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Abstract—Opacity is an important information-flow security
property in the analysis of cyber-physical systems. It captures
the plausible deniability of the system’s secret behavior in the
presence of an intruder that may access the information flow.
Existing works on opacity only consider non-metric systems by
assuming that the intruder can always distinguish two different
outputs precisely. In this paper, we extend the concept of opacity
to systems whose output sets are equipped with metrics. Such
systems are widely used in the modeling of many real-world
systems whose measurements are physical signals. A new concept
called approximate opacity is proposed in order to quantita-
tively evaluate the security guarantee level with respect to the
measurement precision of the intruder. Then we propose a new
simulation-type relation, called approximate opacity preserving
simulation relation, which characterizes how close two systems
are in terms of the satisfaction of approximate opacity. This
allows us to verify approximate opacity for large-scale, or even
infinite systems, using their abstractions. We also discuss how to
construct approximate opacity preserving symbolic models for
a class of discrete-time control systems. Qur results extend the
definitions and analysis techniques for opacity from non-metric
systems to metric systems.

Index Terms—Opacity; Approximate Simulation Relations;
Finite Abstractions; Symbolic Models.

I. INTRODUCTION
A. Motivations

Cyber-physical systems (CPS) are complex systems re-
sulting from tight interactions of dynamical systems and
computational devices. Such systems are generally very com-
plex posing both continuous and discrete behaviors which
makes the verification and design of such systems significantly
challenging. In particular, components in CPS are usually
connected via communication networks in order to acquire
and exchange information so that some global functionality
of the system can be achieved. However, this also brings
new challenges for the verification and design of CPS since
the communication between system components may release
information that might compromise the security of the system.
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Therefore, how to analyze and enforce security for CPS is
becoming an increasingly important issue and has drawn
considerable attention in the literature in the past few years
(11, [2].

In this paper, we investigate an important information-flow
security property called opacity. Roughly speaking, opacity
is a confidentiality property that captures whether or not the
“secret” of the system can be revealed to an intruder that can
infer the system’s actual behavior based on the information
flow. A system is said to be opaque if it always has the
plausible deniability for any of its secret behavior. The concept
of opacity was originally proposed in the computer science
literature as a unified notion for several security properties [3],
[4]. Since then, opacity has been studied more extensively in
the context of Discrete-Event Systems (DES), an important
class of event-driven dynamical systems with discrete state
spaces. For example, in [5]-[7], several state-based notions
of opacity were proposed, which include current-state opacity,
initial-state opacity, K-step opacity and infinite-step opacity.
In [8], the author proposed two language-based opacity notions
called strong opacity and weak opacity and investigated their
relationships with some other properties. In [9], transformation
algorithms among different notions of opacity were proposed.
The above mentioned works mainly consider DES modeled
by finite-state automata. More recently, the definitions and
verification algorithms for different notions of opacity have
been extended to other classes of (discrete) systems, including
Petri nets [10]-[13], stochastic systems [14]-[16], recursive
tile systems [17] and pushdown systems [18]. The interested
readers are referred to recent surveys [19], [20] for more
references and recent developments on this active research
area.

Since opacity is an information-flow property, its definition
strictly depends on the information model of the system.
Most of the existing works in the literature formulate opacity
by adopting the event-based observation model, i.e., some
events of the system (either transition labels or state labels)
are observable or distinguishable while some are not. This
essentially assumes that the output of the system is symbolic
in the sense that we can precisely distinguish two outputs with
different labels. Hereafter, we will also refer to opacity under
this setting as exact opacity. Exact opacity is very meaningful
for systems whose output sets are non-metric, e.g., discrete
systems whose outputs are logic events. However, for many
real-world applications whose outputs are physical signals,
instead of just saying that two events are distinguishable or
indistinguishable, we may have a measurement to quanti-
tatively evaluate how close two outputs are. Such systems
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are referred to as metric systems, where the output sets are
equipped with appropriate metrics. For metric systems, if two
signals are very close to each other, then it will be very hard
to distinguish them unambiguously due to the measurement
precision or potential measurement noises. A typical example
of this scenario is linear or nonlinear discrete-time control
systems with continuous state-spaces and continuous output
mappings. Therefore, existing definitions of opacity are too
strong for metric systems since they implicitly assume that
the intruder can always distinguish two output signals even
when they are arbitrarily close to each other, which is not
practical.

B. Our Contributions

In this paper, we propose a new concept called approximate
opacity that is more applicable to metric systems. In particular,
we treat two outputs as “indistinguishable” outputs if their
distance is smaller than a given threshold parameter § > 0.
We consider three basic types of opacity, initial-state opacity,
current-state opacity and infinite-step opacity. For example,
d-approximate initial-state opacity requires that, for any state
run starting from a secret state, there exists another state run
starting from a non-secret state, such that their corresponding
output runs are §-close to each other. Intuitively, d-approximate
initial-state opacity says that the intruder can never determine
that the system is initiated from a secret state if it does not
have an enough measurement precision which is captured
by parameter ¢. In other words, instead of requiring that
the system is exactly opaque, our new definitions essentially
provide relaxed versions of opacity with a quantitative security
guarantees level with respect to the measurement precision of
the intruder.

For systems whose state-spaces are very large or even infi-
nite, it is desirable to construct abstract models that preserve
opacity, to some extent, for the purpose of verification. To
this end, we propose the concept of e-approximate opacity
preserving simulation relation. We show that if there is an
g-approximate opacity preserving simulation relation from
system .S, to system Sy, then S being (§ — 2¢)-approximate
opaque implies that S, is §-approximate opaque. In particular,
for a class of incrementally input-to-state stable discrete-time
control systems with possibly infinite state-spaces, we propose
an effective approach to construct symbolic models (a.k.a.
finite abstractions) that approximately simulate the original
systems in the sense of opacity preserving and vice versa.
The resulting symbolic model is finite if the state-space of
the original continuous system is within a bounded region.
Therefore, the proposed abstraction technique together with
the verification algorithm for the finite case provide a sound
way for verifying opacity of discrete-time control systems with
continuous state-spaces.

The contributions of this work are summarized as follows.

o New notions of J-approximate opacity are proposed to
quantitatively characterize the issue regarding the mea-
surement precision of the intruder.

« Effective algorithms are provided to verify different no-
tions of approximate opacity.

« New simulation relations termed as e-approximate opac-
ity preserving simulation relations are proposed to char-
acterize how close two systems are in terms of the
satisfaction of approximate opacity.

o For a class of discrete-time control systems, we show
how to construct symbolic models that preserve opacity
with given a-priory precision.

C. Related Works

Our work is closely related to several works in the literature.
First, several different approaches have been proposed in the
literature to evaluate opacity more quantitatively rather than
requiring that the system is opaque exactly [14], [21]-[23].
For example, in [22], the authors adopt the Jensen-Shannon
divergence as the measurement to quantify secrecy loss. In
[14], [21], [23], stochastic DES models are used to study
the probabilistic measurement of opacity. These approaches
essentially aim to analyze how opaque a single system is,
e.g., the probability of being opaque. However, they neither
consider how close two systems are in terms of being opaque
nor consider under what observation precision level, we can
guarantee opacity.

There are also attempts in the literature that extend opacity
from discrete systems to continuous systems. For example,
in the recent results in [24]-[26], the authors extended the
notion of opacity to (switched) linear systems. However, their
definition of opacity is more related to an output reachability
property rather than an information-flow property. Moreover,
their formulation is mostly based on the setting of exact
opacity, i.e., we can always distinguish two different outputs
precisely no matter how close they are, In [24], the authors
mentioned the direction of using output metric to quantify
opacity and a property called strong e-K-initial-state opacity
was proposed, which is closely related to our notions. How-
ever, no systematic study, e.g., verification and abstraction as
we consider in this paper, was provided for this property.

Regarding the techniques used in this paper, first, our algo-
rithms for the verification of approximate notions of opacity
are motivated by the verification algorithms for exact opacity
studied in [5], [27]. In particular, we use the idea of con-
structing a new system, called the state-estimator, that tracks
all possible states consistent with the observation. However,
our construction of state-estimator is not exactly the same as
the existing one as additional state information is needed in
order to handle the issue of approximation.

Abstraction-based techniques have also been investigated
in the literature for the verification and synthesis of opacity;
see, e.g., [28]-[32]. In particular, in our recent work [28], we
propose several notions of opacity preserving (bi)simulation
relations. However, these relations only preserve exact opacity
for non-metric systems. Our new relations extend the relations
in [28] to metric systems by taking into account how close
two systems are. Such an extension is motivated by the
definition of approximate (bi)simulation relation originally
proposed in [33]. However, the original definition of approxi-
mate (bi)simulation relation does not necessarily preserve ap-
proximate opacity. Constructing symbolic models for control
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systems is also an active research area; see, e.g., [34]-[37].
However, most of the existing works on the construction of
symbolic models only consider the dynamics of the systems
and are not taking into account the opacity property. In our
approach, we need to consider both the dynamic and the
secret of the system while constructing the symbolic model
and guarantee the preservation of approximate opacity across
related systems.

A related notion called differential privacy was introduced in
[38] for database systems and has attracted significant attention
in the past few years [39]-[41]. In particular, [40] extends the
original notion of differential privacy to symbolic systems.
Differential privacy requires that any two adjacent data should
produce indistinguishable outputs in the probability sense.
However, the essence of opacity is a confidentiality property
that captures the plausible deniability of the system’s secret
behavior, while differential privacy captures whether or not
any sensitive data can be learned under some side-information.
These two properties are incomparable in general. Note that
there are also probabilistic versions of opacity studied in the
literature for systems modeled as Markov chains [14], [21]-
[23]. In those studies, the essence of probabilistic opacity is
still plausible deniability but with a quantitative measure; the
output at each state is still non-probabilistic.

Finally, approximate notions of two related properties called
diagnosability and predictability are investigated recently in
[42], [43]. Their setting is very similar to us as we both con-
sider a measurement uncertainty threshold. However, diagnos-
ability and predictability can be preserved by standard approx-
imate simulation relation. We show that standard approximate
simulation relation does not preserve opacity. Therefore, the
proposed approximate opacity preserving simulation relation
is different from the standard approximate simulation relation
in the literature.

D. Organization

The rest of this paper is organized as follows. In Section II,
we first introduce some necessary preliminaries. Then we
propose the concept of approximate opacity in Section III. The
verification procedures for approximate opacity are provided
in Section IV. In Section V, approximate opacity preserving
simulation relations are proposed and their properties are
also discussed. In Section VI, we describe how to construct
approximate opacity preserving symbolic models for incre-
mentally stable discrete-time control systems with continuous
state-spaces. Finally, we conclude the paper by Section VIIL.
Preliminary and partial version of this paper is presented as
an extended abstract in [44].

II. PRELIMINARIES
A. Notation

The symbols N, Ny, Z, R, R*, and Rg denote the set of
natural, nonnegative integer, integer, real, positive, and non-
negative real numbers, respectively. Given a vector x € R",
we denote by x; the i~th element of x, and by ||z the infinity
norm of x.

The closed ball centered at v € R™ with radius A is defined
by By(u) = {v € R™|||lu — v|| < A}. We denote the closed
ball centered at the origin in R™ and with radius A\ by B,.
A set B C R™ is called a box if B = []/",|c;,d;], where
¢i,d; € R with ¢; < d; for each ¢ € {1,...,m}. The span
of a box B is defined as span(B) = min{|d; — ¢;| | i =
1,...,m}.Forabox B C R™ and y < span(B), define the -
approximation [B],, = [R™],, N B, where [R™], = {a € R™ |
a; = kip, ki € Z,i =1,...,m}. Remark that [B],, # @ for
any p < span(B). Geometrically, for any p € R™ with p <
span(B) and A > p, the collection of sets {Bx(p)},e(m), 18 a
finite covering of B, i.e. B C UPE[B]“ B (p). We extend the
notions of span and approximation to finite unions of boxes as
follows. Let A = szl Aj, where each A; is a box. Define
span(A) = min{span(A4;) | j = 1,...,M}, and for any
p < span(A), define [A], = U?;[Aj]w The Minkowski
sum of two sets P,QQ C R™ is defined by P ® Q = {x €
R™|3pepqeq,r =p+q}. Given a set S C R™ and a constant
6 € R>(, we define a new set S? = S @ By as the inflated
version of the set S.

Given a function f : Ng — R”, the (essential) supremum
of f is denoted by || f|le := (ess)sup{||f(k)|,k > 0}. A
continuous function v : R — R is said to belong to class
C if it is strictly increasing and (0) = 0; ~y is said to belong to
class Ko if v € K and 7(r) — oo as r — oco. A continuous
function 3 : Ry x Ry — R{ is said to belong to class KL
if, for each fixed s, the map S(r,s) belongs to class K
with respect to r and, for each fixed nonzero r, the map
B(r,s) is decreasing with respect to s and S(r,s) — 0 as
s — co. We identify a relation R C A x B with the map
R: A — 2B defined by b € R(a) iff (a,b) € R. Given a
relation R C A x B, R~ denotes the inverse relation defined
by R~t = {(b,a) € Bx A: (a,b) € R}.

B. System Model

In this paper, we employ a notion of “system” introduced
in [45] as the underlying model of CPS describing both
continuous-space and finite control systems.

Definition I1.1. A system S is a tuple
S:(XvXOaUv HaY»H)v (1)

where

o X is a (possibly infinite) set of states;

o Xo C X is a (possibly infinite) set of initial states;

e U is a (possibly infinite) set of inputs;

e — C X xU x X is a transition relation;

o Y is a set of outputs;

e H:X —Y is an output map.
A transition (z,u,x’') € — is also denoted by x s
For a transition © —— 2!, state x' is called a u-successor,
or simply a successor, of state x, state x is called a
u-predecessor, or simply a predecessor, of state x'. We denote
by Post,(z) the set of all u-successors of state x and by
Pre, () the set of all u-predecessors of state x. For a set
of states q € 2%, we define Post,(q) = Uye,Post,(z) and
Pre,(q) = UzeqPre,(z). A system S is said to be
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o metric, if the output set Y is equipped with a metric d :
Y xY —R{;

e finite (or symbolic), if X and U are finite sets;

o deterministic, if for any state x € X and any input u € U,
|Post, ()| < 1 and nondeterministic otherwise.

Given a system S = (X, X,, U, —— Y, H) and any
initial state zg € Xy, a finite state run generated from xg is a
finite sequence of transitions:

U1 U2 Un—1
xrg —> L1 —> -

Un
Tp—1 —> Tn, )
such that z; RAEY x;41 for all 0 < i < n. A finite output run
is a sequence Yoy - . .Y, such that there exists a finite state
run of the form (2) with y; = H(x;), fori =0,...,n

III. EXACT AND APPROXIMATE OPACITY

In this section, we first review the notion of exact opacity.
Then we introduce the notion of approximate opacity.

A. Exact Opacity

In many applications, systems may have some “secrets” that
do not want to be revealed to intruders that are potentially
malicious. In this paper, we adopt a state-based formula-
tion of secrets. Specifically, we assume that Xg C X is
a set of secret states. Hereafter, we will always consider
systems with secret states and we write a system S =
(X, Xo,U, — Y, H) with secret states Xg by a new tuple
S=(X,Xo,Xs, Uy, — Y, H).

In order to characterize whether or not a system is secure,
the concept of opacity was proposed in the literature. We
review three basic notions of opacity [9] as follows.

Definition L.1. Consider a  system S =
(X, Xo,Xs,U, — Y, H). System S is said to be

e initial-state opaque if for any ro € Xo N Xg and
run o - —2 L.

CL’O e Xo \ Xs and a ﬁmte state run
L» x, such that H(z;) = H(z})

2

finite state

there exist
/ '“'/1 '“'2

xo —_— Il — e ...

forany i =0,1,.

o current-state opaque lf for any xog € Xq and finite
state run g _n, T e,y T, such that

T, € Xg, there exist a:p € Xo and finite state run

xéL»xlﬁ>~- mnsuchthat:vneX\Xs
and H(x;) = H(z}) for any i =0,1,.

o infinite-step opaque lf for any zq € XO, any finite state

u

1 n
run xg - 21 - > 1, and any k €
{0,...,n}, zx € Xg zmplzes that there exist ;LO e Xy
Ul ’ U2 u
and a finite state run xy —— ) ——> - —» 1zl
such that ), € X \ Xg and H(z;) = H(z}) for any
1=0,1,...,n

The intuitions of the above definitions are as follows.
Suppose that the output run of the system can be observed by
a passive intruder that may use this information to infer the
secret of the system. Then initial-state opacity requires that the
intruder should never know for sure that the system is initiated
from a secret state no matter what output run is generated.

Similarly, current-state opacity says that the intruder should
never know for sure that the system is currently at a secret
state no matter what output run is generated. Infinite-step
opacity is stronger than both initial-state opacity and current-
state opacity as it requires that the intruder should never know
that the system is/was at a secret state for any specific instant &.
For any system S = (X, Xo, X5,U, — ,Y, H), we assume
without loss of generality that Voo € Xo : {x € Xo: H(x) =
H(xzo)} € Xg. This assumption essentially requires that the
secret of the system cannot be revealed initially; otherwise,
the system is not opaque trivially.

Remark IIL.2. Definition I11.1 implicitly considers the follow-
ing model of the intruder: (i) the intruder knows the model of
the system; and (ii) it can only observe the output trajectory
of the system. Therefore, the intruder essentially wants to use
the output trajectory observed online and the knowledge of the
system model to infer the internal behavior/state of the system.
Note that, in our setting, the input information is assumed to
be internal and the intruder does not know which input the
system takes. This setting can be easily relaxed and all results
in this paper can be extended to the case where both input and
output information are available by the intruder. For example,
we can simply refine the model of the system such that the
output space of the refined system is a pair and the input
leading to a state is also encoded in the output of this state.

Remark II1.3. Our definition of infinite-step opacity requires
that the intruder should never know for sure that the system
is/was at a secret state for any specific instant. In some cases,
the intruder may know that the system must have visited a
secret state, although it cannot tell the precise instant. Such
a requirement can be captured by the notion of strong (or
trajectory-based) infinite-step opacity; see, e.g., Remark 5 in
[6]. This definition is stronger than ours and which one to
use is dependent on the applications. However, strong infinite-
step opacity can be transformed to current-state opacity by
augmenting the state-space to encode whether a secret state
has been visited or not.

B. Approximate Opacity

Note that Definition III.1 requires that for any secret behav-
ior, there exists a non-secret behavior such that they generate
exactly the same output. Therefore, we will also refer to these
definitions as exact opacity. Exact opacity essentially assumes
that the intruder or the observer can always measure each out-
put or distinguish between two different outputs precisely. This
setting is reasonable for non-metric systems where outputs are
symbols or events. However, for metric systems, e.g., when the
outputs are physical signals, this setting may be too restrictive.
In particular, due to the imperfect measurement precision,
which is almost the case for all physical systems, it is very
difficult to distinguish two observations if their difference is
very small. Therefore, exact opacity may be too strong for
metric systems and it will be useful to define a weak and
“robust” version of opacity by characterizing under which
measurement precision the system is opaque. To this end, we
define new notions of opacity called approximate opacity for
metric systems.
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Definition IIL.4. Let S = (X, Xy, X5, U, — Y, H) be a
metric system, with the metric d defined over the output set,
and a constant § > 0. System S is said to be
« J-approximate initial-state opaque if for any xo € Xy N
. U1 u2 Un
Xgs and finite state run xy — x4 ——> -+ —> Ty,
there exist x, € Xp \ Xg and a finite state run

’
u u
ol e gt 2

u
—"» 2! such that

max d(H(z;),H(z})) <6
1€{0,...,n}

o J-approximate current-state opaque if for any xy € X
and finite state run x o, T ey Uy T, such
that x,, € Xg, /there exist/ xy € Xo and finite state run

e ! such that ©), € X \ Xg

;U1 ;U2
zOHle “e

and

max

A(H(z), H(z))) < 6
1€{0,...,n} ( (fL' ) (113' )) -

1
o J-approximate infinite-step opaque if for any xy € X,
any finite state run xg _, 1 S, Ty
and any k € {0,...,n}, =z € Xg implies
that there exist z{, € Xo and a finite state run
u/ ’
T — ) e

and

—s !, such that ), € X \ Xs

max d(H(z;), H(x})) <.
1€{0,...,n}

The notions of J-approximate initial-state, current-state
opacity and infinite-step opacity are very similar to their exact
counterparts. The main difference is how we treat two outputs
as indistinguishable outputs. Specifically, same as the exact
case, we still assume that the intruder know the system model
and the output trajectory generated. However, we further
assume that the intruder may not be able to distinguish an out-
put trajectory from other d-closed trajectories confidentially.
Intuitively, the approximate version of opacity can be inter-
preted as “the secret of the system cannot be revealed to an
intruder that does not have an enough measurement precision
related to parameter 6”. In other words, instead of providing
an exact security guarantee, approximate opacity provides a
relaxed and quantitative security guarantee with respect to the
measurement precision of the intruder. Therefore, the value ¢
can be interpreted as either the measurement imprecision of
the intruder or the security level the system can guarantee, i.e.,
under how powerful intruder the system is still secure. Clearly,
when § = 0, each notion of J-approximate opacity reduces
to its exact version. Similar to the exact case, hereafter, we
assume without loss of generality that

Vag € Xp : {:L‘ € Xo: d(H(CU()),H((E)) < 5} g Xg,

for any system S = (X, Xy, Xs, U, —— .Y, H). This
assumption can be easily checked and its non-satisfaction
means that §-approximate initial-state opacity, d-approximate
current-state opacity and J-approximate infinite-step opacity
are all violated trivially.

We illustrate exact opacity and approximate opacity by the
following example.

Example LS.  Consider system S =
(X, Xo,Xs, U, —— Y, H) depicted in Figure 1, where

Fig. 1. An example for approximate opacity, where states marked by red
denote secret states, states marked by input arrows denote initial states and
the output map is specified by the value associated to each state.

X = {ABCD}, Xy = {AB},Xs = {BLU =
{u},H = {0.1,0.15,0.2,0.35} C R and the output map
is specified by the value associated to each state. Clearly,
none of exact initial-state opacity, exact current-state opacity
and exact infinite-step opacity is satisfied since we know
immediately that the system is at secret state B when value
0.1 is observed.

Now, let us assume that the output set Y is equipped with
metric d defined by d(y1,y2) = |y1 — y2|. We claim that S is
not 0.05-approximate current-state opaque. For example, let
us consider finite run B —“+ D -+ Bthat generates output
run [0.1][0.35][0.1]. However, there does not exists a finite run
leading to a non-secret state whose output run is 0.05-close to
the above output run. To see this, in order to match the above
output run, we must consider a run starting from state B, since
for the initial state A, we have d(H(A), H(B)) = 0.1 > 0.05,
and the next state reached can only be D. From state D, we
can reach states A and B, but d(H(A),0.1) =0.1 > 0.05 =:
0. Therefore, the only finite run that approximately matches the
above output will end up with secret state B, i.e., we know
unambiguously that the system is currently at a secret state
even when we cannot measure the output precisely. On the
other hand, one can check that the system is 0.1-approximate
current-state opaque.

Similarly, system S is not 0.1-approximate initial-state
opaque, since for output run [0.1][0.35] starting from the secret
state B, there is no run starting from a non-secret initial state
that can approximately match it. One can also check that
the system is d-approximate initial-state opaque only when
0 > 0.15. We will provide formal procedures for verifying
approximate opacity later.

Remark IIL6. Let S = (X, Xy, Xs,U, —— Y, H) be a
metric system. If the output map H is identity, i.e. H(x) = x,
Ve € X, then S is trivially not exactly opaque as in
Definition II1.1 since we know the exact state of the system
directly. However, this is not the case for the approximate
notions of opacity as in Definition II1.4 since the distance
between a secret state and a non-secret state can be very small
even if their values are not exactly the same.

IV. VERIFICATION OF APPROXIMATE OPACITY FOR FINITE
SYSTEMS

In this section, we show how to verify approximate opacity
for finite systems. This will also provide the basis for the
verification of approximate opacity for infinite systems.
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A. Verification of Approximate Initial-State Opacity

In order to verify d-approximate initial-state opacity, we
construct a new system called the §-approximate initial-state
estimator defined as follows.

Definition IV.1. Let S = (X, Xy, X5, U, —— Y, H) be
a metric system, with the metric d defined over the output
set, and a constant § > 0. The §-approximate initial-state
estimator is a system (without outputs)

SI = (X17X107U7 4I> )7

where

o X7 C X x 2% is the set of states;

o X10={(z,9)eX x2X .2 €qe d(H(x),H(2')) <
0} is the set of initial states;

o U is the set of inputs, which is the same as the one in S;

. —— C X; x U x Xy is the transition function

defined by: for any (x,q), (2',q¢') € X x 2% and u € U,
(z,q) — (',q) if
1) (' u,x) € — ; and
2) ¢'=UzeuPrey(q)n{z”" e X : d(H(2"), H(2z")) <4}.
For the sake of simplicity, we only consider the part of St that
is reachable from initial states.

Intuitively, the §-approximate initial-state estimator works
as follows. Each initial state of S; is a pair consisting of
a system state and its J-closed states; we consider all each
pairs as the set of initial states. Then from each state, we
track backwards states that are consistent with the output
information recursively. Our construction is motivated by the
reversed-automaton-based initial-state-estimator proposed in
[9] but with the following differences. First, the way we
defined information-consistency is different. Here we treat
states whose output are d-close to each other as consistent
states. Moreover, the structure in [9] only requires a state space
of 2%, while our state space is X x 2%. The additional first
component can be understood as the “reference trajectory” that
is used to determine what is “d-close” at each instant. We use
the following result to show the main property of S;.
Proposition IV.2. Let S = (X, X, Xs, U, — Y, H) be
a metric system, with the metric d defined over the output set,
and a constant 6 > 0. Let S; = (X1, X109, U, — ) be its

d-approximate initial-state estimator. Then for any (o, qo) €
X0 and any finite run

u Un

u 3
(anQO) 411’ (xlaQI) 41’ 4]’ (xnaqn)

we have

. Un Unp—1 uy
(i) x, —> Tp_1 — -+ — xg, and

max;co1,..ny Ad(H (z), H(z;,_;)) <9
Proof. See the Appendix. O

The next theorem provides one of the main results of
this section on the verification of §-approximate initial-state
opacity of finite metric systems.

v v v

B.{4B.CY] [ 4B
Tu i |

(b) Sy when § = 0.15

Fig. 2. Examples of §-approximate initial-state estimators.

Theorem IV.3. Let S = (X, Xy, Xs, U, — Y. H) be a
finite metric system, with the metric d defined over the output
set, and a constant § > 0. Let S; = (X1, X0, U, — ) be its
d-approximate initial-state estimator. Then, S is -approximate
initial-state opaque if and only if

V(:L',q)EX]:IEGXoﬂXséqﬂXong. 3)

Proof. See the Appendix. [

We illustrate how to verify §-approximate initial-state opac-
ity by the following example.

Example IVd4. Let us still consider system S shown in
Figure 1. The d-approximate initial-state estimator Sy when
0 = 0.1 is shown in Figure 2(a). For example, for initial

state (D,{D}), we have (D,{D}) —?» (B,{B,C?}) since

B—"+ D and {B,C} = Pre,({D}) Nn{z € X
d(0.1,H(z)) < 0.1} = {B,C} Nn{A4, B,C}. However, for
state (B,{B,C}) € X;, we have B € Xy N Xg and
{B,C} N Xy = {B} C Xg. Therefore, by Theorem IV.3,
we know that the system is not 0.1-approximate initial-state
opaque. Similarly, we can also construct Sy for the case of
0 = 0.15, which is shown in Figure 2(b). Since for state
(B,{A,B,C}) € X, which is the only state whose first
component is in Xg N Xg, we have {A,B,C} N Xy =
{A,B} ¢ Xgs. By Theorem IV.3, we know that the system
is 0.15-approximate initial-state opaque.

* B. Verification of Approximate Current-State Opacity

In order to verify d-approximate current-state opacity, we
also need to construct a new system called the d-approximate
current-state estimator defined as follows.

Definition IV.5. Let S = (X, X0, Xs, U, —— ,Y, H) be
a metric system, with the metric d defined over the output
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set, and a constant § > 0. The d-approximate current-state
estimator is a system (without outputs)

Sc = (X¢, Xco, U, - ),

where

o Xc C X x 2% is the set of states;

o Xoo={(z,9)€Xox2%0 2’ cqe d(H(z), H(x')) <
0} is the set of initial states;

o U is the set of inputs, which is the same as the one in S;

« —( C X¢o x U x X¢ is the transition function

defined by: for any (x,q), (2',q¢') € X x2X and u € U,
(2.q) —v (c'.q") if
1) (z,u,2') € — ; and
2) ¢ =UgzevyPosty(z){z" € X :d(H(2"), H(z")) <6}
For the sake of simplicity, we only consider the part of Sc
that is reachable from initial states.

The construction of S is similar to S;. However, we
need to track all forward runs from each pair of initial-state
and its information-consistent states. Still, we need the first
component as the “reference state” to determine what are “J-
close” states. We use the following result to state the main
properties of Sc.

Proposition IV.6. Let S = (X, X0, Xs,U, —— Y, H) be

a metric system, with the metric d defined over the output set,
and a constant § > 0. Let Sc = (X¢, Xco, U, —= ) be its

d-approximate current-state estimator. Then for any (x¢, qo) €
Xco and any finite run

U U,

u
(JUO,CIO) 4;’ ($17q1) 40’ 40’ ('Tn7qn)7

we have
ug

. Ul Un
(i) to — 7 —> -+ — x,,; and
!

(ii) qn = {z}, € X : Tz € Xo, Iz T ) e T
el st maXieqo,. oy d(H(z;), H(zl)) < 8}
Proof. See the Appendix. O

Now, we show the second main result of this section by
providing a verification scheme for J-approximate current-
state opacity of finite metric systems.

Theorem IV.7. Let S = (X, Xy, X5, U, —— Y, H) be
a metric system, with the metric d defined over the output
set, and a constant 6 > 0. Let S¢ = (X¢, Xco, U, — )
be its d-approximate current-state estimator. Then, S is §-
approximate current-state opaque if and only if

V(z,q) € Xo:1q € Xs. 4
Proof. See the Appendix. O

C. Verification of Approximate Infinite-Step Opacity

Finally, we can combine the J§-approximate initial-state
estimator S7 and the d-approximate current-state estimator S¢
to verify d-approximate infinite-step opacity of finite metric
systems. The verification scheme is provided by the following
theorem.

Theorem IV.8. Let S = (X, Xy, X5, U, — Y, H) be a
finite metric system, with the metric d defined over the output
set, and a constant § > 0. Let S; = (X1, X0, U, — )
and Sc = (X¢, Xco, U, = ) be its d-approximate initial-
state estimator and G§-approximate current-state estimator,
respectively. Then, S is d-approximate infinite-step opaque if
and only if

V(z,q) € X1,(2',¢d) e Xc:x=2"€ Xs=qNqg € Xs.
&)

Proof. See the Appendix. O

Remark IV.9. We conclude this section by discussing the
complexity of verifying approximate opacity. Let S =
(X, Xo,Xs,U, — Y, H) be a finite metric system. The
complexity of the verification algorithms for both approximate
initial-state and current-state opacity is O(|U| x | X| x 21X1),
which is the size of St or Sc. For approximate infinite-step
opacity, we need to construct both Sy and S¢, and compare
each pair of states in Sy and Sc. Therefore, the complexity for
verifying approximate infinite-step opacity using Theorem IV.8
is O(|U| x| X|? x4X1). It is worth noting that the complexity of
verifying exact opacity as in Definition IIl.1 is already known
to be PSPACE-complete [46]. Using a similar reduction, we
can conclude that the complexity of verifying approximate
opacity as in Definition Il1.4 is also PSPACE-complete for
0 > 0. Finally, we note that the exponential complexity essen-
tially comes from the subset construction to handle information
uncertainty. In practice, the subset construction usually results
in a quite small structure, see, e.g., [47] for detailed empirical
studies on this issue.

V. APPROXIMATE SIMULATION RELATIONS FOR OPACITY

In the previous sections, we have introduced notions of
approximate opacity and their verification procedures. How-
ever, when the system is very large or even infinite, verifying
opacity based on the original system is not efficient or not
even possible. Therefore, it will be beneficial if we can
verify opacity based on an “equivalent” smaller or symbolic
system. To this end, in this section, we study under what
conditions two systems are equivalent and in what sense.
Specifically, we introduce new notions of approximate opacity
preserving simulation relations, inspired by the one in [33].
The newly proposed simulation relations will provide the basis
for abstraction-based verification of approximate opacity.

A. Approximate Initial-State Opacity Preserving Simulation
Relation

First, we introduce a new notion of approximate initial-state
opacity preserving simulation relation.

Definition V.1. (Approximate Initial-State Opacity Pre-
serving Simulation Relation) Consider two metric systems
Sa = (XaaXa07XaS;Uaa 7Ya7Ha) and Sb =

(Xp, Xpo, Xps, Up, — , Yy, Hy) with the same output sets

Y, =Y, and metric d. For € € R}, a relation R C X, x X}
is called an e-approximate initial-state opacity preserving
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simulation relation (e-InitSOP simulation relation) from S,
to Sy lf
1)a) Vau0€ XaoN Xas, b0 € Xpo N Xps : (Tao, Too) € Ry
b) Vo € Xpo\Xps, Ira0 € Xao\Xas : (a0, Tr0) € R;
2) Y(xg,xp) € R: d(Hy(zq), Hy(zp)) < e
3) For any (x4, %) € R, we have
a) YV, %» xh, Jzp %» xy : (z),x}) € Ry
b) Yay, %:» xp, Iz, %» al : (z,,x;) € R.
We say that S, is e-InitSOP simulated by Sy, denoted by
Sa 27 Sy, if there exists an e-InitSOP simulation relation
R from S, to S.

Note that although the above relation is similar to the
approximate bisimulation relation proposed in [33], it is still a
one sided relation here because condition 1) is not symmetric.
We refer the interested readers to [28] to see why one needs
strong condition 3) in Definition V.1 to show preservation of
initial-state opacity in one direction when € = 0.

The following main theorem provides a sufficient condition
for d-approximate initial-state opacity based on related systems
as in Definition V.1.

Theorem V.2. Let S, = (X4, Xuo, Xus, Ua, — Yo, Hy)
and S, = (Xb,Xbo,sz,Ub, T> ,Yb,Hb) be two metric
systems with the same output sets Y, =Y, and metric d and
let £, € RE. If Sy =5 Sy and € < . then the following
implication hold:

Sy is (0 — 2e)-approximate initial-state opaque

=S, is §-approximate initial-state opaque.
Proof. Consider an arbitrary secret initial state zg € Xgo N
Ul u2 Un . .
X,s and a run xg — n — — > Tn in S,. Since
So =% Sp, by conditions 1)-a), 2) and 3)-a) in Definition V.1,
there exist a secret initial state 2, € Xy N Xps and a run

—_— ..

Uu u u .
x64b1>$/14;> Tn»l‘:l in Sy such that

Vi€ {0,1,...,n} : d(Ha(x;), Hp(z})) < e. (6)

Since S is (6 — 2¢)-approximate initial-state opaque, there
exist a non-secret initial state zj € Xpo \ Xps and a run

u// u// u;’/
ag —> o — + — a7, such that

max

7
i€{0,1,...,n} @)

Again, since S, <7 S, by conditions 1)-b), 2) and 3)-b) in
Definition V.1, there exist an initial state zj’ € X0\ X, and

d(Hy(a}), Hyla))) < 6 — 2.

u u
" 1 n 2

u
arun xj —— zf - —» z!”” such that
a a

Vi€ {0,1,...,n} : d(Hq(2}"), Hy(z})) < e.

7

®)
Combining equations (6), (7), (8), and using the triangle
inequality, we have

max :
i€{0,1,...,n}

9

Since 79 € Xuo N Xus and 79— 27 —2 LIS
a a
are arbitrary, we conclude that S, is J-approximate initial-state

opaque. O

The following corollary is a simple consequence of the
result in Theorem V.2 but for the lack of d-approximate initial-
state opacity.

Corollary V.3. Let S, = (X4, Xo0, Xas, Uas — Yo, Hy)
and Sy, = (Xy, Xpo, Xps, U, — , Yy, Hy) be two metric
systems with the same output sets Y, =Y, and metric d and
let €,0 € Ra'. If Sy =5 Sa, then the following implication
hold:

Sy is not (6 + 2¢)-approximate initial-state opaque

=S, is not d-approximate initial-state opaque.

Proof. Since S, <5 S,, by Theorem V.2, we know that S,
being J-approximate initial-state opaque implies that S, is (d+
2¢)-approximate initial-state opaque. Hence, S, not being (d+
2¢)-approximate initial-state opaque implies that S, is not o-
approximate initial-state opaque. O

Remark V4. It is worth remarking that 6 and ¢ are param-
eters specifying two different types of precision. Parameter §
is used to specify the measurement precision under which we
can guarantee opacity for a single system, while parameter
is used to characterize the “distance” between two systems in
terms of being approximate opaque. The reader should not be
confused by the different roles of these two parameters.

We illustrate e-approximate initial-state opacity preserving
simulation relation by the following example.

Example V.5. Let us consider systems S, and Sy shown in
Figures 3(a) and 3(b), respectively. We mark all secret states
by red and the output map is specified by the value associated
to each state. Let us consider the following relation R =
{(A,J),(B,K), (C, K), (D, K), (E.N), (F. M), (G, M),

(I,M)}. We claim that R is an e-approximate initial-state
opacity preserving simulation relation from S, to S, when
e = 0.1. We check item by item following Definition V.I.
First, for £ € Xq,0 N Xas, we have N € Xy N Xpg such
that (E,N) € R. Similarly, for J € Xy \ Xps, we have
A € Xoo\ Xos such that (A, J) € R. Therefore, condition 1)
in Definition V.1 holds. Also, for any (x4, xp) € R, we have
d(Hy(xq), Hqo(xp)) < 0.1, e.g., d(Hy(A), Hy(J)) = 0.1 and
d(H,(C),Hy(K)) = 0. Therefore, condition 2) in Defini-
tion V.1 holds. Finally, we can also check that condition 3)
in Definition V.1 holds. For example, for (D,K) € R and

D —Z» B, we can choose K —:» K such that (B, K) € R;

for (E,M) € Rand N —:» M, we can choose E —Z» F

such that (F, M) € R. Therefore, we know that R is an -
InitSOP simulation relation from S, to Sy, i.e., Sq =5 Sp.

Then, by applying the verification algorithm in Section IV,
we can check that Sy is 0-approximate initial-state opaque
for 6 = 0.1. Therefore, according to Theorem V.2, we con-
clude that S, is 0.3-approximate initial-state opaque, where
0.3 = 9§ + 2¢, without applying the verification algorithm to
S, directly.
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[15]

[3.0]

(@) Sa

(b) Sp

Fig. 3. Example of e-approximate initial-state opacity preserving simulation
relation.

B. Approximate Current-State Opacity Preserving Simulation
Relation

Now, we provide a notion of approximate simulation rela-
tion for preserving current-state opacity.

Definition V.6. (Approximate Current-State
Opacity Preserving Simulation Relation) Let
Se = (Xa, X0, Xas, Ua, - Yo, Hy) and
Sy, = (X},,Xbo,sz,U},, 41;» ,}/[,,Hb) be two metric
systems with the same output sets Y, = Y, and metric

d. For ¢ € Rar, a relation R C X, x X is called an
e-approximate current-state opacity preserving simulation
relation (e-CurSOP simulation relation) from S, to Sy if
1) Va0 € Xa0, ITp0 € Xpo © (Ta0, Te0) € Ry
2) Y(xq,xp) € R: d(Hy(z4), Hy(zp)) < &;
3) For any (z4,2p) € R, we have
a) Vi, %» al, 3y %:» xy  (xl,xp) € R;
b) Vx, %» alh € Xog, 3wy %» xy, € Xps : (), ;) €R;
c) Vay %:» xp, 3z, %:» xl, : (x),x;) € R.
d) Vay — o}, € Xp \ Xps, Jvg — @), € Xy \ Xos :
(xf,z}) € R.
We say that S, is e-CurSOP simulated by Sy, denoted by

Sa 2& Su, If there exists an e-CurSOP simulation relation R
from S, to S.

The following theorem provides a sufficient condition for
d-approximate current-state opacity based on related systems
as in Definition V.6.

Theorem V.7. Let S, = (X4, Xuo, Xus, Ua, — Yo, Hy)
and Sy, = (Xy, Xpo, Xps, U, — , Yy, Hy) be two metric
systems with the same output sets Y, =Y, and metric d and

let ,6 € Rg. If Sq <& Sy and € < g, then the following
implication hold:

Sy is (8§ — 2¢)-approximate current-state opaque

=S, is d-approximate current-state opaque.

Proof. Let us consider an arbitrary initial state o € X o and
. u u
finite run Ty —> T —> -

- - L;» z, in S, such that
T, € Xgs. We consider the following two cases: n = 0
and n # 0. If n = 0, we know that g € X,g. Since we
assume that {z € X : (Hq(xo), Ho(z)) < 0} € Xas, we

observe immediately that there exists z(, € X0 \ Xas such

that d(H,(x0), Hy(z()) < 6. Then, we consider the case of
n > 1. Since S, X% Sy, by conditions 1), 2), 3)-a) and 3)-b)
in Definition V.6, there exist an initial state z(, € X3 and a
finite run x{, L;» x) %f» LZ‘» a), in Sy such that
x], € Xps and

Vi€ {0,1,...,n} : d(Ha(x;), Hy(z})) < e. (10)
Since S, is (6 — 2¢)-approximate current-state opaque,

there exist an initial state zj € X, and a finite run
" " "

xg Lbl» xy u; . Lbﬂ. x)' such that 2!/ € X, \ Xps and
max  d(Hp(z}), Hp(x))) <6 — 2e. (11)
i€{0,1,....,n}

Again, since S, =% S, by conditions 1), 2), 3)-c) and 3)-

d) in Definition V.6, there exist an initial state x € X,

and a finite run zf — 2}’ 2
a

€ X, \ Xos and
Vi€ {0,1,...,n} : d(Hy (2", Hy(z])) <e.

u
- —» /" such that
a

(12)

Combining equations (10), (11), (12), and using the triangle
inequality, we have

(13)

max

d(H,(z;), Ho(z!")) < 6.
eqnax (Ha(w;), Ha(2")) <

(2

. Ul uz Un,
Since g € X, and xg —— 1 ——> -+ — x,, are
a a a
arbitrary, we conclude that S, is J-approximate current-state

opaque. [

C. Approximate Infinite-Step Opacity Preserving Simulation
Relation

Finally, by combing e-CurSOP simulation relation and &-

InitSOP simulation relation, we provide a notion of approxi-
mate simulation relation for preserving infinite-step opacity.

Definition V8. (Approximate Infinite-Step
Opacity Preserving Simulation Relation) Let
Sa = (XavXa07XaS7Ua7 ,Ya7Ha) and

a
S = (Xp, Xo0, Xos, U, — .Y, Hy) be two metric
systems with the same output sets Y, =Y, and metric d. For
e € RY, a relation R C X, x Xy is called an e-approximate
infinite-step opacity preserving simulation relation (e-InfSOP
simulation relation) from S, to Sy if it is both an -CurSOP
simulation relation from S, to Sy and an -InitSOP simulation
relation from S, to S, i.e.,
1)a) Yxa0 € Xao0, 3Tp0 € Xpo © (Ta0, Teo) € R}
b) Va0 € Xao N Xas, 30 € Xpo N Xos @ (Ta0, Teo) € Ry
¢) Vapo € Xoo\ Xbs, ITa0 € Xao\Xas : (Ta0, Too) € R;
2) Y(xg,xp) € R:d(Hy(zg), Hy(xp)) < &
3) For any (z4,xp) € R, we have
a) Vg —»u: xl, 3y —>ubb xy : (xl,xp) € R;
b) Vx, %» xh € Xag, Izp %» x, € Xpg : (2}, x}) ER;
c) Vay L;» xp, 3z, %:» xl, : (x),x;) € R.
d) VY % l‘; S Xb\ng,Elxa % JC; € Xa\XaS :
(a),2) € R.
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We say that S, is e-InfSOP simulated by Sy, denoted by
Sa X5 Sb, If there exists an e-InfSOP simulation relation
R from S, to Sy.

Similar to the cases of initial-state opacity and current-
state opacity, we have the following theorem as a sufficient
condition for J-approximate infinite-step opacity based on
related systems as in Definition V.8.

Theorem V.9. Ler S, = (X4, Xuo, Xus, Ua, — Yo, Hy)
and Sy = (Xp, Xpo, Xps, U, — , Yy, Hy) be two metric
systems with the same output sets Y, =Y, and metric d and
let €, € R{. If So =55 Sy, and € < 3, then the following
implication hold:

Sy is (§ — 2e)-approximate infinite-step opaque
=S, is d-approximate infinite-step opaque.
Proof. Let us consider an arbitrary initial state o € X,0 and

. u1l u
finite run xg —— 1 —— - --
a

- %» T, in S, such that
x € X,5 for some k£ =0,...,n. We consider the following
two cases:

If £ = 0, then we have g € X,g. Since S, =<ip
Sy implies S, =7 Sp, by the proof of Theorem V.2, we

know that there elxist an iniltial state a:{) € Xao \ Xus

and a run x| 1;1 -z} 1;2 > ... — 2/ such that
max;eo1,....n} Ad(Hq(2:), Ho(])) < 0.

If £ > 1, then similar to the proof of Theorem V.7, by
conditions 1)-a), 2), 3)-a), 3)-b), 3)-c) and 3)-d) in Defini-
tion V.8 and the fact the S is (6 — 2¢)-approximate infinite-
step opaque, there exist an initial state 2, € X, and a finite

%» %» x;, such that ), € X, \ X5
and max;c{o,1,...,n} d(Ha(xi)a Ha(fé)) <.

. ul u2
Since z¢g € Xy, g —> T ——> - --
a

! /
run xy —
a

Un
a 7’ ey and
index k are arbitrary, we conclude that S, is d-approximate
infinite-step opaque. O

VI. OPACITY OF CONTROL SYSTEMS

In the previous section, we have introduced notions of
approximate opacity-preserving simulation relation and dis-
cussed their properties. This allows us to verify approximate
opacity for infinite systems, e.g., continuous dynamic systems,
based on their finite abstractions. Then the following question
arises naturally: how can we construct such an abstraction for
a given system possibly with infinite number of states. In
general, how to construct symbolic abstractions are system-
dependent and not all systems admit symbolic models. In
this section, we show that a class of discrete-time control
systems do admit symbolic models for the purpose of verifying
approximate opacity under certain stability assumption.

To be more specific, we consider a class of discrete-time
control systems of the following form.

Definition VI.1. A discrete-time control system X is defined
by the tuple ¥ = (X,S,U, f,Y,h), where X, U, and Y are
the state, input, and output sets, respectively, and are subsets
of normed vector spaces with appropriate finite dimensions.
Set S C X is a set of secret states. The map f: X xU — X

is called the transition function, and h : X — Y is the output

map and assumed to satisfy the following Lipschitz condition:

[h(z) — h(y)|] < a(llz — yl|) for some o € Koo and all

x,y € X. The discrete-time control system Y is described by
difference equations of the form

§(k + 1)= f(£(k), v(k)),

DI 14

{ C(k)= h(E(k)), (1

where £ : Ng = X, ( : Ng = Y, and v : Ng — U are the

state, output, and input signals, respectively.

We write £, (k) to denote the point reached at time & under
the input signal v from initial condition = &,,,(0). Similarly,
we denote by (., (k) the output corresponding to state &, (k),
i.e. oo (k) = h(&z0(k)). In the above definition, we implicitly
assumed that set X is positively invariant'.

Now, we introduce the notion of incremental input-to-state
stability (9-ISS) leveraged later to show some of the main
results of the paper.

Definition VL.2. [48] System ¥ = (X,S,U, f,Y, h) is called
incrementally input-to-state stable (§-1SS) if there exist a KL
function B and Ko function v such that Vx,r' € X and
Yo, v : Ng — U, the following inequality holds for any k € N:

1€a0 (k) =&arr ()1 < B(Il — 27|, k) +(llv = v'llo)- (15)
Example VL.3. As an example, for a linear control system:
§(k+1) = AS(k) + Bu(k), (¢(k) =C¢(k),  (16)

where all eigenvalues of A are inside the unit circle, the
functions 3 and ~y can be chosen as:

Br k) = | A*r; ~(r) =B <Z IIAm) r.. (A7)
m=0

In general, it is difficult to check inequality (15) directly
for nonlinear systems. Fortunately, §-ISS can be characterized
using Lyapunov functions.

Definition VI.4. [48] Consider a control system Y. and a
continuous function V : X x X — R, Function V is called
a §-ISS Lyapunov function for % if there exist Koo functions
a1, a9, p and K function o such that:
() for any z,2’' € X
ar([lz —2'||) < V(z,2') < ax(|le — 2');
(ii) for any x,2’ € X and u,u' € U
V(f(z,u)f (@, u) =V (z,2") <=p(V (z, 2")+o(ju—u');

The following result characterizes 6-ISS in terms of exis-
tence of §-ISS Lyapunov functions.

Theorem VL5. [48] Consider a control system Y.
o X is 6-ISS if it admits a 0-1SS Lyapunov function;
o If U is compact and convex and X is compact, tehn the

existence of a 0-ISS Lyapunov function is equivalent to
0-ISS.

The next technical lemma will be used later to show some
of the main results of this section.

ISet X is called positively invariant under (14) if &..,(k) € X for any
k€N, any x € X and any v : Ng = U.
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Lemma VL.6. Consider a control system Y. Suppose V is a
0-1SS Lyapunov function for Y. Then there exist kK, A € Ko,
where r(s) < s for any s € R*, such that

V(f(z,u), f(2', ) <max{s(V(x,2")),

Sor any z, 2’ € X and any u,u’ € U.

Alllu—='[)}, (18)

The proof is similar to that of Theorem 1 in [49] and is
omitted here due to lack of space.

In order to provide the main results of this section, we first
describe control systems in Definition VI.1 as metric systems
as in Definition II.1. More precisely, given a control system
¥ =(X,S,U, f,Y,h), we define an associated metric system

S(E):(X’X(]aXSan - ;KH)a (19)

where X =X, Xo =X, Xs =S, U=0U,Y =Y, H=h,
and 2 —— 2/ if and only if 2’ = f(z,u). We assume that the
output set Y is equipped with the infinity norm: d(y1,y2) =
lyr — y2||, Yy1,y2 € Y. We have a similar assumption for the
state set X.

Now, we introduce a symbolic system for the control system
Y = (X,S,U, f,Y,h). To do so, from now on we assume
that sets X, S and U are of the form of finite union of boxes.
Consider a concrete control system Y and a tuple q = (1, u, 6)
of parameters, where 0 < 7 < min {span(S), span(X\ S)} is
the state set quantization, 0 < u < span(U) is the input set
quantization, and 6 is a design parameter. Now let us introduce
the symbolic system

SQ(E) = (XququXq57qu 4q> 7)/anq)a (20)

where Xq = Xq0 = [X],, Xqs = [Se]n’ Ug = [U],. Yq =

{h(zq) | zq € Xq}, Hq(zq) = h(zq), Vzq € Xq, and
U,
o Tq — > T — f(zq, uq)l| <.
We can now state the first main result of this section
showing that, under some condition over the quantization

parameters 7 and u, Sq(X) and S(X) are related under an ap-
proximate initial-state opacity preserving simulation relation.

Theorem VL.7. Let ¥ = (X,S,U, f,Y, h) be a §-ISS control
system. For any desired precision € > 0, and any tuple q =
(n, 1, 0) of parameters satisfying

Ba~He), 1) +y(u) +n<a”
we have S(X) <5 S4(X) =5 S(2).

if and only if ||z

(o), 1)

Proof. We start by proving S(X)
relation R C X x X, defined by (z
lz—24] < a™1(e). Smcen < span(S), Xs € U,efg,
and by (21), Vx € X, dzq € X4s such that:

(o).

Hence, (z,24) € R and condition 1)-a) in Definition V.1 is
satisfied. For every x4 € Xg \ Xqg, by choosing « = x4 which
is also inside set X \ Xg, one gets (z,z4) € R and, hence,
condition 1)-b) in Definition V.1 holds as well. Now consider
any (z,zq) € R. Condition 2) in Definition V.1 is satisfied by
the definition of R and the Lipschitz assumption:

[H () — Hq(zq)[l = [[P(z) — h(zq)[| < o[z — zq]) < &

(¥). Consider the
€ R if and only if

Bn (p),

<5 Sq
)

[z —zqll <0 <@ (22)

Let us now show that condition 3) in Definition V.1 holds.
Consider any u € U. Choose an input uq € Uq satisfying:

[l = ug|| < po. (23)

Note that the existence of such uq is guaranteed by the inequal-
ity p < span(U) which guarantees that U € U, Bu(p)-

Consider the unique transition 2 —— 2/ = f(z,u) in S(2).
It follows from the §-ISS assumption on X and (23) that the
distance between 2’ and f(zq,uq) is bounded as:

2" = f(2q, uq)ll <B (llz = zqll, 1) + 7 ([[u — uql)
<B(a™(e), 1) + 7 (1)

X, B, (p), there exists xg € X such that:

1f (g, uq) — 2/l < m,
which, by the definition of S4(X), implies the existence of
Tq Lq“» Tg in Sq(X). Using the inequalities (21), (24), (25),
and tr1angle inequality, we obtain:

I = 2G|l < [|l2" = f(2q, uq) + f(2q, uq) — |
< |2’ = f(zq, uq) | + 11.f (g, uq) — ]|
<B(a™He) 1) +v(w) +n<a (o).
Therefore, we conclude (2',z;) € R and condition 3)-a) in
Definition V.1 holds. Let us now show that condition 3)-b) in
Definition V.1 also holds.

Now consider any (x, zq) € R and any uq € Ug. Choose the
input u = uq and consider the unique z’ = f(z,u) in S(X).
Using 6-ISS assumption for ¥, we bound the distance between
x’ and f(zq,uq) as:

l2” = f(2q,uq)ll < B (lz = zqll,1) < B (a7 (e),1) . (26)

Using the definition of Sq(X), the inequalities (21), (26),
and the triangle inequality, we obtain:

Hxl - xQH SHJU/ — f(xq,uq) + f(2q,uq) — xé”
<[l2" = f(zq, uq) || + [1f (zq, uq)
<B(a7Me).1) +n<a ().

Therefore, we conclude that (', 2;) € R and condition 3)-b)

in Definition V.1 holds.
In a similar way, one can prove that Sq(X) <5 S(X). O

(24)

Since X C |J,c
(25

— 24

Remark VL8. Note that there always exist quantization
parameters q such that inequality (21) holds as long as
B(at(e),1) < a~'(e). By assuming that the discrete-time
control system X is a sampled-data version of an original
continuous-time one with the sampling time T, one can ensure
the latter inequality by choosing the sampling time large
enough given that (r,1) = B(r, T) < r for some KL
Sfunction B establishing the incremental stability of the original
continuous-time system. For example, for the funcnon in (17),
one has B(r,1) = ||A|lr = |e
matrix of the original continuous- tzme linear control system.

The following example illustrates how to use Theorem V1.7
to verify approximate opacity for an infinite system based on
its finite abstraction.
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Fig. 4. Symbolic model Sq(3X) associated with control systems X of (27)
with » = 0.1, = 0.001 and € = 0.9.

Example VL.9. Let us consider the following simple system

oF { E(k+1)=0.1¢(k) + v(k),

C(k)=sin(2.57¢(k)) + 1,
where X = [0,1.6[,S = [0,0.1] and U = {0.001}. This system
is clearly §-1SS and according to Equation (17), we have
B(r,k) = 0.1%r and ~(r) = Y oo_,0.1™r. Also, function
h satisfies the Lipschitz condition with a(r) = 2.57r. By
Equation (21), the parameters q = (n, 11,0) and the abstract
precision € should satisfy %5 + %,u +n < 07'46. Let us
consider desired abstract precision ¢ = 0.9 and quantization
parameters q = (n,u,0) = (0.1,0.001,0) satisfying the
inequality. Then we obtain symbolic system Sq(X) shown
in Figure 4, and by Theorem VL7, we have S(X) j?'g
Sq(X) <99 S(X). Essentially, we discretize the state space of
[0,1.6] into 16 discrete states based on parameter 1. One can
easily check that Sq(X) is 0-approximate initial-state opaque
since for any run from secret initial state 0, there exists a run
from non-secret state 8 such that their outputs are exactly the
same. Therefore, by Theorem V.2, we can conclude that % is
1.8-approximate initial-state opaque.

27

The next theorem provides similar results as in Theorem
VL7 but by leveraging §-ISS Lyapunov functions. To show
the next result, we will make the following supplementary
assumption on the §-ISS Lyapunov functions: there exists a
function 4 € K such that

Vo, o' 2" € X, V(z,2')-V(2',2") <4z —2"|). (28)

Inequality (28) is not restrictive at all provided we are in-
terested in the dynamics of the control system on a compact
subset of the state set X; see the discussion in [34].

Theorem VL10. Ler ¥ = (X,S,U, f,Y,h) admit a §-ISS
Lyapunov function V' satisfying (28). For any desired precision
e > 0, and any tuple q = (n, 1, 0) satisfying
az(n) <ai(a™'(e)),
max{(ai(a™(e))), A} +5(n) <ai(a™(e)),
we have S(X) <5 Sq(X) =5 S(2).
Proof. We start by proving S(X) <7 S4(X). Consider the

relation R C X x Xg defined by (z,zq) € R if and
only if V(z,2q) < ai(a™!(g)). Since n < span(S) and

(29)
(30)

Xg C Upe[S],, B, (p), for every x € Xg there always exists
Zq € Xqs such that ||z — zq]| < n. Then

V(z,7q) < aa(||z — zq]]) < a2(n) < a1(a”'(e))

because of (29) and «y being a K., function. Hence,
(x,zq) € R and condition 1)-a) in Definition V.1 is satisfied.
For every xzq € Xq \ Xqs, by choosing x = x4 which is also
inside set X \ X, one gets trivially (z,z4) € R and, hence,
condition 1)-b) in Definition V.1 holds as well. Now consider
any (z,zq) € R. Condition 2) in Definition V.1 is satisfied by
the definition of R and the Lipschitz assumption on map h as
in Definition VIL.1:

|H(z) — Hq(zq)|| = [[h(z) — h(zq)|| < o||x — z4])
<ala; ' (V(z,zq)) <e.

Let us now show that condition 3) in Definition V.1 holds.
Consider any u € U. Choose an input uq € Uy satisfying:

[l — ug|| < po. €2V

Note that the existence of such uq is guaranteed by the inequal-
ity u < span(U) which guarantees that U C UPE[U]M B,.(p).
Consider the unique transition 2 —— 2/ = f(z,u) in S(X).
Given 6-ISS Lyapunov function V' for ¥, inequality (18), and
(31), one obtains:
V(2', f(xq,uq)) <max{r (V(z,2q)), A([[u = uqgl)} (32)
<max{x (ar(a"'(g))), A ()}

Since X C U,¢[x), Bn(p). there exists zy € Xq such that:

| f(2q; uq) — zqll <, (33)

which, by the definition of Sq(X), implies the existence of
Tq L, Tg in Sq(X). Using the inequalities (28), (30), (32),
and (33), we obtain:
V(@' xg) S V(2 fzq,uq)) + A f(2q: ug) — z5])
(ar(a™'(@), A ()} +4 ()
1
().

<a(a”(¢))

< max{k

Therefore, we conclude (2',z;) € R and condition 3)-a) in
Definition V.1 holds. Let us now show that condition 3)-b) in
Definition V.1 also holds.

Now consider any (z,xq) € R. Consider any uq € Uj.
Choose the input u =1uq and consider the unique
' = f(z,u) in S(X). Given J-ISS Lyapunov function
V for ¥ and inequality (18), one gets:

V(' f(zq,uq)) < K (V(2,2q)) < & (ar(a™'(e))).

Using the definition of S4(X), the inequalities (28), (30),
and (34), we obtain:

V(a',zq) SV(2', f(2q, uq)) + F(I1f (24, tq) — z4]])
<k (a1(a™(e))) +4(n) < ar(a™!(e)).
Therefore, we conclude that (2, z) € R and condition 3)-b)

q
in Definition V.1 holds.
In a similar way, one can prove that S4(¥) <7 S(¥). O

(34)
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Remark VL11. One can readily verify that there always
exists a choice of quantization parameter q = (1, ) such that
inequalities (29) and (30) hold simultaneously. Although the
result in Theorem VI.10 seems more general than that of Theo-
rem VL7 in terms of the existence of quantization parameter q,
the symbolic model Sq(X), computed by using the quantization
parameters q provided in Theorem VI.7 whenever existing, is
likely to have fewer states than the model computed by using
the quantization parameters provided in Theorem VI.10 due
to the conservative nature of §-1SS Lyapunov functions.

The next theorems illustrate the other main results of this
section showing that, under similar conditions over the quanti-
zation parameters 7 and 4, Sq(X) and S(X) are related under
an approximate current-state opacity preserving simulation
relation.

Theorem VL.12. Let ¥ = (XS, U, f,Y, h) be a §-ISS control
system. For any desired precision € > 0, and any tuple q =
(n, 1, 0) of parameters satisfying

Ba™(e),1) + () +n<a (),
a~l(e) <0,

we have S(X) <& Sq(X).

Proof. Consider the relation R C X x X, defined by
(z,74) € R if and only if ||z — z4]| < a~!(e). Note that
conditions 1), 2), 3)-a) and 3)-c) of £-CurSOP simulation
relation in Definition V.6 are similar to that of e-InitSOP
simulation relation, therefore the proof of them are similar
to that in Theorem VI.7 and is omitted here. Here, we show
that conditions 3)-b) and 3)-d) in Definition V.6 hold.

Let us consider an arbitrary transition 2 —— 2/ = f(z, u)

with 2’ € Xg in S(X). Similar to the proof of condition 3)-

’
q

in Sy(X) where (2/,23) € R holds, where the input uq € Uq
satisfies: ||u—uq|| < p. By the construction of the secret set in
the symbolic system, one has Xqs = [S?],, with § > a~1(¢)
and 0 < n < min{span(S), span(X \ S)}. Therefore, since
(«/,2) € R which implies ||z’ — 2| < a7'(g), we
obtain that xg € Xggs. Thus, we conclude that condition 3)-
b) in Definition V.6 holds. In a similar way, we can show
that condition 3)-d) in Definition V.6 holds as well which
completes the proof. O

. .. Uqg
a), we can show the existence of a transition zq ——
q

Theorem VI.13. Ler ¥ = (X,S,U, f,Y,h) admits a §-ISS
Lyapunov function V' satisfying (28). For any desired precision
e >0, and any tuple q = (1, 1, 0) satisfying
az(n) <ai(a”(e)),
max{r(ai(a”!(€))), M)} +3(n) <ai(a™(e)),
a”'(e) <0,
we have S(X) <% Sq(2).
Proof. The proof is similar to that of Theorem VI.10 and
Theorem VI.12 and is omitted here due to lack of space. [

Since we show S(X) <7 Sq(X) and S(X) =% 54(X) under
the same relation in Theorems V1.7 and VI.12 (resp. Theorems

VI.10 and VI.13), by the definition of approximate infinite-
state opacity preserving simulation relation, we consequently
get the following results.

Theorem VL.14. Let X = (X,S, U, f,Y, h) be a §-ISS control
system. For any desired precision € > 0, and any tuple q =
(n, 1, 0) of parameters satisfying

Bla(e),1) +v(p) +n<a (),
a~t(e) <0,

we have S(X) <55 Sq(2).

Theorem VIL15. Let ¥ = (X,S,U, f,Y,h) admits a §-ISS
Lyapunov function V satisfying (28). For any desired precision
e > 0, and any tuple q = (n, u, 0) satisfying

as(n) <ai(e”'(e),
max{r(a1 (™! (€))), M)} +4(n) <ar(a™(e)),
a~l(e) <6,

we have S(X) <55 Sq(2).

VII. CONCLUSION

In this paper, we extended the concept of opacity to metric
systems by proposing the notion of approximate opacity.
Verification algorithms and approximate relations that preserve
approximate opacity were also provided. We also discussed
how to construct finite abstractions that approximately simu-
late a class of control systems in terms of opacity preservation.
Our result bridges the gap between the opacity analysis of
finite discrete systems and continuous control systems.

Among the many possible directions for future work that
will be built based on the proposed framework, we mention
several directions of immediate interest. One direction is to
extend our framework to the stochastic setting for almost
opacity [14], [21]-[23]. Also, we are interested in constructing
approximate opacity preserving symbolic models for more
classes of systems. Finally, we plan to extend approximate
opacity preserving simulation relation to approximate opacity
preserving alternating simulation relation [45] and solve the
problem of controller synthesis enforcing approximate opacity
[46], [50]-[54].

APPENDIX

A. Proofs not contained in main body
Proof of Proposition 1V.2

Proof. It is straightforward to show (i). Hereafter, we prove
(i1) by induction on the length of input sequence.

When n = 0, i.e., there is no input sequence, we have that
(z0,q0) € X10. By the definition of X, we know that

g0 = {0 € X : d(H (x0), H (7)) < 0}

which implies (ii) immediately.

To proceed the induction, we assume that (ii) holds when
n = k. Now, we need to show that (ii) also holds when n =
k + 1. Consider arbitrary pair (xg,qo) € X0 and finite run

(.130, QO)L;'(J:M Q1)LI2> e L]", (J)n, QTL)L?i(x7z+la Qn-i-l)-
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Then, we have

gn+1 = Uacv Preg(gn) N{z € X : d(H(xp11), H(z)) < 6}
={z e X : €q,u,y €U st (z,u),,,2") e—>}
Ao € X : d(H(znp), Hz)) < 6}

=zreX:
{x NA(H (2,11), H(x)) < 0]
By the induction hypothesis, we know that

u! u! 1 )
Joy —> ) —— e 2l st

xy € X : . _' .
max;e{o,1,...,n} d(H(l’l),H(l' )) <4

qn =

n—i

Therefore, by combing the above two equations, one gets

3 Ui, ol ;) Un—1 uf ,
T — ) —> )] —> - — T,
1 ={T€X: gt max;c(o,1,....n} d(H(x;), H(z),_;)) <96
ANA(H (2n 1), H(z)) <6
—{zex. 0 Co- oy = — T St
maX;e{o,1,...,n+1} d(H (), H(SELH)) <9
Therefore, one obtains that the induction step holds. O

Proof of Theorem IV.3

Proof. (=) By contraposition: suppose that there exists a state
(z,q) € X such that z € Xy N Xg and ¢ N Xy C Xg. Let

ul Un
> e —

T T (x’qun)

(anqo) % ('Tlvql)
be a run reaching (z,q) =: (z,, ¢, ). By Proposition IV.2, we
have 2, —» 1 —> 1, which is well-defined

in S as z,, € Xy. Moreover, by Proposition IV.2, we have

Un—1

Az}, U, ) e L N zl st
maXic{o,1,...,n} d(H (x;), H(z;,_;)) <6

n—u

qn =14 x) € X :

However, since ¢,,N Xy C Xg, we know that there does not ex-
. ul, Uy, uf
ist ) € Xo\Xg and z) — 2} —= ... 4 2/ such that

max;eo1,....n} Ad(H (z), H(x;,_;)) < 6. Therefore, by con-

n—i
U1

— xl?

Un—1

sidering x,, € XoNXg and x,, e g
we know the system is not d-approximate initial-state opaque.

(<) By contradiction: suppose that Equation (3) holds and
assume that S is not J-approximate initial-state opaque. Then,

there exists a secret initial state g € XgNXg and a sequence

Uz

.. Ul u
of transitions o — x1 —» x,, such that there

does not exist a non-secret initial state z;, € Xy \ Xg and a
’ ’ ’

sequence of transitions zf, — > z} —"s 2/ such
that max;eo,1,...,n} d(H (), H(x})) < J. Let us consider the

following sequence of transitions in Sy

(Zn,q0) LIR (Tn—1,q1) iﬁ’ %’ (%0, qn)-

By Proposition IV.2, we know that

’ ’
u Uy 1 u
Jof) —m 2f e e g st

maxie(o,1,...ny A(H (i), H(27)) <6

By Equation (3), we have ¢, N Xg ¢ Xg. Therefore,

there exist a non-secret initial state z;, € X, \ Xg and
’ ’ !
u2 K

qn = QJ‘E)EXI

1 !/ Un

u
a sequence I, -

> ! such that

(32" € qn,up 1 €U st (z,up,q,2") 6—»]} .

. u
Xo and zj) —> -+ — 5

max;efo,1,....n} A(H (), H(x;)) <4. This is a contradiction,
i.e., S has to be d-approximate initial-state opaque. O

Proof of Proposition IV.6

Proof. The proof is similar to that of Proposition IV.2, which
can be done by induction on the length of the sequence. [

Proof of Theorem IV.7

Proof. By Proposition IV.6, for each state (x,q) encountered,
the second component is exactly the set of all possible current
states consistent with the observation. Then the proof is similar
to that of Theorem IV.3. O

Proof of Theorem IV.8

Proof. By contraposition: suppose that there exist two states
(Zn,q),) € X1, (Tn,qn) € X such that z,, € Xg and ¢, N
q'/n C Xg. Let

Uz Un

(x07QO) %’ (371,(11) 40’ 40’ (xnaQn)
(xn+m> Qn+m) %4;—71; (xn+m71> Qner*l)' o ULI-H’ (wm Q;L)

be two runs reaching (z,q) and (x,q’), respectively. By
Propositions IV.2 and IV.6, we have zy € Xy and

ul Un —1 Un, Un+1 Un42 Un4+m
Zo > >Tn—1 >Tn >Tn+1 = >Tn+m-
Moreover, one has

Ng, =
Qn qn -

7 ’
/ ;) U Untm
2 eX dzg € Xo, g — - — 15,

s.t. maxX;eqo,1,...,n4+m} A(H (25), H(2})) <0
Since ¢, N g}, C Xg, we know that there does not exist z(, €
! uln#»m, /

nam Such that 27 € X \ Xg
and max;co1,....nym} Ad(H (x;), H(x})) < J. Therefore, the
system is not d-approximate infinite-step opaque.

(<) By contradiction: suppose that equation (5) holds
and assume, for the sake of contradiction, that S is not §-
approximate infinite-step opaque. Then, we know that there
exists an initial state xyp € Xy, a sequence of transitions
Ty —t e gy —2 > . "+ 4z and an index k €
{0,...,n} such that x; € Xg and there does not exist
an initial state /sc{) € Xo and a sequence of transitions
x T —2 o g such that z) € X \ Xg
and max;eo,1,....ny d(H (z;), H(z})) < 6. Let us consider the
following sequence of transitions in S¢

Uy
e

U u

(xO;QO) %’ ('rhql) 40’ 4;’ ('rkvqk?)a

and the following sequence of transitions in Sy

Un—1

("L‘n717q;71> 4]» . Uk+1

—_—
I

Un

(l’n,q;{) T’ (‘rknql/c)

By Propositions IV.2 and IV.6, we know that

’

! Un /
— - —> 1, St

o e X g € Xo, Fa

QnQQ:«L =
max;eo,1,..,ny Ad(H (z), H(x7)) <6

Since equation (5) holds, we know that ¢, N ¢, € Xg.
Therefore, there exists 21:6 € Xy and a sequence of transitions
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’ !
Uy

" . 2/ such that z;, € X \ Xg and

max;eo1,...n} Ad(H (z;), H(xj)) < & , which is a contradic-

tion, i.e., S has to be d-approximate infinite-step opaque. [
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