class
of incrementally input-to-state stable discrete-time stochastic
control systems. We show that under some mild assumptions,
the original and finite systems are related to each other
through an opacity-preserving stochastic simulation function.
Existing techniques for computing total variation distance in
the case of labelled Markov chain (LMC) [20], [21] can be
readily employed for the verification of ε-approximate initial-
state opacity on the constructed finite MDPs.

II. DISCRETE-TIME STOCHASTIC CONTROL SYSTEMS

A. Notation

In this paper, a probability space is written as (Ω,FΩ,P),
where Ω is the sample space, FΩ is a sigma-algebra on
Ω representing a set of events, and P : FΩ → [0, 1] is
a probability measure that assigns probabilities to events.
We denote the sets of nonnegative and positive integers,

respectively, by N := {0, 1, 2, . . .} and N≥1 := {1, 2, 3, . . .}.
The sets of real, positive and nonnegative real numbers are
denoted by R, R>0, and R≥0, respectively. Given N ∈ N≥1

vectors xi ∈ Rni , with i ∈ {1, . . . , N}, ni ∈ N≥1,
and n =

∑
i ni, we use x = [x1; . . . ;xN ] to denote the

corresponding concatenated vector in Rn. We denote by ‖ ·‖
the infinity norm of a vector x ∈ Rn. Given functions f and
g, the composition of them is denoted by f ◦g. A continuous
function γ : R≥0 → R≥0 is said to be a class K function if it
is strictly increasing and γ(0) = 0. A class K function γ(·)
is said to be a class K∞ function if γ(r)→∞ as r →∞.

B. Discrete-Time Stochastic Control Systems

First, we define discrete-time stochastic control systems
(dt-SCS) as the sextuple

Σ=(X,U, ς, f, Y, h), (1)

where X ⊆ Rn, U ⊆ Rm, and Y ⊆ Rq are Borel spaces
denoting the state, input and output sets of the system,
respectively. We use B(X) to denote the Borel sigma-algebra
on the state set X , thus (X,B(X)) denotes the corresponding
measurable space. In the probability space (Ω,FΩ,P), we
use ς = (ς(1),ς(2),. . .) to denote a sequence of independent
and identically distributed (i.i.d.) random variables from Ω
to the measurable set Vς , where ς(k) :Ω→Vς , k∈N.

The maps f : X × U × Vς → X and h : X → Y are
measurable functions serving as the state transition relation
and output map, respectively. Given an initial state ξ(0) ∈ X ,
the dt-SCS Σ satisfies

Σ :

{
ξ(k + 1) = f(ξ(k), ν(k), ς(k)),
ζ(k) = h(ξ(k)),

k ∈ N, (2)

where ξ(·) : N → X , ζ(·) : N → Y , and ν(·) : N →
U are the state, output, and input signals, respectively. We
use U to denote a collection of sequences ν : Ω → U ,
where ν(k) is independent of ς(t) for any k, t ∈ N and
t ≥ k. A dt-SCS defined in (1) with (possibly) continuous
state set can be equivalently represented as a general Markov
decision process (gMDP). The finite abstractions of gMDPs
are called finite MDPs, as constructed later in Section V-
A, which are of crucial use for the analysis of opacity. We
refer the interested readers to [23] for formal definitions of
gMDPs and MDPs.

III. APPROXIMATE OPACITY FOR STOCHASTIC CONTROL
SYSTEMS

In this section, we introduce the concept of approximate
opacity for the class of discrete-time stochastic control
systems. Hereafter, we slightly modify the formulation in
(1) to accommodate for initial states and secret states, as
Σ = (X,X0, XS , U, ς, f, Y, h), where X0 ⊆ X is a set of
initial states and XS ⊆ X is a set of secret states. Given
system Σ = (X,X0, XS , U, ς, f, Y, h), x u−−→ x′ is called a
transition in the system if and only if x′ = f(x, u, ς). The
random sequence ξx0ν : Ω × N → X , which is in the form
of ξx0ν = (x0, x1, . . . , xn), is said to be a solution process
of Σ under input sequence ν = (u1, u2, . . . , un) satisfying
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(2), with initial state ξx0υ(0) = x0. The random sequence
ζx0ν : Ω × N → Y is called the output run and defined as
ζx0ν = (y0, y1, . . . , yn) such that there exists a finite state run
ξx0ν = (x0, x1, . . . , xn) with yi = h(xi), for i ∈ {0, . . . , n}.
A finite state run and a finite output run can be extended to
an infinite state run and an infinite output run as well.

In order to show our new notion of opacity, we define for
any system Σ=(X,X0, XS , U, ς, f, Y, h) with output set Y ,
set BY = {y = (y0,y1,. . . ,yn) ∈ Y n|n ∈ N≥1} which is
the set of all finite output sequences. For any measurable set
E ⊆ BY , for some δ > 0, we denote the δ neighborhood of
set E by Eδ and Ēδ , where Eδ is the largest measurable set
contained in E satisfying:

Eδ={y∈E|∀̄y∈BY\E, ‖̄y(i)−y(i)‖≥δ,∀i∈{0,. . . ,n}}, (3)

andĒδ is the smallest measurable set containing E satisfying:

Ēδ={y∈BY | ∃ȳ∈E, ‖̄y(i)−y(i)‖≤δ,∀i∈{0,. . . ,n}}.(4)

Note that we can regard Eδ and Ēδ respectively as the δ-
deflated version and δ-inflated version of set E.

Now, we introduce a notion of opacity for the class of
stochastic systems defined above.

Definition 3.1: Let Σ=(X,X0, XS , U, ς, f, Y, h) be a dt-
SCS and consider constants δ ≥ 0, 0≤ ε < 1. System Σ is
(δ, ε)-approximate initial-state opaque if for any x0 ∈ X0 ∩
XS , there exists x′0 ∈ X0\XS , so that for any input sequence
ν, there exisits an input sequence ν′, such that for every
measurable set E⊆BY and the δ neighboring sets Eδ and
Ēδ as defined in (3) and (4), the following inequalities hold:

P(ζx′
0ν

′ ∈Eδ)−ε≤P(ζx0ν ∈ E)≤P(ζx′
0ν

′ ∈ Ēδ)+ε, (5)

where ζx0ν and ζx′
0ν

′ are the output runs of the same length,
starting from x0 under ν and x′0 under ν′, respectively.

Remark 3.2: In this definition, we use parameter ε to
denote the largest allowable probability violation for the
output trajectories starting from the secret and non-secret
initial states x0 and x′0 to be δ close. Note that the value of
parameter δ is chosen depending on the measurement pre-
cision of a malicious intruder. In the case that the precision
of the intruder is lower than δ, the δ neighborhood of set
E, i.e. Eδ and Ēδ , is indistinguishable from set E from
the intruder’s point of view. When δ = 0, the probability
inequalities in (5) boils down to |P(ζx0ν∈E)−P(ζx′

0ν
′∈E)|≤ε,

and we use the term ε-approximate initial-state opacity. It is
worth mentioning that, in this case the parameter ε can be
captured exactly by total variation distance [20], [21] for the
case of finite MDPs. Thus existing techniques for computing
total variation distance can be leveraged as tools to check the
probability distance in (5), which would be applicable for the
verification of ε-approximate initial-state opacity for finite
MDPs. Although computing this distance is shown to be NP-
hard [20], [21], there have been some results to approximate
the distance, which are #P-hard and in PSPACE see, e.g.
[19], [22]. Moreover, in the case that δ = 0, ε= 0, and no
stochasticity exists in the transition functions of the systems,
this notion boils down to exact opacity defined in [12] for
general nondeterministic transition systems.

Note that throughout the work we assume X0 * XS ,
otherwise (δ, ε)-approximate initial-state opacity is trivially
violated.

IV. STOCHASTIC SIMULATION FUNCTIONS FOR OPACITY

In this section, we introduce a notion of initial-state
opacity-preserving stochastic simulation functions for dt-
SCS. The stochastic simulation function will play an impor-
tant role in analyzing opacity for dt-SCS. First, we provide
the definition of initial-state opacity-preserving stochastic
simulation functions.

Definition 4.1: (Initial-state opacity-preserving stochastic
simulation function) Let Σ = (X,X0, XS , U, ς, f, Y, h) and
Σ̂=(X̂, X̂0, X̂S , Û , ς, f̂ , Ŷ , ĥ) be two dt-SCS with the same
output sets Y = Ŷ . A function V :X×X̂→R≥0 is called an
initial-state opacity-preserving stochastic simulation function
(InitSOP-SSF) from Σ̂ to Σ, if there exist constants ψ ≥ 0,
ω ≥ 0, a function α ∈ K∞, and a function κ ∈ K which
satisfies κ(s) ≥ κ̂s, ∀s ∈ R≥0, where 0 < κ̂ < 1, such that

1) a) ∀x0 ∈ X0 ∩XS , ∃x̂0 ∈ X̂0 ∩ X̂S : V (x0, x̂0) ≤ ω;
b) ∀x̂0 ∈ X̂0 \ X̂S , ∃x0 ∈ X0 \XS : V (x0, x̂0) ≤ ω;

2) ∀x ∈ X,∀x̂ ∈ X̂ , α(‖h(x)− ĥ(x̂)‖) ≤ V (x, x̂);
3) ∀x ∈ X,∀x̂ ∈ X̂ , the following conditions hold:

a) ∀u, ∃û, s.t. E
[
V (f(x, u, ς), f̂(x̂, û, ς))

∣∣x, x̂, u, û]−
V (x, x̂) ≤ −κ(V (x, x̂)) + ψ;
b) ∀û, ∃u, s.t. E

[
V (f(x, u, ς), f̂(x̂, û, ς))

∣∣x, x̂, u, û]−
V (x, x̂) ≤ −κ(V (x, x̂)) + ψ.

Now, before stating the main theorem in this section, we
provide the following technical proposition which is inspired
by Theorem 3.3 in [24]. This proposition shows us the
usefulness of the InitSOP-SSF in the sense that it can be
employed to show indistinguishability of output trajectories
of two dt-SCS in a probabilistic setting.

Proposition 4.2: Let Σ = (X,X0, XS , U, ς, f, Y, h) and
Σ̂=(X̂, X̂0, X̂S , Û , ς, f̂ , Ŷ , ĥ) be two dt-SCS with the same
output sets Y = Ŷ . Suppose V is an InitSOP-SSF from Σ̂ to
Σ. Then, for any a ∈ X0∩XS in Σ, there exists â ∈ X̂0∩X̂S

in Σ̂ (respectively, for any â ∈ X̂0 \ X̂S in Σ̂, there exists
a ∈ X0 \XS in Σ) so that for any ν̂ ∈ Û in Σ̂, there exists
ν ∈ U in Σ and vice versa such that the following inequality
holds

P
{

sup
0≤k≤n

‖ζaν(k)− ζ̂âν̂(k)‖ ≤ λ | [a; â]

}
≥ 1− ε̄λ,

ε̄λ :=

{
1−(1− ω

α(λ) )(1− ψ
α(λ) )n if α(λ)≥ ψ

κ̂,

( ω
α(λ) )(1−κ̂)n+( ψ

κ̂α(λ))(1−(1−κ̂)n) if α(λ)< ψ
κ̂ ,

(6)

for any λ > 0.
Proof: It can be readily seen that by conditions 2)

and 3) in Definition 4.1, the InitSOP-SSF is a stochastic
simulation function (SSF) (as defined in [24, Definition 3.2])
both from Σ̂ to Σ and from Σ to Σ̂. Since by condition
1) in Definition 4.1, V (a, â) ≤ ω, the rest of the proof is
concluded by applying Theorem 3.3 in [24].

This proposition will be used for the proof of the following
main theorem, where we show preservation of approximate
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initial-state opacity across related systems as in Definition
4.1. The next lemmas will be used to prove the main result.

Lemma 4.3: Suppose for two dt-SCS Σ and Σ̂, the output
trajectories ζaν and ζ̂âν̂ satisfy the inequality

sup
0≤k≤n

‖ζaν(k)− ζ̂âν̂(k)‖ ≤ λ,

for some time bound n and λ > 0. Then we have:
ζ̂âν̂ ∈ Eλ =⇒ ζaν ∈ E; ζaν ∈ E =⇒ ζ̂âν̂ ∈ Ēλ,

over time interval [0, n], for any measurable set E ⊆ BY
and the modified sets Eλ and Ēλ as defined in (3) and (4).

Proof: As can be seen from the definition of Eλ and Ēλ

in (3) and (4), given any set of output sequences E ⊆ BY ,
Eλ and Ēλ are the λ-deflated version and λ-inflated version
of set E, respectively. Since we have

sup
0≤k≤n

‖ζaν(k)− ζ̂âν̂(k)‖ ≤ λ,

then it can be readily seen that according to the structure
of Eλ and Ēλ, ζ̂âν̂ ∈ Eλ guarantees ζaν ∈ E. Similarly,
ζaν ∈ E inplies ζ̂âν̂ ∈ Ēλ as well.
This lemma essentially provides us the relation between the
property satisfactions of two dt-SCS, given that the output
trajectories of these two dt-SCS are close to each other.
Based on this lemma, the following lemma presents another
technical result of this paper.

Lemma 4.4: Suppose Σ and Σ̂ are two dt-SCS for which
inequality (6) holds with initial states a and â, input se-
quences ν and ν̂, a constant pair (λ,ε̄λ) and any time bound
n. The following inequality holds for any set E ⊆ BY and
the modified sets Eλ and Ēλ as defined in (3) and (4):

P(ζ̂âν̂ ∈ Eλ)−ε̄λ≤P(ζaν ∈ E) ≤ P(ζ̂âν̂ ∈ Ēλ)+ε̄λ, (7)

where the satisfaction is over time interval {0, . . . , n}.
Proof: Let us consider the events: E1:={ζ̂âν̂ ∈ Eλ},

E2:={ζaν ∈ E} and E3:={sup0≤k≤n ‖ζaν(k) − ζ̂âν̂(k)‖ ≤
λ}. Since we have from Lemma (4.3), E1 ∩E3 =⇒ E2, thus,
P(Ē2) ≤ P(Ē1 ∪ Ē3) ≤ P(Ē1) + P(Ē3), where Ē1, Ē2 and Ē3
are the complements of E1, E2 and E3, respectively. As we
have by (6), P(Ē3) ≤ ε̄λ, now we readily get:

P(Ē2) ≤ P(Ē1) + ε̄λ =⇒ 1− P(E2) ≤ 1− P(E1) + ε̄λ

=⇒ P(E1) ≤ P(E2) + ε̄λ,

which gives us P(ζ̂âν̂ ∈ Eλ)− ε̄λ ≤ P(ζaν ∈ E). The proof
of P(ζaν ∈ E) ≤ P(ζ̂âν̂ ∈ Ēλ)+ ε̄λ is similar and is omitted
here due to lack of space.

Now, we present the main result of this paper on the
preservation of opacity across related dt-SCS systems.

Theorem 4.5: Let Σ = (X,X0,XS ,U,ς,f,Y,h) and Σ̂ =
(X̂,X̂0,X̂S ,Û ,ς,f̂ ,Ŷ ,ĥ) be two dt-SCS with the same output
sets Y = Ŷ . Consider constants ε ∈ R≥0 and λ ∈ R>0.
Assume V is an InitSOP-SSF from Σ̂ to Σ as in Definition
4.1 with the corresponding constants ψ, ω, κ̂ and K∞
function α. Then the following implication holds:

Σ̂ is ε-approximate initial-state opaque
⇒ Σ is (2λ, ε+2ε̄λ)-approximate initial-state opaque, (8)

where ε̄λ ∈ R≥0 is computed as in (6).
Proof: Consider an arbitrary secret initial state x0 ∈

X0 ∩ XS , input sequence ν = {u1, u2, . . . , un} and the
corresponding state run ξx0ν = (x0, x1, . . . , xn) in Σ. Since
V is an InitSOP-SSF from Σ̂ to Σ, by conditions 1)a), 2) and
3)a) in Definition 4.1, there exist a secret initial state x̂0 ∈
X̂0∩X̂S , input sequence ν̂ = {û1, û2, . . . , ûn} and state run
ξ̂x̂0ν̂ = (x̂0, x̂1, . . . , x̂n) in Σ̂ such that V (x0, x̂0) ≤ ω, and
∀i ∈ {0, 1, . . . , n}:

α(‖h(xi)− ĥ(x̂i)‖) ≤ V (xi, x̂i),

E
[
V (f(xi, ui, ςi)), f̂(x̂i, ûi, ςi))

∣∣xi, x̂i, ui, ûi]
− V (xi, x̂i) ≤ −κ(V (xi, x̂i)) + ψ.

By applying Proposition 4.2, for the given λ, we have:

P
{

max
0≤i≤n

‖ζx0ν(i)−ζx̂0ν̂(i)‖ ≤ λ | [x0; x̂0]

}
≥1− ε̄λ,

where ε̄λ is computed using inequality (6). By applying (7)
in Lemma 4.4, we get for any set E ⊆ BY and the modified
sets Eλ and Ēλ:

P(ζ̂x̂0ν̂ ∈ Eλ)− P(ζx0ν ∈ E) ≤ ε̄λ, (9)

P(ζx0ν ∈ E)− P(ζ̂x̂0ν̂ ∈ Ēλ) ≤ ε̄λ. (10)

Since Σ̂ is ε-approximate initial-state opaque, by (5) in
Definition 3.1, there exist a non-secret initial state x̂′0 ∈
X̂0 \ X̂S , input sequence ν̂′ = {û′1, û′2, . . . , û′n} and state
run ξx̂′

0ν̂
′ = (x̂′0, x̂

′
1, . . . , x̂

′
n) in Σ̂, such that ‖P(ζ̂x̂′

0ν̂
′ ∈

E)− P(ζ̂x̂0ν̂ ∈ E)‖ ≤ ε holds for any set E, so we have:

P(ζ̂x̂′
0ν̂

′ ∈ Eλ)− P(ζ̂x̂0ν̂ ∈ Eλ) ≤ ε, (11)

P(ζ̂x̂0ν̂ ∈ Ēλ)− P(ζ̂x̂′
0ν̂

′ ∈ Ēλ) ≤ ε. (12)

Again, since V is an InitSOP-SSF from Σ̂ to Σ, by conditions
1)b), 2) and 3)b) in Definition 4.1, Proposition 4.2 and (7) in
Lemma 4.4, there exist an initial state x′0 ∈ X0 \XS , input
sequence ν′ = {u′1, u′2, . . . , u′n} and the corresponding state
run ξx′

0ν
′ = (x′0, x

′
1, . . . , x

′
n) in Σ such that

P(ζx′
0ν

′ ∈ E2λ)− P(ζ̂x̂′
0ν̂

′ ∈ Eλ) ≤ ε̄λ, (13)

P(ζ̂x̂′
0ν̂

′ ∈ Ēλ)− P(ζx′
0ν

′ ∈ Ē2λ) ≤ ε̄λ. (14)

Hence, by combining inequalities (9), (11), (13), we have
the following result

P(ζx′
0ν

′ ∈ E2λ)− P(ζx0ν ∈ E) ≤ ε+ 2ε̄λ. (15)

Additionally, combining inequalities (10), (12), (14), we get

P(ζx0ν ∈ E)− P(ζx′
0ν

′ ∈ Ē2λ) ≤ ε+ 2ε̄λ. (16)

Since x0 ∈ X0∩XS and input sequence ν in Σ are arbitrary,
we conclude that Σ is (2λ, ε+2ε̄λ)-approximate initial-state
opaque.

Remark 4.6: The theorem provides a sufficient condition
for approximate initial-state opacity based on the relation
between two stochastic systems. It bridges the gap between
the verification of opacity and abstraction-based techniques
on stochastic systems. To be specific, when analyzing opacity
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for a large system Σ, the verification procedure can be highly
time-consuming. By constructing an abstraction of system Σ,
which appears as system Σ̂ in the theorem, and leveraging
the simulation relation between them, one can efficiently
verify opacity of the complex system Σ. The abstraction
is contructed as a finite Markov decision process (MDP)
in the following subsection V-A. In addition, as mentioned
before, ε-approximate initial-state opacity for the MDP can
be verified easily using existing computation algorithms for
total variation distance.

V. OPACITY OF STOCHASTIC CONTROL SYSTEMS BASED
ON FINITE ABSTRACTIONS

In this section, we show how to analyze approximate opac-
ity for the class of dt-SCS based on their finite abstractions
(finite MDPs). First, we provide the construction of finite
abstractions of the concrete systems.

A. Finite Abstractions of dt-SCS

Given a dt-SCS Σ = (X,X0, XS , U, ς, f, Y, h), we con-
struct a finite MDP as its finite abstraction, represented by
the tuple Σ̂=(X̂, X̂0, X̂S , Û , ς, f̂ , Ŷ , ĥ). The construction of
finite MDPs follows a similar procedure as in [24, Algorithm
1] with some modifications to incorporate the role of secret
sets. First, for the given state set X and input set U , we select
finite partitions of them as X = ∪iXi, U = ∪iUi, and single
representative points x̄i ∈ Xi, ūi ∈ Ui as abstract states
and inputs. Then, we define the state and input sets of Σ̂
as X̂ = {x̄i, i = 1, . . . , nx}, and Û = {ūi, i = 1, . . . , nu},
which simply consist of the selected representative points.
The transition function f̂ : X̂ × Û × Vς → X̂ is defined as

f̂(x̂, û, ς) = Πx(f(x̂, û, ς)), (17)

where Πx : X → X̂ represents the map that assigns to any
x ∈ X , the representative point x̂ ∈ X̂ of the corresponding
partition set containing x. The output set Ŷ is the image of
X̂ under h, with ĥ : X̂ → Ŷ being the same as h except
for having a restricted domain X̂ . Similarly, we use Πu :
U → Û to denote the map that assigns to any u ∈ U ,
the representative input point û ∈ Û of the corresponding
partition set containing u.

Remark 5.1: Note that we have not defined the map Πx :
X → X̂ yet. For example, one can choose center points (if
applicable) of the partitions as representative points or apply
other specialized mapping rule to it. In this work, we enforce
two conditions as the rule of choosing representative points
for initial states and secret states as follows:

1) If X0 ∩ Xi 6= ∅, we constrain the representative point
of Xi to be chosen as x̄i ∈ X0 ∩ Xi;

2) If XS ∩ Xi 6= ∅, we constrain the representative point
of Xi to be chosen as x̄i ∈ XS ∩ Xi.

By the above conditions, one can observe that the initial
state set X̂0 and secret state set X̂S satisfy X̂0 ⊆ X0 and
X̂S ⊆ XS .

Remark 5.2: In this paper, it is assumed that the abstrac-
tion maps Πx and Πu satisfy the inequalities
‖Πx(x)−x‖≤µx,∀x ∈ X, ‖Πu(u)−u‖≤µu,∀u ∈ U, (18)

where µx and µu are the state and input discretization
parameter defined as

µx := sup{‖x− x′‖, x, x′ ∈ Xi, i = 1, 2, . . . , nx}, (19)
µu := sup{‖u− u′‖, u, u′ ∈ Ui, i = 1, 2, . . . , nu}. (20)

Next, we construct the InitSOP-SSF for a class of nonlinear
stochastic systems.

B. Establishing InitSOP-SSF for a Class of Nonlinear
Stochastic Systems

In this subsection, we focus on a general class of nonlinear
stochastic systems Σ. We provide an InitSOP-SSF candidate
for the concrete systems Σ and their finite MDPs as con-
structed in the previous subsection. The existence of such an
InitSOP-SSF enables us to verify opacity of a continuous-
space stochastic system by leveraging its finite abstraction.
The establishment of InitSOP-SSF is under the following two
assumptions. First, we assume that the output map h satisfies
the following general Lipschitz assumption: there exists an
α̃ ∈ K∞ such that ‖h(x) − h(x′)‖ ≤ α̃(‖x − x′‖) for all
x, x′ ∈ X . Second, we assume that the concrete system
is incrementally input-to-state stable as in the following
definition.

Definition 5.3: A dt-SCS Σ is incrementally input-to-state
stable if there exists function V : X ×X → R≥0 such that
∀x, x′ ∈ X , ∀u, u′ ∈ U the following two inequalities hold:

α(‖x− x′‖) ≤ V (x, x′) ≤ α(‖x− x′‖), (21)

E
[
V (f(x, u, ς),f(x′, u′, ς))

∣∣x, x′, u, u′]−V (x, x′)

≤ −κ̄(V (x, x′)) + ρ̄(‖u− u′‖), (22)

for some α, α ∈ K∞, κ̄ ∈ K, and ρ̄ ∈ K∞ ∪ {0}.
Now, we provide the main theorem in this subsection. We
show that by adding a mild condition, the function V
described in Definition 5.3 is indeed an InitSOP-SSF from
the finite abstraction Σ̂ (as constructed in Subsection V-A)
to the concrete system Σ.

Theorem 5.4: Let Σ be an incrementally input-to-state
stable dt-SCS via a function V as in Definition 5.3 and Σ̂ be
its finite MDP constructed as in Subsection V-A. Suppose
there exists a constant 0 < κ̂ < 1 such that the function
κ̄ ∈ K satisfies κ̄(s) ≥ κ̂s, ∀s ∈ R≥0. Assume that there
exists a function γ ∈ K∞ such that V satisfies

V (x, x′)− V (x, x′′) ≤ γ(‖x′ − x′′‖),∀x, x′, x′′ ∈ X. (23)

Then V is an InitSOP-SSF from Σ̂ to Σ.
Proof: We start by proving condition 1) in Definition

4.1. For every initial state x0 ∈ X0 ∩XS in Σ, there always
exists a representative point x̂0 = Πx(x0) in Σ̂ which is
inside the set X̂0∩X̂S by the construction of X̂0 and X̂S , and
‖x̂0−x0‖ ≤ µx holds by (18). Hence, we have V (x0, x̂0) ≤
α(‖x0 − x̂0‖) by (21), and condition 1)a) in Definition 4.1
is satisfied with ω = α(µx). For every x̂0 ∈ X̂0 \ X̂S , by
choosing x0 = x̂0 which is also inside X0 \ XS , we get
V (x0, x̂0) = 0 ≤ ω. Hence, condition 1)b) in Definition 4.1
holds as well.

Let us show condition 2) in Definition 4.1 holds. Since
Σ is incrementally input-to-state stable and using (21), and
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given the Lipschitz assumption on h, ∀x ∈X and ∀x̂ ∈ X̂ ,
one gets

‖h(x)− ĥ(x̂)‖ ≤ α̃(‖x− x̂‖) ≤ α̃ ◦ α−1(V (x, x̂)),

which results in
α(‖h(x)− ĥ(x̂)‖) ≤ V (x, x̂),

∀x ∈ X and ∀x̂ ∈ X̂ , where α(s) := (α̃ ◦ α−1)−1(s),
∀s ∈ R≥0. Hence, condition 2) in Definition 4.1 is satisfied.
Let us now show that condition 3) in Definition 4.1 holds
as well. Now, ∀x ∈ X,∀x̂ ∈ X̂ , ∀u ∈ U and ∀û ∈ Û , by
taking the conditional expectation from (23), we have

E
[
V (f(x,u,ς),f̂(x̂,û,ς))

∣∣x,x̂,u,û]
− E

[
V (f(x,u,ς),f(x̂,û,ς))

∣∣x,x̂,u,û]
≤ E

[
γ(‖f̂(x̂, û, ς)−f(x̂, û, ς)‖)

∣∣x,x̂,u,û].
Employing (22), one gets

E
[
V (f(x, u, ς), f(x̂, û, ς))

∣∣x,x̂,u,û]
≤ V (x, x̂)− κ̄(V (x, x̂))+ρ̄(‖u− û‖). (24)

Since f̂(x̂, û, ς) = Πx(f(x̂, û, ς)), by using (18), we get

E
[
γ(‖f̂(x̂, û, ς)−f(x̂, û, ς)‖)

∣∣x,x̂,u,û]≤ γ(µx).

Now, consider any u ∈ U . By choosing the representative
input û = Πu(u), which satisfies ‖u− û‖ ≤ µu, we obtain

E
[
V (f(x, u, ς), f̂(x̂, û, ς))

∣∣x,x̂,u,û]− V (x, x̂)

≤−κ̄(V (x, x̂))+ ρ̄(µu) + γ(µx). (25)

Hence, condition 3)a) in Definition 4.1 holds with ψ =
ρ̄(µu) + γ(µx). Similarly, ∀x ∈ X,∀x̂ ∈ X̂ , and ∀û ∈ Û, by
choosing u = û, we have

E
[
V (f(x, u, ς), f̂(x̂, û, ς))

∣∣x,x̂,u,û]− V (x, x̂)

≤−κ̄(V (x, x̂))+ γ(µx) ≤−κ̄(V (x, x̂))+ ψ.

Therefore, condition 3)b) in Definition 4.1 holds as well, and
we conclude that V is an InitSOP-SSF from Σ̂ to Σ.

VI. DISCUSSION

In this paper, we extended the notion of approximate
opacity to discrete-time stochastic systems. The new notion
called (δ, ε)-approximate initial-state opacity is proposed to
evaluate the security level of a system to hide initial-state
secret information. A stronger version of stochastic simula-
tion function that preserves opacity was also proposed. By
leveraging this simulation function, we discussed an effective
approach to construct finite MDPs, which are in opacity-
preserving relations with the original systems. Our result
provides a promising way for verifying opacity of complex
discrete-time stochastic control systems by the verification of
opacity on the related finite MDPs, which can be done using
computational algorithms for total variation distance. For the
future work, we plan to extend our framework to cover more
notions of opacity, e.g., K-step opacity, current-state opacity
and infinite-state opacity.
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